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Abstract. Suppose Γ is a totally ordered discrete abelian group, and I is
an ordered ideal in Γ. We show that the crossed product A×Γ+ by an action

inflated from one Γ/I is isomorphic to the induced algebra IndbΓ
I⊥A×(Γ/I)+.

Using this we show how the bΓ-invariant ideals in the Toeplitz algebra of Γ
are determined by the order ideals in Γ.
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1. INTRODUCTION

Suppose N is a normal subgroup of a group G. Attempts to understand the
relationship between the group C∗-algebra C∗(G) and the smaller group algebras
C∗(N) and C∗(G/N) have motivated many theorems about crossed products and
twisted crossed products by automorphic actions of groups. Here we consider an
analogous problem for the Toeplitz algebra T (Γ) of a totally ordered abelian group
Γ: given an ordered ideal I in Γ, how is T (Γ) related to T (Γ/I)?

Murphy has shown in [10] that if Γ is a lexicographic direct sum Γ1

⊕
lex

Γ2

and I is the ideal Γ2 in Γ, then there is a natural surjection of T
(
Γ1

⊕
lex

Γ2

)
onto

the algebra C(Γ̂2, T (Γ1)) = C(Γ2, T (Γ/Γ2)), and he identified generators for the
kernel. Our main theorem is a similar structure theorem for an arbitrary order
ideal: the surjection takes values in an induced C∗-algebra rather than an algebra
of continuous functions, but the kernel has the same generators as Murphy’s.

Our strategy is to use the realisation of T (Γ) as a semigroup crossed product
BΓ+ ×τ Γ+ from [3], the basic structure theory of semigroup crossed products
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developed in [2], and a new description of semigroup crossed products by actions
inflated from a quotient; this new theorem is modelled on a theorem of Olesen and
Pedersen for crossed products by actions of abelian goups ([11]).

We begin with our discussion of the crossed product of an inflated system,
and prove that it is isomorphic to an induced algebra (Theorem 2.1). Our proof is
quite different from that of Olesen and Pedersen ([11]), and uses a characterisation
of induced C∗-algebras due to Echterhoff ([6]), as formulated in [12]. In Section
3, we focus on the semigroup crosssed product BΓ+ ×τ Γ+ which was shown in [3]
to be isomorphic to the Toeplitz algebra T (Γ), and use Theorem 2.1 to prove our
main structure theorem for T (Γ). In Section 4, we use similar techniques to give
a complete classification of the invariant ideals in the commutator ideal of T (Γ).

2. CROSSED PRODUCTS OF INFLATED SYSTEMS

Let Γ be a totally ordered discrete abelian group with positive cone Γ+ and identity
e. Suppose I is an order ideal of Γ: that is, a subgroup of Γ such that e 6 x 6 y ∈ I
implies x ∈ I. The quotient group of Γ/I is a totally ordered group with

[x] < [y] ⇐⇒ there exists z ∈ I such that x < y + z;

the positive cone(Γ/I)+ is the image of Γ+ under the quotient map q : x 7→ [x].
An endomorphism φ of a C∗-algebra A is called extendible if it extends to a

strictly continuous endomorphism φ of the multiplier algebra M(A); this happens
precisely when there is an approximate identity (eλ) for A and a projection p ∈
M(A) such that φ(eλ) converges strictly to p in M(A). Now let α be an action of
(Γ/I)+ on A by extendible endomorphisms. Then β := α ◦ q is an action of Γ+

by extendible endomorphisms; we say that the system (A,Γ+, β) is inflated from
(A, (Γ/I)+, α).

Let (A×β Γ+, iA, iΓ+) and (A×α(Γ/I)+, jA, j(Γ/I)+) denote the crossed prod-
ucts, as in [3]. Both carry dual actions; for example, β̂ : Γ̂ → Aut (A ×β Γ+) is
characterised by β̂γ(iA(a)) = iA(a) and β̂γ(iΓ+(x)) = γ(x)iΓ+(x) for γ ∈ Γ̂. The
pair (jA, j(Γ/I)+ ◦ q) is a covariant representation of (A,Γ+, β) in A×α (Γ/I)+, so
there is a nondegenerate homomorphism Q : A ×β Γ+ → A ×α (Γ/I)+ such that
Q ◦ iA = jA and Q ◦ iΓ+ = j(Γ/I)+ ◦ q. Since the range of Q is a C∗-subalgebra of
A×α (Γ/I)+ containing all the generators, Q is surjective.

Our first theorem shows that we can realise A ×β Γ+ as the induced C∗-
algebra Ind Γ̂

I⊥A×α(Γ/I)+, which by definition consists of the continuous functions
f : Γ̂ → A ×α (Γ/I)+ satisfying f(γµ) = β̂−1

µ (f(γ)) for µ ∈ I⊥. The induced
algebra carries a natural action Ind α̂ of Γ̂ such that (Ind α̂)γ(f)(χ) = f(γ−1χ).
For a discussion of induced C∗-algebras and their properties, we refer to Section 6.3
of [13].
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Theorem 2.1. There is an isomorphism Ψ of the dual system (A×βΓ+, Γ̂, β̂)
onto the induced system (Ind Γ̂

I⊥(A ×α (Γ/I)+), Γ̂, Ind α̂) such that Ψ(ξ)(γ)
= Q(β̂−1

γ (ξ)) for ξ ∈ A×β Γ+ and γ ∈ Γ̂.

We are going to apply a theorem of Echterhoff ([6]) to (A×β Γ+, Γ̂, β̂). For
this we need a Γ̂-equivariant map from PrimA×βΓ+ onto Î, and we use Lemma 3.3
of [12] to obtain such a map. Note that the evaluation maps {εx : x ∈ I} span a
dense subalgebra of C(Î ), and that the action of Γ̂ by translation on C(Î) satisfies
γ · εx = γ(x)εx.

Lemma 2.2. There is a Γ̂-equivariant nondegenerate homomorphism ψ of
C(Î ) into the center ZM(A×β Γ+) of M(A×β Γ+) such that ψ(εx) = iΓ+(x) for
all x ∈ I+.

Proof. Consider U = iΓ+ |I+ : I+ →M(A×β Γ+). Then for x ∈ I+, we have

UxU
∗
x = iΓ+(x)iΓ+(x)∗ = iA(βx(1)) = iA(α[e](1)) = 1,

and U extends to a homomorphism U : I → UM(A×β Γ+) by setting Ux = U∗−x

for x < e (see Lemma 1.1 of [7]). Thus the universal property of C∗(I) gives a
nondegenerate homomorphism π : C∗(I) →M(A×β Γ+) such that π(δx) = Ux =
iΓ+(x) for all x ∈ I+ (where δ : I → C∗(I) is the canonical homomorphism).

We claim that the range of π is contained in ZM(A×β Γ+). To see this, we
first show that for x ∈ I+ and y ∈ Γ+, the element Ux commutes with iΓ+(y)∗.
By writing y = x+ (y − x) for y > x, and x = (x− y) + y for y 6 x, we have

UxiΓ+(y)∗ =
{
iΓ+(y − x)∗ y > x,
iΓ+(y − x)iΓ+(y)iΓ+(y)∗ y 6 x.

Since I is an order ideal of Γ, iΓ+(y)iΓ+(y)∗ = 1 for y 6 x. Therefore

UxiΓ+(y)∗ =
{
iΓ+(y − x)∗ y > x,
iΓ+(x− y) y 6 x;

=
{
iΓ+(y − x)∗iΓ+(x)∗iΓ+(x) y > x,
iΓ+(y)∗iΓ+(y)iΓ+(x− y) y 6 x;

= iΓ+(y)∗Ux.

Thus for x ∈ I+, a ∈ A, and y, z ∈ Γ+, we have
π(δx)(iΓ+(y)∗iA(a)iΓ+(z)) = iΓ+(y)∗iΓ+(x)iA(a)iΓ+(z)

= iΓ+(y)∗iA(βx(a))iΓ+(x)iΓ+(z) = iΓ+(y)∗iA(α[e](a))iΓ+(x)iΓ+(z)

= iΓ+(y)∗iA(a)iΓ+(z)iΓ+(x) = (iΓ+(y)∗iA(a)iΓ+(z))π(δx).
For negative x in I, we have π(δx) = π(δ−x)∗, and π(δ−x)∗ commutes with all
iΓ+(y)∗iA(a)iΓ+(z). So π(C∗(I)) ⊂ ZM(A×β Γ+), as claimed.

Since I is abelian, there is an isomorphism φ of C(Î) onto C∗(I) such that
φ(εx) = δx for all x ∈ I. So the homomorphism π ◦ φ : C(Î ) → ZM(A×β Γ+) is
nondegenerate, and it is Γ̂-equivariant because for γ ∈ Γ̂ and x ∈ I+ we have

π ◦ φ(γ · εx) = π ◦ φ(γ(x)εx) = π(γ(x)δx)

= γ(x)iΓ+(x) = β̂γ(π ◦ φ(εx)).
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Proof of Theorem 2.1. Applying Lemma 3.3 of [12] to the Γ̂-equivariant
homomorphism ψ : C(Î) → ZM(A ×β Γ+) of Lemma 2.2 gives a contionous
Γ̂-equivariant map φ : PrimA ×β Γ+ → Î, which is characterized as follows. If
P = ker ρ×V is kernel of an irreducible representation ρ×V of A×β Γ+, then there
is a nonzero homomorphism ϕP : C(Î ) → C such that ϕP (f) = θ−1(ψ(f))(P ),
where θ : Cb(PrimA ×β Γ+) → ZM(A ×β Γ+) is the isomorphism given by the
Dauns-Hoffmann Theorem; thus there is a unique γ ∈ Î such that ϕP = εγ , and
φ(P ) is by definition γ. Let g ∈ Cb(PrimA ×β Γ+) and ξ ∈ A ×β Γ+. Then
θ(g)ξ − g(P )ξ is in P , which means

ρ× V (θ(g)ξ)− g(P )ρ× V (ξ) = 0 for all g and ξ.

This implies tht ρ× V (θ(g)) = g(P ) · 1 for all g. So by taking g = θ−1(ψ(εx)) for
x ∈ I, we see that our equivariant map φ is characterised by

(2.1) ρ× V (ψ(εx)) = θ−1(ψ(εx))(P ) · 1 = ϕP (εx) · 1 = γ(x) · 1 = φ(P )(x) · 1.

Now suppose J = ∩{P ∈ PrimA×β Γ+ : φ(P ) = 1} and D = (A×β Γ+)/J .
Then Echterchoff’s Theorem ([6]) says that (A×β Γ+, Γ̂, β̂) is Γ̂-equivariantly iso-
morphic to (Ind Γ̂

I⊥D, Γ̂, Ind β̂): the isomorphism Ψ : A×β Γ+ → Ind Γ̂
I⊥D is given

by Ψ(ξ)(χ) = β̂−1
χ (ξ) + J for ξ ∈ A ×β Γ+ and χ ∈ Γ̂. The result will follow

if we can show that kerQ = J , so that Q induces an isomorphism of D onto
A×α (Γ/I)+.

Suppose ξ ∈ kerQ and P = ker ρ×V satisfies φ(P ) = 1. Then from (2.1) we
have

Vx = ρ× V (iΓ+(x)) = ρ× V (ψ(εx)) = φ(P )(x) · 1 = 1

for all x ∈ I. Thus V factors through an isometric representation W of (Γ/I)+,
and we have an irreducible representation ρ×W of A×α (Γ/I)+ such that ρ×V =
(ρ×W )◦Q. Thus ρ×V (ξ) = (ρ×W )◦Q(ξ) = 0, and we have proved that kerQ ⊂ J .
Conversely, let ξ ∈ J , and suppose that ρ×W is an irreducible representation of
A×α (Γ/I)+. Then ρ× (W ◦ q) = (ρ×W ) ◦Q is an irreducible representation of
A ×β Γ+ with φ(ker ρ × (W ◦ q)) = 1, so we have ρ ×W (Q(ξ)) = 0. This is true
for every such ρ×W , so we must have ξ ∈ kerQ, as required.

3. THE STRUCTURE OF TOEPLITZ ALGEBRAS

The Toeplitz algebra of a totally ordered group Γ is the C∗-subalgebra T (Γ) of
B(H2(Γ+)) generated by the Toeplitz operators Tf with continuous symbol f in
C(Γ̂); since C(Γ̂) is spanned by the functions εx : γ 7→ γ(x), T (Γ) is generated by
the Toeplitz operators Tx := Tεx for x ∈ Γ+, which form a semigroup of isometries
on H2(Γ+) ([8]). The functions

1lx(y) =
{ 1 if y > x,

0 otherwise;

for x ∈ Γ+ span a C∗-subalgebra BΓ+ of l∞(Γ); the action τ of Γ+ by translation
on l∞(Γ) leaves BΓ+ invariant and satisfies τx(1ly) = 1lx+y. It was shown in [3]
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that there is an isomorphism of BΓ+ ×τ Γ+ onto the Toeplitz algebra T (Γ) taking
iΓ+(x) to Tx (apply Theorem 2.4 of [3] to the isometric representation x 7→ Tx).
Since any isometric representation V of Γ+ extends to a covariant representation
(πV , V ) of (BΓ+ ,Γ+, τ) (Proposition 2.2 of [3]), it follows that for any ordered ideal
I there is a canonical surjection RI of T (Γ) onto T (Γ/I) such that RI(Tx) = T[x].

We can now state our main theorem.

Theorem 3.1. Let I be an order ideal in a totally ordered abelian group Γ,
let RI : T (Γ) → T (Γ/I) be the canonical surjection taking Tx to T[x], and let τ̂ be
the dual action of Γ̂ on T (Γ) characterised by τ̂γ(Tx) = γ(x)Tx for γ ∈ Γ̂. Then
there is a short exact sequence

0 −→ CI −→ T (Γ) Θ−→ Ind Γ̂
I⊥T (Γ/I) −→ 0,

in which CI is the ideal in T (Γ) generated by {TuT
∗
u − TvT

∗
v : v − u ∈ I+}, and Θ

is defined by Θ(a)(γ) := RI(τ̂−1
γ (a)).

For the proof we need to recall some results from [2]. Suppose α is an action
of Γ+ by extendible endomorphisms of a C∗-algebra A. For any ideal F of A,
there is a canonical nondegenerate homomorphism ψ : A→M(F ). We say that F
is extendibly α-invariant if it is α-invariant and has an approximate identity (iλ)
such that α(iλ) converges strictly to ψ(α(1)) in M(F ).

This concept is more subtle than it might appear at first sight: in particular,
extendibility of the endomorphisms αx|F does not automatically imply extendibil-
ity of the ideal F . (Take A = c0(Z), Γ = N, define α by αm(f)(n) = f(n−m) and
take F := {f ∈ A : f(n) = 0 for n 6 0}. Then αm|F is extendible, but for any
approximate identity (eλ) in F , the net α1(eλ) converges strictly to (0, 1, 1, 1, . . .)
in M(F ) which is not equal to ψ(α(1)) = (1, 1, 1, . . .).)

Theorem 3.1 of [2] says that if F is an extendibly α-invariant ideal of A, then
there is a short exact sequence of C∗-algebras

0 −→ F ×α Γ+ −→ A×α Γ+ −→ A/F ×α̃ Γ+ −→ 0.

Since BΓ+ has identity 1le, the endomorphism τx are trivially extendible.
We claim that the span BΓ+,∞ of {1lx − 1ly : x, y ∈ Γ+, x < y} is an extendibly
invariant ideal. To see this, note that (1le − 1ly)y∈Γ+ is an approximate identity
for BΓ+,∞, and τx(1le − 1ly)y∈Γ+ converges strictly to the projection 1lx = τx(1le)
in M(BΓ+,∞). Becausse

∑
λi1lxi

(x) =
∑
λi when x > xi for all i, the functions

in BΓ+ have limits as x → ∞ in Γ+, and we can view BΓ+,∞ as the collection of
functions f ∈ BΓ+ such that f(x) → 0 as x → ∞. In other words, if we define
ε : BΓ+ → C by ε(f) = lim

x→∞
f(x), then we have a short exact sequence

0 −→ BΓ+,∞ −→ BΓ+
ε−→ C −→ 0

to which we can apply the result from [2]:
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Lemma 3.2. There is a short exact sequence of C∗-algebras:

(3.1) 0 −→ BΓ+,∞ ×τ Γ+ −→ BΓ+ ×τ Γ+ σ−→ C(Γ̂) −→ 0;

it follows that BΓ+,∞ ×τ Γ+ is a maximal Γ̂-invariant ideal of BΓ+ ×τ Γ+.

Proof. Since translating by y ∈ Γ+ does not affect limits as x → ∞, the
action τ̃ on C = BΓ+/BΓ+,∞ is trivial. Thus the quotient crossed product is
C ×id Γ+. Since C has only trivial nondegenerate representations z 7→ z · 1, the
covariance condition says that the isometric part of a covariant representation of
(C,Γ+, id) consists of unitaries, and we have C×id Γ+ ' C∗(Γ) ' C(Γ̂). Thus [2]
gives the desired exact sequence. Finally, BΓ+,∞ ×τ Γ+ is a maximal Γ̂-invariant
ideal of BΓ+ becuase there is no nontrivial ideal in C(Γ̂).

Remark 3.3. Since the isomorphism of BΓ+ ×τ Γ+ onto T (Γ) takes the
generator 1lx−1ly for BΓ+,∞×τ Γ+ to the difference of commutators (TxT

∗
x−T ∗xTx)−

(TyT
∗
y − T ∗y Ty), and since the quotient BΓ+ ×τ Γ+/BΓ+,∞ ×τ Γ+ is commutative,

it carries BΓ+,∞×τΓ+ onto the commutator ideal C of T (Γ). The exact sequence
of Lemma 3.2 becomes the usual one in which σ takes a Toeplitz operator Tf to
its symbol f ([8]).

Lemma 3.4. The set CI+ = sp {1lx − 1ly : x, y ∈ Γ+, y − x ∈ I+} is an
extendibly τ -invariant ideal of BΓ+ .

Proof. Since 1lz(1lx − 1ly) = 1lz∨x − 1lz∨y and e 6 z ∨ y − z ∨ x 6 y − x, CI+

is an ideal in BΓ+ . Thus we have to produce an approximate identity (iλ) for
CI+ such that for each x ∈ Γ+, the net τx(iλ) converges srictly to 1lx = τx(1le) in
M(CI+). Let D be the set of pairs (F, t) in which F is a finite subset of Γ+ with
at most one point in each coset [y] ∈ Γ/I, and t ∈ I+. Define a relation on D by

(F, t) 6 (G, s) ⇐⇒ [u, u+ t) ⊆
⋃

v∈G

[v, v + s) for all u ∈ F.

We claim that this relation directs D. Reflexivity and transitivity are obvious.
Suppose (F, t) and (G, s) are given; we want (E, r) which dominates both (F, t)
and (G, s). Write F = {u1, u2, . . . , un} and G = {v1, v2, . . . , vm}. If [ui] ∩G = ∅,
then take ui as an element of E. If [vi] ∩ F = ∅, then take vi as an element of
E. Otherwise [ui] ∩ G 6= ∅, and hence there must be exactly one vj(i) ∈ G such
that [vj(i)] = [ui], in this case we put min{ui, vj(i)} in E. It is not so obvious that
the last condition is symmetric, but starting with j such that [vj ] ∩ F 6= ∅ would
give uj(i) such that [vj ] = [ui(j)], and then we would have j = j(ij) because G hits
each coset at most once. We now have a finite set E such that for each [y] ∈ Γ/I
the intersection E ∩ [y] is empty or a single point. Let r be the largest of the three
elements t, s and

{max(vj(i) + s, ui + t)−min(ui, vj(i)) : i satisfies [ui] ∩G 6= ∅}.

Then r is in I+, and we have (E, r) > (G, s) and (E, r) > (F, t). Thus D is
directed.
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We claim that the elements 1l(F,t) :=
∑

u∈F

(1lu − 1lu+t) form an approximate

identity for CI+ . To see this, it is enough to show that if f =
n∑

i=1

λi(1lyi − 1lzi) and

zi − yi ∈ I+, then there exists (F, t) ∈ D such that

(3.2) (G, s) > (F, t) ⇒ 1l(G,s)f = f.

First we suppose that all the yi are in different I-cosets. Let F = {y1, . . . , yn}
and t = max

16i6n
(zi − yi). Then each interval [yi, zi) is contained in [yi, yi + t),

hence 1l(F,t)f = f . So (3.2) is satisfied, because (G, s) > (F, s) ⇒ 1l(G,s) >
1l(F,t). If not all of the yi are in different I-cosets, say {yi1, yi2, . . . , yik} are in
the same coset as yi, and zij is the point that corresponds to yij , then we let
wi = min{yi1, yi2, . . . , yik} and ri = max

16j6k
(zij)− wi. Since there are only finitely

many yi involved, this gives a finite set F = {w1, . . . , wm}, and we can take
t = max

16i6m
ri. Then 1l(F,t)f = f , as required.

Next, we show that for z ∈ Γ+, τz(1l(F,t))(F,t)∈D converges strictly to 1lz in
M(CI+). Again, it is enough to show that τz(1l(F,t))f converges to f in CI+ for
all f of the form

∑
i

λi(1lyi −1lzi) where yi−zi ∈ I+. Choose (F, t) satisfying (3.2),

and let (G, s) > (F, t). We write G′ = {v − z : v ∈ G} ∩ Γ+, and add the point e
to G′ if z belongs to some interval [v, v+ s). Then τz(1l(G′,s))f = 1lz1l(G,s)f = 1lzf ,
and hence τz(1l(E,r))f = 1lzf for all (E, r) > (G′, s). Thus τz(1l(F,t))f converges to
1lzf in CI+ . Since τz(1le) = 1lz, this proves that CI+ is extendibly τ -invariant, and
proves the lemma.

Proof of Theorem 3.1. From Lemma 3.4 and Theorem 3.1 of [2] we obtain
an exact sequence

0 −→ CI+ ×τ Γ+ −→ BΓ+ ×τ Γ+ −→ (BΓ+/CI+)×τ̃ Γ+ −→ 0.

Since the isomorphism of BΓ+ ×τ Γ+ onto T (Γ) carries CI+ × Γ+ onto the ideal
CI , it remains to identify (BΓ+/CI+)× Γ+ with Ind T (Γ/I) in a compatible way.

We begin by noting that
∑
λi1lui

7→
∑
λi1l[ui] is norm-decreasing, and hence

extends to well-defined surjection l of BΓ+ onto B(Γ/I)+ such that l(f)([u]) =
lim

z→∞
z∈I+

f(u+z) for f ∈ BΓ+ . Since l(1lu1lv) = l(1lmax(u,v)) = 1l[max(u,v)] = 1lmax([u],[v])

= 1l[u]1l[v], l is a homomorphism. A messy computation shows that

CI+ = {f ∈ BΓ+ : f(x+ z) → 0 as z →∞ in I+} = ker l,

so l induces an isomorphism of BΓ+/CI+ onto B(Γ/I)+ . It is easy to check that
this isomorphism intertwines the action τ̃ induced by translation on BΓ+ and the
action τ ◦ q inflated from the action τ of (Γ/I)+ by translation on B(Γ/I)+ . We
therefore have an isomorphism of (BΓ+/CI+)×τ̃ Γ+ onto B(Γ/I)+ ×τ◦q Γ+, which
is the identity on the generating copies of Γ+.

We can apply Theorem 2.1 to the inflated system (B(Γ/I)+ ,Γ+, τ ◦ q), and

obtain an isomorphism Ψ of B(Γ/I)+ ×τ◦q Γ+ onto Ind Γ̂
I⊥B((Γ/I)+×τ (Γ/I)+. If

we now put our isomorphisms together and identify B(Γ/I)+ ×τ (Γ/I)+ with the
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Toeplitz algebra T (Γ/I), we obtain an isomorphism of (BΓ+/CI+) ×τ̃ Γ+ onto
Ind Γ̂

I⊥T (Γ/I); a quick look at the formula for Ψ in Theorem 2.1 shows that this
isomorphism takes the generator iΓ+(x) to the function γ 7→ γ−1(x)T[x]. Since
the isomorphism of BΓ+ ×τ Γ+ onto T (Γ) takes iΓ+(x) to Tx and RI(Tx) = T[x],

this shows that the induced surjection T (Γ) onto Ind Γ̂
I⊥T (Γ/I) takes Tx to the

function γ 7→ RI(τ̂ −1
γ (Tx)). Thus this surjection agrees on generators with the

homomorphism Θ described in the theorem, and hence agrees an all of T (Γ). This
completes the proof of Theorem 3.1.

When Γ decomposes as a lexicographic direct sum (Γ/I)
⊕
lex

I, the dual group

Γ̂ decomposes as I⊥ × Î, and the inducing construction collapses. Therefore we
can recover Murphy’s description of the Toeplitz algebra of a lexicografic sum:

Corollary 3.5. ([10]) If Γ is a lexicografic direct sum Γ1

⊕
lex

Γ2 of totally

ordered abelian groups Γ1 and Γ2, then T (Γ)/CΓ2
∼= T (Γ1)⊗ C(Γ̂2).

Proof. We just need to apply the Theorem 3.1 to the ideal Γ2 and note that,
if G = H ×K, then Ind G

HD
∼= C(K,D).

Remark 3.6. It is important to note that Theorem 3.1 is more general then
Corollary 3.5: Clifford has shown that Γ is not always isomorphic to Γ/I

⊕
lex

I ([4]).

In his example, Γ is the subgroup of Q
⊕
lex

Q generated by (1/pn, n/pn) where pn

is the n-th prime, and I is the set of all (0, y) with y an integer. In general,
Γ ∼= Γ/I

⊕
lex

I if and only if the short exact sequence 0 −→ I −→ Γ −→ Γ/I −→ 0

splits in the purely group-theoretic sense, and Clifford proves that this does not
happen for his example.

4. INVARIANT IDEALS

When Γ is a discrete subgroup of R, the commutator ideal C in the Toeplitz algebra
T (Γ) is simple ([5]). For more general totally ordered groups, the commutator ideal
can have many ideals. Here we shall use our techniques to completely determine
the ideals in C which are invariant under the dual action τ̂ .

In the previous section, we showed that an order ideal I in Γ determines an
extendibly invariant ideal CI+ in BΓ+ . This ideal is always contained in the ideal
BΓ+,∞, and hence Theorem 3.1 of [2] gives an exact sequence

0 −→ CI+ ×τ Γ+ ı−→BΓ+,∞ ×τ Γ+ Φ−→ (BΓ+,∞/CI+)×τ̃ Γ+ −→ 0.

The embedding ı satisfies ı(iΓ+(x)) = iΓ+(x), and hence respects the dual action
τ̂ ; thus the range of ı is an invariant ideal of BΓ+,∞×τ Γ+. Our theorem says that
every invariant ideals has this form:
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Theorem 4.1. Suppose I is an order ideal in a totally ordered abelian group
Γ. Then the crossed product CI+ ×τ Γ+ naturally embeds as a Γ̂-invariant ideal
of BΓ+,∞ ×τ Γ+, and the map I 7→ CI+ ×τ Γ+ is an isomorphism of the lattice of
order ideals of Γ onto the lattice of Γ̂-invariant ideals of BΓ+,∞ ×τ Γ+.

The homomorphism l : BΓ+ → B(Γ/I)+ in the proof of Theorem 3.1 maps
BΓ+,∞ to B(Γ/I)+,∞, and hence induces an isomorhism Θ of (BΓ+,∞/CI+)×τ̃ Γ+

onto B(Γ/I)+,∞ ×τ◦q Γ+. Now Theorem 2.1 implies that there is an isomorphism

Ψ ◦Θ : (BΓ+,∞/CI+)×τ̃ Γ+ → Ind Γ̂
I⊥(B(Γ/I)+,∞ ×τ (Γ/I)+),

and we have an exact sequence

0 −→ CI+ ×τ Γ+ ı−→BΓ+,∞ ×τ Γ+ Ψ◦Θ◦Φ−−−−→ Ind Γ̂
I⊥(B(Γ/I)+,∞ ×τ (Γ/I)+) −→ 0.

Therefore to identify ideals in BΓ+,∞×τ Γ+, we need to know about invariant
ideals in induced C∗-algebras.

Lemma 4.2. Suppose H is a closed subgroup of a locally compact group G,
and β : H → AutC is a strongly continuous action on a C∗-algebra C. If L
is a closed Indβ-invariant ideal in the induced C∗-algebra Ind G

H(C, β), then J =
{f(e) : f ∈ L} is a β-invariant ideal of C, and

L = Ind J := {f ∈ Ind G
H(C, β) : f(x) ∈ J for all x ∈ G}.

Proof. If j = f(e) ∈ J and c ∈ C, we can find g in Ind G
H(C, β) such that

g(e) = c (Corollary 6.18 of [13]). Then fg ∈ L and jc = f(e)g(e) is in J , so J is
an ideal of C. It is β-invariant because

βh(f)(e) = f(eh−1) = f(h−1) = (Indβ)h(f)(e).

Next we prove that L = Ind J . For f ∈ L we have f(x) = (Indβ)−1
x (f)(e), so

the invariance of L implies that L ⊆ IndJ . To see that Ind J ⊆ L, we let l ∈ IndJ ,
and find f ∈ L such that ‖f − l‖ is small; then l must be in L because L is closed.
Fix ε > 0. For each x ∈ G, there exists hx ∈ L such that ‖hx(y) − l(y)‖ < ε for
yH in a neighbourhood Nx of xH. Indeed, since l(x) ∈ J , there is k ∈ L such that
l(x) = k(e), and we can take hx = (Indβ)x(k). For then hx(x) = (Indβ)x(k)(x) =
k(e) = l(x), and hence hx|xH = l|xH; the continuity of xH 7→ ‖(hx − l)(x)‖
gives the required neighbourhood Nx. Since the map sH 7→ ‖l(s)‖ belongs to
C0(G/H), there is a compact subset K of G/H such that ‖l(y)‖ < ε for yH 6∈ K.
By compactness, there are finite subcover {Ni}16i6n of K and h1, h2, . . . , hn ∈ L
such that ‖hi(y)− ly‖ < ε for yH ∈ Ni and 1 6 i 6 n. Now let {ρi} be a partition

of unity subordinate to Kc ∪ {Ni}, and define f(y) =
n∑

i=1

ρi(yH)hi(y).

Lemma 4.3. Suppose J is a nonzero closed ideal in BΓ+,∞×τ Γ+. Then there
is a nonzero ideal I in Γ with positive cone I+ = {x ∈ Γ+ : iBΓ+,∞

(1le − 1lx) ∈ J}.

Proof. Because J is nonzero, it follows from Corollary 2.7 of [3] that E :={
x ∈ Γ+ : iBΓ+,∞

(1le − 1lx) ∈ J
}

is nonzero. We will prove that E is the positive
cone in an order ideal I. For this we show that E is a subsemigroup of Γ+ such
that e 6 y 6 x ∈ E implies y ∈ E; then I := E − E has the required property.
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Let x, y ∈ E. Then iBΓ+,∞
(1le − 1lx+y) ∈ J , because

iBΓ+,∞
(1le − 1lx+y) = iBΓ+,∞

((1le − 1ly) + (1ly − 1lx+y))

= iBΓ+,∞
(1le − 1ly) + iBΓ+,∞

(τy(1le − 1lx))

= iBΓ+,∞
(1le − 1ly) + iΓ+(y)iBΓ+,∞

(1le − 1lx)iΓ+(y)∗.

Thus x+ y ∈ E. Next suppose x ∈ E and e 6 z 6 x. Then 0 6 1le− 1lz 6 1le− 1lx,
so

0 6 iBΓ+,∞
(1le − 1lz) 6 iBΓ+,∞

(1le − 1lx).

This implies that iBΓ+,∞
(1le − 1lz) ∈ J , because closed ideals of C∗- algebras

are hereditary (Corollary 3.2.3 of [9]). Thus z ∈ E.

Proof of Theorem 4.1. Let J be a nonzero Γ̂-invaraiant ideal of BΓ+,∞×τ Γ+.
Then by Lemma 4.3 there is a nonzero order ideal I of Γ such that I+ =

{
x ∈

Γ+ : iBΓ+,∞
(1le − 1lx) ∈ J

}
. Since

iBΓ+,∞
(1lu − 1lv) = iBΓ+,∞

(τu(1le − 1lv−u)) = iΓ+(u)iBΓ+,∞
(1le − 1lv−u)iΓ+(u)∗,

the Γ̂-invariant ideal CI+ ×τ Γ+ of BΓ+,∞ ×τ Γ+ is contained in J . We will prove
that CI+ ×τ Γ+ = J .

Suppose CI+ ×τ Γ+ 6= J . Then J/(CI+ ×τ Γ+) is nonzero, and Ψ ◦Θ ◦Φ(J)
is a nonzero Γ̂-invariant ideal of the induced algebra Ind Γ̂

I⊥B(Γ/I)+,∞ ×τ (Γ/I)+.
By Lemma 4.2, there is a nonzero invariant ideal E of B(Γ/I)+,∞ ×τ (Γ/I)+ such
that

Ψ◦Θ◦Φ(J) = IndE :=
{
f ∈ Ind Γ̂

I⊥B(Γ/I)+,∞×τ (Γ/I)+ : f(γ) ∈ E for all γ ∈ Γ̂
}
.

Now Corollary 2.7 of [3] says there is a nonzero element [u] of (Γ/I)+ such that

1− j(Γ/I)+([u])j(Γ/I)+([u])∗ = jB(Γ/I)+,∞
(1l[e] − 1l[u]) ∈ E,

where jB(Γ/I)+,∞
: B(Γ/I)+,∞ → B(Γ/I)+,∞ ×τ (Γ/I)+ is the canonical embedding.

But from the characterisations of Q : B(Γ/I)+,∞ ×τ◦q Γ+ → B(Γ/I)+,∞ ×τ (Γ/I)+
and Ψ we see that

jB(Γ/I)+,∞
(1l[e] − 1l[u]) = Q(iB(Γ/I)+,∞

(1l[e] − 1l[u]))

= Q(τ̂ ◦ q−1
γ (iB(Γ/I)+,∞

(1l[e] − 1l[u]))) for all γ ∈ Γ̂

= Ψ(iB(Γ/I)+,∞
(1l[e] − 1l[u]))(γ) for all γ ∈ Γ̂.

So Ψ(iB(Γ/I)+,∞
(1l[e]−1l[u])) ∈ IndE = Ψ◦Θ◦Φ(J). Hence iB(Γ/I)+,∞

(1l[e]−1l[u]) ∈
Θ ◦ Φ(J), and iB(Γ/I)+,∞

(1l[e] − 1l[u]) = Θ ◦ Φ(k) for some k ∈ J . Thus

iBΓ+,∞
(1le − 1lu)− k ∈ ker Θ ◦ Φ = CI+ ×τ Γ+ ⊂ J,

and therefore iBΓ+,∞
(1le − 1lu) belongs to J . But this means u ∈ I+, and [u] = [e]

is the zero element of Γ/I, which is a contradiction. So CI+ ×τ Γ+ = J .
Next suppose I1 and I2 are distinct order ideals of Γ. Then one has to contain

the other; say I1 is strictly contained in I2. We want to show that CI+
1
×τ Γ+
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is strictly contained in CI+
2
×τ Γ+. Let y ∈ I+

2 \ I+
1 . Then iBΓ+,∞

(1le − 1ly) is
in CI+

2
×τ Γ+, and we claim that it is not in CI+

1
×τ Γ+. If iBΓ+,∞

(1le − 1ly) ∈
CI+

1
×τ Γ+, then Θ ◦ Φ

(
iBΓ+,∞

(1le − 1ly)
)

= iB(Γ/I)+,∞
(1l[e] − 1l[y]) vanishes in

B(Γ/I1)+,∞ ×τ Γ+. Hence Ψ
(
iB(Γ/I1)+,∞

(1l[e] − 1l[y])
)

= 0 in the induced algebra
IndB(Γ/I1)+,∞×τ (Γ/I1)+, and iB(Γ/I1)+,∞

(1l[e]−1l[y]) = 0 in B(Γ/I1)+,∞×τ (Γ/I1)+.
But this implies that 1l[e] − 1l[y] = 0, so y ∈ I+

1 , which contradicts the assumption
that y 6∈ I+

1 . So CI+
1
×τ Γ+ must be strictly contained in CI+

2
×τ Γ+. This

completes the proof of Theorem 4.1.

Corollary 4.4. Every Γ̂-invariant ideal in the commutator ideal C of the
Toeplitz algebra T (Γ) is the ideal CI generated by {TuT

∗
u − TvT

∗
v : v − u ∈ I+} for

some order ideal I of Γ.

Proof. The isomorphism of BΓ+ ×τ Γ+ onto T (Γ) is equivariant, and takes
BΓ+,∞×τ Γ+ to C and CI+ ×τ Γ+ to CI . Thus the result follows immediately from
the Theorem 4.1.
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