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Abstract. We prove that some classes of functions, defined on a closed set
in the complex plane with planar Lebesgue measure zero, are non-quasiana-
lytic. We particularly treat the Carleman classes and classes of functions hav-
ing asymtotically holomorphic continuation. Combining this with Dyn’kin’s
functional calculus based on the Cauchy-Pompeiu formula, we establish the
existence of invariant subspaces for operators for which a part of the spec-
trum is of planar Lebesgue measure zero, provided that the resolvent has a
moderate growth near this part of the spectrum.
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1. INTRODUCTION

Let E be a compact set in the complex plane C with planar Lebesgue measure
zero and let M be a non-increasing function on (0,+∞) with M(0+) = +∞.

Consider a Banach space A of continuous functions defined on E, contin-
uously embedded in C(E), where C(E) is the Banach space of all continuous
functions defined on E. Suppose that A contains the constants and that for every
λ ∈ C\E the function rλ(z) = 1

λ−z , z ∈ E, belongs to A and ‖rλ‖A 6 M(d(λ,E)).
In this paper we determine certain hypotheses concerning the function M

which imply that A is non-quasianalytic, that is, for every ζ ∈ E and every
neighborhood V of ζ in E, there exists a function f ∈ A such that f(ζ) = 1 and
f ≡ 0 on E \ V .

As we may expect, this condition depends on the geometrical properties of
E. In order to state our result, let us introduce a function related to E which will
play a decisive role throughout this paper. We set

θE(x) = m2({z ∈ C : d(z,E) < x}), x > 0,



222 K. Kellay and M. Zarrabi

where m2 denotes a Lebesgue planar measure. The function θE is continuous and
increasing. Since we assume that m2(E) = 0, we have θE(0+) = 0. We prove
that, under the condition

(1.1)
∫
0

(
ln lnM ◦ θ−1

E (x2)
)1/2

dx < +∞

the Banach space A is non-quasianalytic.
The key to the proof of this theorem is the normality of some classes of

holomorphic functions which we obtain as a simple consequence of Lomonosov,
Ljubich, Matsaev ([25]) and Domar’s ([12]) results (see Subsection 2.1).

We give an application of the above result concerning non-quasianalyticity
to classes of functions having asymptotically holomorphic continuations and to the
Carleman classes CE(Mn). We obtain in particular, that if E is a rectifiable arc
and if the sequence

(
Mn

n!

)
n>0

is log-convex then the condition∑
n>1

(
M1/n

n lnMn

)−1/2

< +∞

is sufficient for the non-quasianalyticity of CE(Mn). On the other hand, it is
known that the condition

(1.2)
∑
n>1

M−1/n
n < +∞

is necessary ([6] and [10]). Note also that the classical Denjoy-Carleman theorem
asserts that if E = [−1, 1] and if (Mn)n>0 is log-convex then condition (1.2) is
necessary and sufficient for the non-quasianalyticity of C[−1,1](Mn) ([27]).

This work was also motivated by the invariant subspace problem. Let X be
a Banach space and let T ∈ L(X), where L(X) stands for the algebra of bounded
operators acting on X. A closed subspace Y of X is called invariant for T ∈ L(X)
if TY ⊂ Y and nontrivial if {0}$Y $X. The subspace Y is called hyperinvariant
for T if it is invariant for every operator commuting with T . The spectrum of T
is denoted by Sp(T ). Lyubich and Matsaev proved in [26] that if there exists an
open set O in C and a smooth arc E such that Sp(T ) ∩ O = E ∩ O and if the
function

(1.3) M(x) = sup{‖(z − T )−1‖ : d(z,E) > x, z ∈ O}, x > 0,

satisfies the Levinson condition, that is:∫
0

ln lnM(x) dx < +∞,

then T has a nontrivial hyperinvariant subspace.
The condition “E is a smooth arc” may be replaced by the weaker condition

“E is a Lipschitz arc” (see [30]). We extend this result to operators with spectrum
not necessarily as “smooth” provided that the resolvent grows moderately near the
spectrum. More precisely, suppose that there exist an open set O and a perfect
compact set E in C such that m2(E) = 0, Sp(T ) ∩ O ⊂ E ∩ O and Sp(T ) ∩ O
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contains at least two distinct points. If the function defined by (1.3) satisfies
condition (1.1) and if θE satisfies the condition∫

0

(
ln ln

1
θ−1

E (x2)

)1/2

dx < +∞

then T has a nontrivial hyperinvariant subspace.
To obtain this theorem we combine the functional calculus based on the

Cauchy-Pompeiu formula, introduced by Dyn’kin in [14], and a result concerning
the non-quasianalyticity of classes of functions having asymptotically holomorphic
continuations.

This paper is organized as follows:
In Section 2 we establish the normality of some classes of subharmonic and

holomorphic functions and afterwards we give a general method showing how to
get the non-quasianalyticity of some Banach spaces of continuous functions.

In Section 3 we give two examples of non-quasianalytic classes of functions:
the classes of functions having asymptotically holomorphic continuations and the
Carleman classes.

Section 4 is devoted to the existence of invariant subspaces and to operators
which are decomposable.

We finish with an appendix where we investigate the properties of the func-
tion θE and we give an estimate of this function in some special cases.

2. NORMALITY AND NON-QUASIANALYTICITY

2.1. On normality. Let Ω be an open subset of the complex plane C and let F
be a measurable function on Ω with values in [1,+∞]. The distribution function
of F is defined by

λ(t) = m2({z ∈ Ω : F (z) > t}), t > 0,

where m2 denotes a Lebesgue planar measure. The decreasing rearrangement of
F is the function defined by

F ∗(x) = inf{t : λ(t) 6 x}, x > 0.

Clearly F ∗ is a decreasing non-negative function which is continuous on the right.
Moreover for every a > 0, the set {x > 0 : F ∗(x) > a} is an interval with length
equal to m2({z ∈ Ω : F (z) > a}), which means that the two functions F and F ∗

have the same distribution functions.
We denote by SHF (Ω) the set of all non-negative subharmonic functions

defined on Ω, such that
u(z) 6 F (z), z ∈ Ω.

Domar showed in [11] and [12] that under some conditions on F (or F ∗), SHF (Ω)
is a normal family.

The following theorem is proved in more general setting in [12].
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Theorem 2.1. (Domar) If for some δ > 0,

(2.1)

δ∫
0

(lnF ∗(x2))1/2 dx < +∞,

then SHF (Ω) is a normal family.

Remark 2.2. It is shown in [12] that under certain regularity conditions on
F ∗, the inequality (2.1) is sharp. It is also shown that if F = G ◦ ρ where G is a
measurable function from R to [1,+∞] and ρ a C1 mapping of rank 1 from Ω to
R, then the inequality (2.1) can be replaced by the following weaker condition

(2.2)

δ∫
0

lnF ∗(x) dx < +∞.

The particular case F (z) = G(y), z = x+ iy, where G is a decreasing function, is
known as the Levinson-Sjöberg theorem and the inequality (2.2) becomes

δ∫
0

lnG(y) dy < +∞.

We consider here the case F (z) = G(d(z,E)), G being a decreasing function
on (0,+∞), E a closed subset of C and d(z,E) the distance of z to E.

We use Theorem 2.1 to derive a condition related to the geometry of E,
sufficient for the normality of SHF (Ω). The geometrical property of E in which
we are interested may be evaluated by the behaviour of the function θE at 0.
Recall that θE is defined by the formula:

θE(x) = m2({z ∈ C : d(z,E) < x}), x > 0.

It is clear that θE is an increasing and positive function on (0,+∞) with θE(0+) =
m2(E). Furthermore, by Proposition 5.1 in the Appendix, θE is continuous.

Now we state the following result.

Theorem 2.3. Let E be a compact subset of C with planar Lebesgue measure
zero and let F (z) = G(d(z,E)), z ∈ Ω, G being a non-increasing function on
(0,+∞) with values in [1,+∞]. If for some δ > 0,

(2.3)

δ∫
0

(
lnG ◦ θ−1

E (x2)
)1/2

dx < +∞,

then SHF (Ω) is a normal family.

Proof. Consider the distribution function λ of F and take x > 0. We have

λ(G ◦ θ−1
E (x)) = m2({z ∈ Ω : F (z) > G ◦ θ−1

E (x)})
= m2({z ∈ Ω : G(d(z,E)) > G ◦ θ−1

E (x)})
6 m2({z ∈ Ω : d(z,E) < θ−1

E (x)})
6 m2({z ∈ C : d(z,E) < θ−1

E (x)}) = x.



Normality, non-quasianalyticity and invariant subspaces 225

Since F ∗(x) = inf{a : λ(a) 6 x}, we get

F ∗(x) 6 G ◦ θ−1
E (x).

We obtain from the last inequality and from (2.3) that

δ∫
0

(lnF ∗(x2))1/2 dx < +∞.

Now the proof follows from Theorem 2.1.

The following statement may be obtained easily from a result announced
in [25].

Corollary 2.4. Let E be a compact subset of C with planar Lebesgue mea-
sure zero and let M be a non-increasing function on (0,+∞) with values in [e,+∞].
If for some δ > 0,

(2.4)

δ∫
0

(
ln lnM ◦ θ−1

E (x2)
)1/2

dx < +∞,

then the family

HM (Ω) = {f : f holomorphic in Ω and |f(z)| 6 M(d(z,E)), z ∈ Ω}

is normal.

Proof. It is well known that if f is holomorphic then the function ln+ |f | =
max{0, ln |f |} is subharmonic. So

{ln+ |f | : f ∈ HM (Ω)} ⊂ SHF (Ω),

where F (z) = lnM(d(z,E)), z ∈ Ω. The proof, now, is a direct consequence of
Theorem 2.3 applied to the function G = lnM .

Remark 2.5. If E is not bounded, Theorem 2.3 and Corollary 2.4 remain
true provided that E satisfies the condition (2.3) or (2.4) locally. This means that
for every z ∈ E there exists a bounded neighborhood V of z such that if we set
K = V ∩ E then θK satisfies the corresponding hypothesis.

2.2. On non-quasianalyticity. We first define the meaning of non-quasi-
analyticity. For this, let E be a closed subset of C and let F be a family of
functions defined on E. F is called non-quasianalytic if for every ζ ∈ E and every
open subset Ω of C with ζ ∈ Ω, there exists a function f ∈ F such that f(ζ) 6= 0
and f |E \ Ω ≡ 0.

The Banach algebras of functions that are non-quasianalytic are also called
regular algebras (see [21], Chapter VIII, Section 5). Examples of non-quasianalytic
families of functions are given in the next section. We give here a general scheme
showing how to get non-quasianalyticity.

Let A be a Banach space of functions defined on a closed subset E of C. We
suppose that A satisfies the following conditions:
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(i) The constant functions are contained in A.
(ii) For every z ∈ E, the pointwise evaluation τz : f → f(z) is continuous

from A to C.
(iii) For every λ ∈ C \ E, the functions rλ defined by rλ(z) = 1

λ−z , z ∈ E,
belong to A and the map λ→ rλ is continuous.

Now we state a theorem concerning the non-quasianalyticity of A. The idea
of the proof is based on an argument used in [15] and [17] and called the duality
principle of Matsaev.

Theorem 2.6. Let A be a Banach space of functions on E satisfying the
above conditions (i)–(iii). Suppose that E is compact with planar Lebesgue measure
zero and that

‖rλ‖A = O
( 1
h(d(λ,E))

)
, d(λ,E) → 0,

where h is a non-decreasing function on (0,+∞) with h(0+) = 0. If for sufficiently
small δ > 0,

(2.5)

δ∫
0

(
ln ln

1
h ◦ θ−1

E (x2)

)1/2

dx < +∞,

then A is non-quasianalytic.

Proof. Let ζ ∈ E and Ω be an open subset of C with ζ ∈ Ω. Without loss
of generality we may assume that Ω is bounded. We denote by Ch(Ω) the linear
space of all continuous functions f on Ω, endowed with the norm

‖f‖h = sup
z∈Ω

|f(z)|h(d(z,E)),

and by Fh(Ω) the linear subspace of Ch(Ω) consisting of functions that are holo-
morphic in Ω. Note that the unit ball of Fh(Ω), according to the norm ‖ · ‖h is
the set H1/h(Ω) defined in the Corollary 2.4. Let

Lζ(f) = f(ζ), f ∈ Fh(Ω).

Because of the normality of H1/h(Ω), by Corollary 2.4, Lζ defines a continuous
linear functional on Fh(Ω) endowed with the norm ‖ · ‖h. The Hahn-Banach
Theorem ensures that there exists a continuous linear functional on Ch(Ω) , say
Λζ , which extends Lζ . So by the representation theorem of Riesz, there exists a
regular measure µ, with support in Ω, such that

(2.6)
∫
Ω

d|µ|(z)
h(d(z,E))

< +∞,

and
Λζf =

∫
Ω

f(z) dµ(z), f ∈ Ch(Ω).

Let
ϕ =

∫
Ω

dµ(λ) +
∫
Ω

(ζ − λ)rλ dµ(λ).
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Since Ω is bounded, it follows from the assumption (iii) and inequality (2.6) that∫
Ω

‖(ζ − λ)rλ‖A d|µ|(λ) < +∞.

Hence ϕ ∈ A. The pointwise evaluations are continuous on A, which implies that
for z ∈ E,

ϕ(z) =
∫
Ω

dµ(λ) +
∫
Ω

(ζ − λ)rλ(z) dµ(λ) = (ζ − z)
∫
Ω

dµ(λ)
λ− z

.

For a given z ∈ E \Ω, the function λ→ 1
λ−z belongs to Fh(Ω) and thus we obtain

from the definition of Lζ that ϕ(z) = 1. Let ψ = 1 − ϕ; clearly ψ ∈ A, ψ(ζ) = 1
and ψ(z) = 0 if z ∈ E \ Ω.

Remark 2.7. Suppose that E is not bounded and A is a Banach space
of continuous functions on E vanishing at infinity. Assume that A satisfies the
condition (ii) and (iii) cited above. The conclusion of Theorem 2.6 remains true
if we suppose that E satisfies the condition (2.5) locally (see Remark 2.5). Indeed
the Banach space A is non-quasianalytic iff A+ C is and we reproduce the proof
of Theorem 2.6 for A+ C.

3. EXAMPLES OF NON-QUASIANALYTIC CLASSES OF FUNCTIONS

3.1. Algebra of asymptotically holomorphic functions. Let E be a
closed subset of C and let h be a non-decreasing function on (0,+∞) with h(0+) =
0. Let C0(C) be the space of continuous functions on C vanishing at infinity. We
denote by Dh(E) the space of all functions f defined on C such that f and ∂f
belong to C0(C) and such that

|∂f(z)| = o(h(d(z,E))), d(z,E) → 0.

Here z = x+iy, ∂ = 1
2

(
∂
∂x −

1
i

∂
∂y

)
and ∂f is taken in the sense of the distribution

theory. We set

‖f‖Dh(E) = ‖f‖∞ + sup
z∈C\E

|∂f(z)|
h(d(z,E))

,

where ‖ · ‖∞ stands for the supremum norm on C. The space Dh(E) endowed with
the pointwise product and the norm ‖ · ‖Dh(E) is a commutative Banach algebra.

Consider the space Qh(E) = Dh(E)|E = Dh(E)/I(E), where I(E) is the
closed ideal of Dh(E) consisting of those elements that vanish on E; Qh(E) en-
dowed with the quotient norm of Dh(E)/I(E) is a Banach algebra. It is clear that
Qh(E) possesses a unit if and only if E is compact.

Algebras like Dh(E) and Qh(E) were first introduced by Dyn’kin in [14] in
order to define a functional calculus f(T ), where T is an operator and f a ”smooth”
function not necessarily holomorphic in a neighborhood of the spectrum of T . More
precisely Dyn’kin has considered the class Q′

h(E) consisting of functions in Qh(E)
having a C1 extension in Dh(E). He has shown in [13] and [17] that if E = R
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or E = T, where T is the unit circle, then up to some regularity condition on h,
Q′

h(E) is non-quasianalytic if and only if for sufficiently small δ > 0

(3.1)

δ∫
0

ln ln
1
h(t)

dt < +∞.

This result remains true for Qh(R) or Qh(T). Note that the non-quasianalyticity
of Qh(T) is equivalent to the existence of a nonzero function f ∈ Qh(T) which
vanishes with all its derivatives at some points z ∈ T (see [13]).

We give here a condition related to the geometry of E, sufficient for the non-
quasianalyticity of Qh(E). On the other hand, if E is a rectifiable arc, we prove
that the divergence of the integral on the left side of the inequality (3.1) implies
that Qh(E) is quasianalytic.

First of all, we state some elementary properties of Qh(E). Note that these
properties were established in [5] in the case where E is the lower half-plane,
E = {z ∈ C : Im z 6 0}.

Proposition 3.1. Let E be a compact subset of C. For λ ∈ C \ E we set
rλ(z) = 1

λ−z , z ∈ E. Then:
(i) For every λ ∈ C \ E, rλ ∈ Qh(E) and for every t ∈ (0, 1),

‖rλ‖Qh(E) = O
( 1
d(λ,E)2h(td(λ,E))

)
, d(z,E) → 0.

(ii) The space of finite linear combinations of rλ, λ ∈ C \ E, is dense in
Qh(E).

(iii) The set of characters of Qh(E) can be identified with E, by the map
E 3 z → χz, where χz(f) = f(z), f ∈ Qh(E).

Proof. (i) See the proof of [5], Lemma 3.1.
(ii) We consider for every ε > 0 two open subsets Uε and Vε of C such that

E ⊂ Vε, Vε ⊂ Uε and d(E, ∂Uε) 6 ε; ∂Uε stands for the boundary of Uε. Take a
C∞ function χε such that χε ≡ 1 on Vε and χε ≡ 0 on C \ Uε.

Let f ∈ Dh(E). By the Cauchy-Green formula we have

(χεf)(z) = − 1
π

∫
C

∂(χεf)(ζ)
ζ − z

dm2(ζ)

= − 1
π

∫
C

f(ζ)∂χε(ζ)
ζ − z

dm2(ζ)−
1
π

∫
C

∂f(ζ)χε(ζ)
ζ − z

dm2(ζ) = gε(z) + kε(z).

The function f∂χε is continuous with compact support, which implies that its
Cauchy transform, gε, is also continuous and satisfies gε(z) −→

|z|→+∞
0. Since the

support of ∂χε is contained in Uε \ Vε, we have

gε(z) = − 1
π

∫
Uε\Vε

f(ζ)∂χε(ζ)rζ(z) dm2(ζ), z ∈ C
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and we see that gε is holomorphic in Vε, gε ∈ Dh(E) and gε|E is a limit of finite
linear combinations of rζ , ζ ∈ C \ Vε.

It is clear that kε = χεf − gε ∈ Dh(E). Furthermore, using the fact that the
support of χε is contained in Uε, we obtain

‖f |E − gε|E‖Qh(E) = ‖kε|E‖Qh(E) 6 ‖kε‖Dh(E)

6
1
π

sup
z∈Uε\E

|∂f(z)|
h(d(z,E))

∫
Uε\E

dm2(ζ)
|ζ − z|

+ sup
z∈Uε\E

|∂f(z)|
h(d(z,E))

6
( 1
π

(2πm2(Uε))1/2 + 1
)

sup
z∈Uε\E

|∂f(z)|
h(d(z,E))

.

So ‖f |E − gε|E‖Qh(E) → 0 as ε → 0 and then f |E is a limit of finite linear
combinations of rζ , ζ ∈ C \ E.

For the proof of (iii) see [5], Lemma 3.2.

Theorem 3.2. Suppose that E is a compact set with planar Lebesgue mea-
sure zero and such that

(3.2)

√
θE(e−1)∫
0

(
ln ln

1
θ−1

E (x2)

)1/2

dx < +∞.

If (2.5) holds then Qh(E) is non-quasianalytic.

Proof. Let t ∈ (0, 1) and h1(x) = x2h(tx), x > 0; clearly h1 is an increasing
function. It follows from (2.5), (3.2) and part (i) of Remark 5.3 that for sufficiently
small δ > 0,

δ∫
0

(
ln ln

1
h1 ◦ θ−1

E (x2)

)1/2

dx < +∞.

Moreover by part (i) of Proposition 3.1 we have for λ ∈ C \ E, rλ ∈ Qh(E) and

‖rλ‖Qh(E) = O
( 1
h1(d(z,E))

)
, d(z,E) → 0.

It follows from Theorem 2.6 that Qh(E) is non-quasianalytic.

Remark 3.3. (i) Under the hypothesis of Theorem 3.2 the algebra Qh(E)
is normal in the sense of [21], Chapter VIII, Section 5 and thus we may construct
a partition of unity on E, with functions in Qh(E), subordinate to any covering
of E.

(ii) The normality or non-quasianalyticity can be linked to the problem of
weighted polynomial approximation. Let Ω be a bounded simply connected do-
main. Let ω be a positive measurable function defined on Ω and bounded away
from zero locally. For 1 6 p < +∞, we denote by Lp

a(Ω, ω dm2) the space of
analytic functions such that

‖f‖p,ω =
( ∫

Ω

|f(z)|pωp(z)
)1/p

< +∞.
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Let Hp
a (Ω, ω dm2) be the closure of polynomials in Lp

a(Ω, ω dm2) for the norm
‖f‖p,ω.

The inner boundary of Ω is defined by ∂iΩ := ∂Ω \ ∂Ω∞, where Ω∞ is the
unbounded component of C\Ω. In the following we suppose that ∂iΩ is not empty.
Let ω(z) = h(d(z, ∂iΩ)), z ∈ Ω, where h is a non-decreasing function on (0,+∞)
with h(0+) = 0. In the case where ∂iΩ is a ”smooth” arc, Brennan proves in [6]
and [7] that if (3.1) holds then Lp

a(Ω, ω dm2) 6= Hp
a (Ω, ω dm2). By Theorem 3.2

and the same arguments as in the proof of [6], Theorem 3.5, one can verify the
following results: set E = ∂iΩ and suppose that m2(E) = 0. If (2.5) and (3.2)
hold then Lp

a(Ω, ω dm2) 6= Hp
a (Ω, ω dm2).

(iii) It follows from the above theorem and Proposition 5.4 that if E is

a rectifiable arc then the condition
∫
0

(
ln ln 1

h(x2)

)1/2

dx < +∞ is sufficient for

the non-quasianalyticity of Qh(E). The next theorem proves that the condition∫
0

ln ln 1
h(x) dx < +∞ is necessary, provided that h satisfies some regularity condi-

tions.

Suppose that E is perfect and h is such that for every n ∈ N, h(x) = O(xn)
(x→ 0). Let f ∈ Qh(E). We use also f to denote an extension of f to C belonging
to Dh(E). By the Cauchy-Pompeiu integral formula,

f(z) =
1

2iπ

∫
∂∆

f(ζ)
ζ − z

dζ − 1
π

∫
∆

∂f(ζ)
ζ − z

dm2(ζ), z ∈ E,

where ∆ is an appropriate open set in C, containing E and such that d(E, ∂∆) < 1,
where ∂∆ is the boundary of ∆; f is a C∞ function on E and we have for n > 1,
z ∈ E,

f (n)(z) =
n!
2iπ

∫
∂∆

f(ζ)
(ζ − z)n+1

dζ − n!
π

∫
∆

∂f(ζ)
(ζ − z)n+1

dm2(ζ)

and
|f (n)(z)| 6 const Mn,

where Mn = n! sup
0<r<1

(h(r)/rn). If h is such that

(3.3) σ 7→ ln
1

h(e−σ)
is a convex function for σ > 0,

then the condition

(3.4)
∫
0

ln ln
1

h(x)
dx = +∞,

implies that ∑
n>1

M−1/n
n = +∞

(see [17]). From these observations and [6], Theorem 3.2 the following statement
follows:
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Theorem 3.4. Suppose that E is a rectifiable arc and h satisfies the above
conditions (3.3) and (3.4). If f ∈ Qh(E) vanishes together with all its derivatives
f (n), n > 1, at some z ∈ E, then f vanishes identically on E.

3.2. Carleman classes. Let E be a compact subset of C and let (Mn)n>0 be
a sequence of positive reals. We say that a continuous function f defined on E
belongs to CE(Mn) if there exist a sequence of functions f (n), n > 0, defined on
E and a constant c > 0 such that f (0) = f and for every integers 0 6 k 6 n,

f (k)(ζ) = f (k)(z) + f (k+1)(z)
ζ − z

1!
+ · · ·+ f (n)(z)

(ζ − z)n−k

(n− k)!
+Rn,k(ζ, z),

where

(3.5) |Rn,k(ζ, z)| 6 cMn+1
|ζ − z|n−k+1

(n− k + 1)!
, ζ, z ∈ E.

The norm ‖f‖CE(Mn) of f will be the sum of the supremum of f on E and the
infimum of the constants c satisfying (3.5). CE(Mn) endowed with the norm
‖ · ‖CE(Mn) becomes a Banach space.

If E is perfect, the sequence (f (n))n>1 is uniquely defined and we have for
n > 1 and z ∈ E,

f (n)(z) = lim
E3ζ→z

f (n−1)(ζ)− f (n−1)(z)
ζ − z

.

We associate, to the sequence (Mn)n>0, the function h defined by:

(3.6) h(r) = inf
n>0

Mn

n!
rn, r > 0.

Theorem 3.5. Suppose that E is perfect with planar Lebesgue measure zero
and let h be the function associated to (Mn)n>0 by (3.6). If (2.5) and (3.2) hold
then CE(Mn) is non-quasianalytic.

Proof. We shall use Theorem 2.6 and for this we need to prove that rλ ∈
CE(Mn) and give an estimate of ‖rλ‖CE(Mn) for λ ∈ C \ E, where rλ(z) = 1

λ−z ,
z ∈ E.

We do this with the help of the following formula which we take from [16]:

(3.7)
1

(λ− z)k+1
=

k + 1
π(εd)2k+1

∫
{w:|w−λ|<εd}

(λ− w)
k

(w − z)
dm2(w),

where k is non-negative integer, 0 < ε < 1 and d = d(λ,E). Fix two integers k
and n with 0 6 k 6 n. We get from (3.7)

r
(k)
λ (z) =

k!
(λ− z)k+1

=
(k + 1)!
π(εd)2k+1

∫
{w:|w−λ|<εd}

(λ− w)
k

(w − z)
dm2(w)
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and for i > 0

r
(k+i)
λ (z) =

(k + 1)!i!
π(εd)2k+1

∫
{w:|w−λ|<εd}

(λ− w)
k

(w − z)i+1
dm2(w).

By a simple computation we obtain

r
(k)
λ (ζ)−

n−k∑
i=0

r
(k+i)
λ (z)

(ζ − z)i

i!

=
(k + 1)!
π(εd)2k+1

(ζ − z)n−k+1

∫
{w:|w−λ|<εd}

(λ− w)
k

(w − ζ)(w − z)n−k+1
dm2(w)

= k!(εd)(ζ − z)n−k+1
k∑

j=0

(n− j)!
(n− k)!(k − j)!

1
(λ− ζ)j+1(λ− z)n−j+1

.

So ∣∣∣r(k)
λ (ζ)−

n−k∑
i=0

r
(k+i)
λ (z)

(ζ − z)i

i!

∣∣∣ 6
ε

dn+1
|ζ − z|n−k+1 k!

(n− k)!

k∑
j=0

(n− j)!
(k − j)!

.

Using the equality

(n− k + 1)
k∑

j=0

(n− j)!
(k − j)!

=
(n+ 1)!
k!

,

we obtain∣∣∣r(k)
λ (ζ)−

n−k∑
i=0

r
(k+i)
λ (z)(ζ − z)n−k+1

∣∣∣ 6
ε

dn+1
|ζ − z|n−k+1 (n+ 1)!

(n− k + 1)!

6
ε

(n− k + 1)!
Mn+1

h(d)
|ζ − z|n−k+1.

Therefore
‖rλ‖CE(Mn) 6

1
d

+
ε

h(d)
,

and so
‖rλ‖CE(Mn) = O

( 1
dh(d)

)
, d→ 0.

It follows from Theorem 2.6 that CE(Mn) is non-quasianalytic.

We shall now investigate conditions on (Mn)n>0 that ensure the convergence
of the integral ∫

0

(
ln ln

1
h ◦ θ−1

E (x2)

)1/2

dx

(by which we mean the convergence of
δ∫
0

for sufficiently small δ) and therefore

the non-quasianalyticity of CE(Mn). For this, we need to introduce the Legendre
envelope of a given function.
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Let p be a non-negative and non-increasing function defined on (0,+∞) such
that p(y) → +∞ as y → 0. The lower Legendre envelope of p is the function defined
by

(3.8) q(x) = inf
y>0

(p(y) + xy), x > 0.

The following lemma may be obtained by the same arguments used in the
proof of [3], Lemma 1 (see also [23]).

Lemma 3.6. Let p be a function as above and q its lower Legendre envelope.
Then the following two conditions are equivalent:

(i)
∫
0

(
ln p(y2)

)1/2 dy < +∞.

(ii)
+∞∫
1

(
q(x)

x3 ln x

)1/2

dx < +∞.

Consider a sequence (Mn)n∈N of positive reals and put mn = Mn

n! , n > 0.
We suppose that (mn)n>0 is log-convex that is

(3.9) m2
n 6 mn−1mn+1, n > 1.

We associate to (Mn)n∈N the functions defined on (0,+∞) by

(3.10) h(x) = inf
n>0

mnx
n

and

(3.11) k(x) = sup
n>0

xn

Mn
.

Let us make two observations which will be used below. The first one is that:

h(x) =
Mn

n!
xn if x ∈

[
(n+ 1)

Mn

Mn+1
, n
Mn−1

Mn

]
and

k(x) =
xn

Mn
if x ∈

[ Mn

Mn−1
,
Mn+1

Mn

]
.

The second observation is the following: Put p(x) = ln 1
h(x) , x > 0 and let q

be its lower Legendre envelope defined by (3.8). By a simple computation we get

ln k(x) 6 q(x),

and for x ∈
[

Mn

Mn−1
, Mn+1

Mn

]
,

exp(−q(x)) = sup
y>0

(h(y)e−xy) > h(y0)e−xy0 >
Mn

n!
yn
0 e−xy0 >

1
ek(ex)

,

where y0 is the maximum of n
x and (n+ 1) Mn

Mn+1
.

So

(3.12) ln k(x) 6 q(x) 6 1 + ln k(ex), x >
M1

M0
.

We formulate now the following statement:
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Lemma 3.7. Suppose that (mn)n>0 is log-convex. The following conditions
are equivalent:

(i)
∫
0

(
ln ln 1

h(x2)

)1/2

dx < +∞.

(ii)
+∞∫
1

(
ln k(x)
x3 ln x

)1/2

dx < +∞.

(iii)
∑

n>1

(
M

1/n
n lnMn

)−1/2
< +∞.

Proof. Let p(x) = ln 1
h(x) , x > 0 and q its lower Legendre envelope. The

equivalence between (i) and (ii) follows from (3.12) and Lemma 3.6. For the proof
of the equivalence between (ii) and (iii) we need the following inequality

(3.13)
1

(a ln a)1/2
− 1

(b ln b)1/2
6

b∫
a

1
(x3 lnx)1/2

dx 6
2

(a ln a)1/2
− 2

(b ln b)1/2
,

where e < a 6 b. We set an = eM1/n
n and An = (an ln an)−1/2, n > 0. We

observe that for x > an, ln k(x) > n and since (mn)n>0 is log-convex, we have
an −→

n→+∞
+∞. Thus for some integer n0 > 1,

+∞∫
an0

( ln k(x)
x3 lnx

)1/2

dx >
∑

n>n0

n1/2

an+1∫
an

dx
(x3 lnx)1/2

>
∑

n>n0

n1/2(An −An+1) > n0
1/2An0 +

1
2

∑
n>n0+1

An

n1/2

which proves the implication (ii) ⇒ (iii).
For the converse we set bn = Mn/Mn−1 and Bn = (bn ln bn)−1/2, n > 0. We

get from the log-convexity of (mn)n>0 that there exists a constant c > 1 such that
bn > can, n > 0. Using the inequality

d
dx

( −2
(x lnx)1/2

)
>

1
(x3 lnx)1/2

, x > 1,

and integration by parts, we obtain for some n0 > 1,
∞∫

bn0

( ln k(x)
x3 lnx

)1/2

dx 6
∑

n>n0

[
− 2

( ln k(x)
x lnx

)1/2
]bn+1

bn

+
∑

n>n0

bn+1∫
bn

d(ln k(x))
(x lnx ln k(x))1/2

.

For x ∈ [bn, bn+1], we have k(x) = xn/Mn, d(ln k(x)) = (n/x) dx and ln k(x) >
n ln c. These observations and (3.13) give

∞∫
bn0

( ln k(x)
x3 lnx

)1/2

dx 6 Const
∑

n>n0

n1/2

bn+1∫
bn

dx
(x3 lnx)1/2

6 Const
∑

n>n0

n1/2(Bn −Bn+1) 6 Const
∑

n>n0

Bn

n1/2
6 Const

∑
n>n0

An

n1/2
.

This proves the implication (iii) ⇒ (ii).
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Theorem 3.8. Let E be a perfect and compact set in C and (Mn)n>0 be
a sequence of positive reals such that

(
Mn

n!

)
n>0

is log-convex. If θE(x) = O(xα)
(x→ 0), where α is a positive constant, and if

(3.14)
∑
n>1

(
n1−αMα/n

n lnMn

)−1/2
< +∞,

then CE(Mn) is non-quasianalytic.

Proof. Let mn = Mn/n!, n > 0 and let h be the function associated to
(Mn)n>0 defined by (3.10). We set rn = mn−1/mn, n > 1. Since (mn)n is log-
convex the sequence (rn)n decreases and we can easily verify that h(x) = mnx

n if

x ∈ [rn+1, rn] and mn = sup
x>0

h(x)/xn, for n > 0. Set M̃n = n! sup
x>0

h◦θ−1
E

(x)

xn , n > 0.

We have for some constant c > 0

M̃n = n! sup
x>0

h(x)
θE(x)n

> cnn! sup
x>0

h(x)
xαn

> cnn!
h(rk)
rαn
k

,

where k = [αn] is the integral part of αn. Clearly 0 6 α − k/n 6 1/n, and using
the log-convexity of (mn)n we get easily M1/k

0 /rkM
1/k
k > 1/k.

It follows from these inequalities that

M̃1/n
n > Const

k1−αM
α/k
k(

rkM
1/k
k

)α−k/n
> Const k1−αM

α/k
k .

The last inequality combined with (3.14) gives∑
n>1

(M̃1/n
n ln M̃n)−1/2 < +∞.

It follows then from Lemma 3.7 that the function h̃ defined by the formula

h̃(x) = inf
n>0

M̃n

n!
xn, x > 0,

satisfies the condition ∫
0

(
ln ln

1

h̃(x2)

)1/2

dx < +∞.

It is easily seen that h̃(x) 6 h ◦ θ−1
E (x), x > 0. So h and θE satisfy (2.5) and (3.2),

which implies by Theorem 3.5 that CE(Mn) is non-quasianalytic.

Remark 3.9. (i) In the case when E is a rectifiable arc, we have by Proposi-

tion 5.4, θE(x) = O(x)(x→ +∞) and then the condition
∑

n>1

(
M

1/n
n lnMn

)−1/2

<

+∞ implies that CE(Mn) is non-quasianalytic. On the other hand, by a theorem of
Davies reported in [6], Theorem 3.2 we know that the condition

∑
n>1

M
−1/n
n < +∞

is necessary.



236 K. Kellay and M. Zarrabi

The above theorem may also be applied when E is the graph of a real function
satisfying the Hölder condition with exponent α ∈ (0, 1], since we know in this case
that θE(x) = O(xα)(x→ 0) (see Proposition 5.5).

(ii) For a general set E, perfect and compact, we may check, by the same
arguments in the above proof, that CE(Mn) is non-quasianalytic under the condi-
tion ∑

n>1

(
A1/n

n lnAn

)−1/2
< +∞,

where An = n! sup
k>1

Mk

k!(θE(kMk−1/Mk))n (kMk−1/Mk)k.

4. ON THE EXISTENCE OF HYPERINVARIANT SUBSPACES

Let X be a Banach space, x ∈ X and T ∈ L(X). The local resolvent ρ(T, x) of T
in x consist of the complex numbers λ for which there exists an open set V 3 λ
and an analytic function F from V to X, such that

(µ− T )F (µ) = x, µ ∈ V.

The local spectrum of T in X is the closed set Sp(T, x) = C \ ρ(T, x).
We say that T satisfies the single valued extension property (S.V.E.P) if for

an arbitrary open subset V of C, the function that vanishes identically on V is the
unique function F from V to X satisfying

(z − T )F (z) ≡ 0, z ∈ V.

In this case, the function z −→ (z − T )−1x possesses a unique maximal analytic
extension function, which we denote by Rx,T ; Rx,T is defined on ρ(T, x) and is
called the local resolvent of T in x.

Observe that if T does not satisfy the S.V.E.P, then T possesses an eigenvalue
and consequently it admits a nontrivial hyperinvariant subspace of T . Throughout
the Subsection 4.1 and 4.2 we assume always that T satisfies the S.V.E.P, which
is not a restriction for the problem of the existence of invariant subspaces.

4.1. Dyn’kin functional calculus. The functional calculus which we use
was introduced by Dyn’kin in [14]. It is based on the Cauchy-Pompeiu formula.
Indeed, let x ∈ X and U an open subset of C containing Sp(T, x). If f is a
continuous function on U such ∂f is continuous, ∂f ≡ 0 on Sp(T, x) and

(4.1) |∂f(z)| ‖Rx,T (z)‖ −→
d(z,Sp(T,x))→0

0,

then we may define f(T )x by the formula

(4.2) f(T )x =
1

2iπ

∫
∂∆

f(ζ)Rx,T (ζ) dζ − 1
π

∫
∆\Sp(T,x)

∂f(ζ)Rx,T (ζ) dm2(ζ)

where ∆ is an open subset of C, such that ∆ ⊂ U , Sp(T, x) ⊂ ∆ and for which
the boundary ∂∆ is a finite union of disjoints piecewise C1 Jordan curves. By the
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Cauchy-Pompeiu formula the definition of f(T )x does not depend on the choice
of ∆.

We will call a set ∆ as above an admissible domain. We recall that as in
Subsection 4.1, ∂f is taken in the distribution sense. If f is a function defined on
F ⊂ C, we set

supp
F

(f) = {z ∈ F : f(z) 6= 0}.

Now we state some properties satisfied by the above functional calculus.

Proposition 4.1. Let U be an open subset of C containing Sp(T, x) and let
f, g be two continuous functions on U satisfying (4.1) and such that ∂f ≡ ∂g ≡ 0
on Sp(T, x). Then:

(i) Sp(T, f(T )x) ⊂ Sp(T, x) ∩ supp
U

(f).

(ii) (gf)(T )x = g(T )(f(T )x).

Proof. (i) If λ 6∈ Sp(T, x), we set fλ(z) = f(z)/(λ− z) for z ∈ U \ {λ}. The
function fλ satisfies (4.1) and then we may define fλ(T )x by the formula (4.2). It
is easy to see that the function λ→ fλ(T )x is analytic in C \ Sp(T, x).

For an admissible domain ∆ such that λ 6∈ ∆, we have

(λ− T )fλ(T )x =
1

2iπ

∫
∂∆

f(ζ)
λ− ζ

(λ− T )Rx,T (ζ) dζ

− 1
π

∫
∆\Sp(T,x)

∂f(ζ)
λ− ζ

(λ− T )Rx,T (ζ) dm2(ζ).

We observe that

(λ− T )Rx,T (ζ) = (λ− ζ)Rx,T (ζ) + (ζ − T )Rx,T (ζ) = (λ− ζ)Rx,T (ζ) + x,

and then we get

(λ−T )fλ(T )x = f(T )x+
(

1
2iπ

∫
∂∆

f(ζ)
λ− ζ

dζ− 1
π

∫
∆\Sp(T,x)

∂f(ζ)
λ− ζ

dm2(ζ)
)
x = f(T )x.

The last inequality holds since λ 6∈ ∆. So Rf(T )x,T (λ) = fλ(T )x, and then
Sp(f(T )x, T ) ⊂ Sp(T, x).

For λ 6∈ supp
U

(f), we see that the function fλ has a continuous extension to

U which vanishes on U \ supp
U

(f) and by an analoguous argument to the previous

one, we verify that Sp(T, f(T )x) ⊂ supp
U

(f).

(ii) We will first show that g(T )(f(T )x) is well defined. Let ∆ be an ad-
missible domain in U and λ ∈ ∆ \ Sp(T, x). Denote by D(λ, ε) the closed disk
with center λ and ε > 0. For ε sufficiently small, ∆ \D(λ, ε) is also an admissible
domain and we have

fλ(T )x=
1

2iπ

∫
∂(∆\D(λ,ε))

fλ(ζ)Rx,T (ζ) dζ− 1
π

∫
∆\(D(λ,ε)∪Sp(T,x))

∂fλ(ζ)Rx,T (ζ) dm2(ζ).
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Passing to the limit ε→ 0, we obtain

Rf(T )x,T (λ) = fλ(T )x

= f(λ)Rx,T (λ) +
1

2iπ

∫
∂∆

fλ(ζ)Rx,T (ζ) dζ − 1
π

∫
∆\Sp(T,x)

∂fλ(ζ)Rx,T (ζ) dm2(ζ).

For λ close to Sp(T, x), we get from the last equality that

‖Rf(T )x,T (λ)‖ 6 |f(λ)| ‖Rx,T (λ)‖+ C,

where C is a constant independent from λ. So |∂g(λ)| ‖Rf(T )x,T (λ)‖ → 0 as
d(λ, Sp(T, x)) → 0, and, since Sp(f(T )x, T ) ⊂ Sp(T, x), we see that |∂g(λ)|
‖Rf(T )x,T (λ)‖ → 0 as d(λ,Sp(T, f(T )x)) → 0. Thus g(T )(f(T )x) is well defined.

Now the proof of the equality (gf)(T )x = g(T )(f(T )x) follows easily from
the last integral expression of Rf(T )x,T (λ) and the Fubini theorem.

Let h be an increasing function defined on [0,+∞) with h(0+) = 0 and
satisfying the condition

(4.3) inf
n>0

sup
0<s<1

h(r)
(r
s

)n

6
h(r)
r
, 0 < r < 1.

Note that by [18], Lemma 3 the last inequality holds if the function

(4.4) t→ ln
1

h(e−t)
is convex for t > 0.

Observe also that when h is differentiable, then (4.4) is equivalent to the fact that
the function x→ xh′(x)

h(x) is non-increasing for 0 < x < 1.
For an integer k > 0 we put hk(r) = rkh(r), r > 0. It is clear that for k > 1,

hk satisfies (4.3) and we have precisely,

(4.5) inf
n>0

sup
0<s<1

hk(r)
(r
s

)n

6 hk−1(r), 0 < r < 1.

Let O be an open subset of C and let x ∈ X be such that

(4.6) ‖Rx,T (z)‖ = O
( 1
h(d(z,E))

)
, z ∈ O, d(z,E) → 0.

If f̃ ∈ Dh(E) is such that supp
C

(f̃) ⊂ O then f̃ satisfies (4.1) and thus we may

define the vector f̃(T )x by the formula (4.2). Note that the equality (4.6) implies,
in particular, that Sp(T, x) ∩O ⊂ E.

Dyn’kin showed in [14], Theorem 3, the following unicity theorem.

Theorem 4.2. Suppose that E is perfect and with planar Lebesgue measure
zero. If f̃ ∈ Dh2(E) is such that suppC(f̃) ⊂ O and f̃ |E ∩O = 0, then f̃(T )x = 0.

This theorem permits us to define a local functional calculus for a class of
functions in Qh3(E), in the following manner:
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Let f ∈ Qh3(E) such that supp
E

(f) ⊂ E ∩ O and let f̃ ∈ Dh2(E) such that

f̃ |E = f . Note that the existence of f̃ ∈ Dh2(E) is guaranteed by Lemma 4.3
stated below. We set

f(T )x = f̃(T )x,
and we see that by Theorem 4.2, f(T )x does not depend on the choice of the
extension f̃ of f . Thus f(T )x is well defined.

Lemma 4.3. Suppose that E is perfect.
(i) Let f̃ ∈ Dhk+1(E). If χ is a bounded C1 function on C such that χ ≡ 1

on a neighborhood of supp
E

(f̃ |E), then χf̃ ∈ Dhk
(E).

(ii) If f ∈ Qhk+1(E) is such that supp
E

(f) ⊂ O ∩ E, then there exists f̃ ∈

Dhk
(E) such that f̃ |E = f and supp

C
(f̃) ⊂ O.

Proof. (i) Set F = E \ supp
E

(f̃ |E). We suppose that F is nonempty, other-

wise the result is obvious. Clearly F is perfect and f̃ ∈ Dhk+1(F ). Since f̃|F = 0,
it follows from [16], Theorem 2, and inequality (4.5) that

(4.7) |f̃(z)| = O(d(z, F )| ln d(z, F )|hk(d(z, F ))) = o(hk(d(z, F ))), d(z, F ) → 0.

We check now that χf̃ ∈ Dhk
(E). For z 6∈ supp

C
(∂χ),

|∂(χf̃)(z)| = |χ(z)| |∂f̃(z)| = o(hk(d(z,E))), d(z,E) → 0.

On the other hand, if z ∈ supp
C

(∂χ) and if d(z,E) < d(supp
C

(∂χ), supp
E

(f̃ |E)) then

d(z,E) < d(z, supp
E

(f̃ |E)) and since E = supp
E

(f̃ |E)∪F we have d(z,E) = d(z, F ).

This observation and (4.7) imply that

|∂(χf̃)(z)| 6 |∂χ(z)f̃(z)|+ |χ(z)∂f̃(z)| = o(hk(d(z, F )) + hk(d(z,E)))

= o(hk(d(z,E)), z ∈ supp
C

∂χ, d(z,E) → 0.

Finally we have χf̃ ∈ Dhk
(E) as claimed.

(ii) Let f ∈ Qhk+1(E) such that supp
E

(f) ⊂ O and let g̃ ∈ Dhk+1(E) such that

g̃|E = f . Take a C1 bounded function χ on C such that χ ≡ 1 on a neighborhood
of supp

E
(f) and supp

C
(χ) ⊂ O. The previous assertion proves that the function

f̃ = χg̃ possesses the desired properties.

4.2. Spectral properties. In this subsection we use the notation of the previ-
ous one. We recall that:

(i) E denotes a compact perfect set with planar Lebesgue measure zero.
(ii) h an increasing function satisfying (4.3).
(iii) O an open subset of C and x an element of X satisfying (4.6).
As we may expect, we have the following result.
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Lemma 4.4. Let f, g ∈ Qh3(E) such that supp
E

(f) and supp
E

(g) are contained

in O. Then
(i) Sp(T, f(T )x) ⊂ supp

E
(f) ∩ Sp(T, x).

(ii) (gf)(T )x = g(T )(f(T )x).

Proof. (i) The inclusion Sp(T, f(T )x) ⊂ Sp(T, x) follows immediately from
the assertion (i) of Proposition 4.1. For the proof of the inclusion Sp(T, f(T )x) ⊂
supp

E
(f), take λ 6∈ supp

E
(f) and f̃ ∈ Dh3(E) with f̃ |E = f . Let χ be a bounded

C1 function on C such that supp
C

(χ) ⊂ O, χ ≡ 1 on a neighborhood of supp
C

(f)

and χ ≡ 0 on a neighborhood of λ. By part (i) of Lemma 4.3 , g̃ := χf̃ ∈
Dh2(E). Furthermore supp

C
(g̃) ⊂ O and λ 6∈ supp

C
(g̃) which implies by part (i) of

Proposition 4.1 that λ 6∈ Sp(T, g̃(T )x). Since g̃|E = f we have f(T )x = g̃(T )x
and so λ 6∈ Sp(T, f(T )x). This finishes the proof of (i). The proof of (ii) is a direct
consequence of part (ii) of Proposition 4.1.

Lemma 4.5. Suppose that (2.5) and (3.2) hold. If f ∈ Qh3(E) is such that
supp

E
(f) ⊂ O, then

Sp(T, x) \ ZE(f) ⊂ Sp(T, f(T )x),

where ZE(f) = {z ∈ E : f(z) = 0}.

Proof. Let λ ∈ Sp(T, x) be such that f(λ) 6= 0. By (ii) of Lemma 4.3, there
exists f̃ ∈ Dh2(E) with f̃ |E = f and supp

C
(f̃) ⊂ O. There exists also an open disk

D with center λ such that D ⊂ O and f̃(z) 6= 0 for every z ∈ D. Take another
open disk D0 concentric with D such that D0 ⊂ D. It follows from Theorem 3.2
that the algebra Qh3(E) is non-quasianalytic and so there exists ϕ ∈ Qh3(E) such
that ϕ ≡ 1 on D0 ∩ E and ϕ ≡ 0 on E \ D (see [21], Chapter VIII, Section 5).
Let ϕ̃ ∈ Dh3(E) with ϕ̃|E = ϕ and let χ be a C∞ smooth function with χ ≡ 1 on
D0 and χ ≡ 0 on C \ D. By (ii) of Lemma 4.3, the function ψ̃ = χϕ̃ ∈ Dh2(E).
Put g̃1(z) = ψ̃(z)/f̃(z) if z ∈ D and g̃1(z) = 0 if z ∈ C \ D. It is easily seen that
g̃1 ∈ Dh2(E) and supp

C
(g̃1) ⊂ O. The function g̃2 := 1− f̃ g̃1 = 1− ψ̃ is continuous

on C and ∂g̃2 = −∂ψ̃ is also continuous and satisfies (4.1), which permits us to
define g̃2(T )x. We get x = ψ̃(T )x+ g̃2(T )x and so

Sp(T, x) ⊂ Sp(T, ψ̃(T )x) ∪ Sp(T, g̃2(T )x).

Since λ 6∈ supp
C

(g̃2), we can assert by (i) of Proposition 4.1 that λ 6∈

Sp(T, g̃2(T )x), which implies that λ ∈ Sp(T, ψ̃(T )x). By (ii) of Proposition 4.1,
we obtain

ψ̃(T )x = g̃1(T )(f̃(T )x) = g̃1(T )(f(T )x)

and we deduce from Lemma 4.1 that λ ∈ Sp(T, f(T )x). Since Sp(T, f(T )x) is
closed, we conclude that the desired inclusion holds.
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4.3. Regularity of the majorant function. In the previous subsections we
have defined a local functional calculus for T ∈ L(X) and x ∈ X submitted to a
condition of the type

‖Rx,T (z)‖ = O
( 1
h(d(z,E))

)
, d(z,E) → 0

where h is an increasing function satisfying the condition (4.3), that is

inf
n>0

sup
0<s<1

h(s)
(r
s

)n

6
h(r)
r
, 0 < r < 1.

We show here that this condition is not restrictive. We will use this fact later on.
As observed in Subsection 4.1 the condition (4.3) holds if the function

t→ ln
1

h(e−t)
is convex for t > 0.

In the following statement we adapt [13], Lemma 3, to our situation. The proof
needs a slight modification and for the sake of completeness we include it here.

Proposition 4.6. Let α be a function on (0,+∞) with α(0+) = 0 and h be
a non-decreasing function with h(0+) = 0. Suppose that∫

0

(
ln ln

1
α(x2)

)1/2

dx < +∞ and
∫
0

(
ln ln

1
h ◦ α(x2)

)1/2

dx < +∞.

Then for every s > 1, there exists an increasing function hs satisfying (4.3) such
that hs(x) 6 h(x), 0 < x < 1 and∫

0

(
ln ln

1
hs(sα(x2))

)1/2

dx < +∞.

Proof. Without loss of generality we may assume that h is continuous and
h(x) 6 1, x > 0. Set, for x > 0,

ψ(x) =

1∫
x/s

| lnh0(λ)|
λ

dλ and hs(x) = exp
(
− 1

ln s
ψ(x)

)
.

We have for x > 0,

ψ(x) >

x∫
x/s

| lnh(λ)|
λ

dλ > ln(s)| lnh(x)|

and thus hs(x) 6 h(x).
On the other hand we get ψ(x) 6 ln(s/x)| lnh(x/s)|, 0 < x < 1. Therefore,

for sufficiently small δ > 0,
δ∫

0

(
ln ln

1
hs(sα(x2))

)1/2

dx 6

δ∫
0

(
− ln ln s+ ln ln

1
α(x2)

+ ln ln
1

h ◦ α(x2)

)1/2

dx

6 const +

δ∫
0

(
ln ln

1
α(x2)

)1/2

dx+

δ∫
0

(
ln ln

1
h(α(x2))

)1/2

dx < +∞.
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Since the function x → xψ′(x) = lnh(x/s) is non-decreasing, we get that the
function t → ln 1

hs(e−t) is convex for t > 0 and that h satisfies (4.3). Finally we
see that hs has the required properties.

4.4. Existence of hyperinvariant subspaces. We formulate now a result on
the existence of hyperinvariant subspaces. We denote by X∗ the dual space of X
and by T ∗ the adjoint operator of T .

Theorem 4.7. Suppose that T and T ∗ satisfies the S.V.E.P. Assume that
there exist a perfect compact set E with planar Lebesgue measure zero, an open
set O, a non-decreasing function h on (0,+∞), x0 ∈ X, y0 ∈ X∗ and two distinct
complex numbers λ1, λ2 such that:

(i) λ1 ∈ Sp(T, x0) ∩O and λ2 ∈ Sp(T ∗, y0) ∩O.
(ii) ‖Rx0,T (z)‖ = O

(
1

h(d(z,E))

)
, z ∈ O, d(z,E) → 0.

(iii) ‖Ry0,T∗(z)‖ = O
(

1
h(d(z,E))

)
, z ∈ O, d(z,E) → 0.

If (2.5) and (3.2) hold then T possesses a hyperinvariant subspace.

Proof. By Proposition 4.6 and part (i) of Remark 5.3 we may assume that h
satisfies (4.3). Let V be an open neighborhood of λ2 such that V ⊂ O and λ1 6∈ V .
Let F be the space of all x ∈ X such that the function z → (z − T )−1x has an
analytic extension to V that is, F = {x ∈ X : V ⊂ ρ(x, T )}. We shall prove that
F , the closure of F , is a nontrivial closed hyperinvariant subspace of T . Let x ∈ F
and let A be a bounded operator on X that commutes with T . It is easy to see
that Sp(T,Ax) ⊂ Sp(T, x) and that Ax ∈ F . Hence F is hyperinvariant and it
remain to prove that F is nontrivial.

Theorem 3.2 implies that the algebra Qh3(E) is non-quasianalytic, where
h3(r) = r3h(r), r > 0. It follows that there exist two functions f and g in
Qh3(E) such that f(λ1) 6= 0, g(λ2) 6= 0, supp

E
(f) ⊂ E \ V and supp

E
(g) ⊂ V .

It follows from Lemma 4.5, that the sets Sp(T, f(T )x0) and Sp(T ∗, g(T ∗)y0) are
both non empty, and thus f(T )x0 6= 0 and g(T ∗)y0 6= 0. By (i) of Lemma 4.4,
Sp(T, f(T )x0) ⊂ supp

E
(f) and thus f(T )x0 ∈ F . So {0}$F .

On the other hand, take x ∈ F and consider the function

φ(z) = 〈(z − T )−1x, g(T ∗)y0〉

defined for instance on C \ Sp(T ). Clearly φ has an analytic extension to C \
Sp(T, x). Writing

φ(z) = 〈x, (z − T ∗)−1g(T ∗)y0〉
we see that φ has also an analytic extension to C \ Sp(T ∗, g(T ∗)y0). By (i) of
Lemma 4.4, we have Sp(T ∗, g(T ∗)y0) ⊂ supp

E
(g). So Sp(T, x) ∩ Sp(T ∗, g(T ∗)y0) 6=

∅ and then φ admits an extension which is an entire function. Since φ(z) →
0 as |z| → +∞, we conclude that φ vanishes identically and consequently (z −
T ∗)−1g(T ∗)y0 is orthogonal to F for all z ∈ C \ Sp(T ∗, g(T ∗)y0). We have seen
above that g(T ∗)y0 6= 0 and then, for all z ∈ C \ Sp(T ∗), (z − T ∗)−1g(T ∗)y0 6= 0.
Hence F $X, which finishes the proof.
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Corollary 4.8. Suppose that there exist a perfect compact set E with pla-
nar Lebesgue measure zero, and an open set O such that Sp(T ) ∩ O contains at
least two distinct points. Assume that there exists a non-decreasing function h on
(0,+∞) such

‖(z − T )−1‖ = O
( 1
h(d(z,E))

)
z ∈ O, d(z,E) → 0.

If θE and h satisfies (2.5) and (3.2), then T has a nontrivial hyperinvariant sub-
space.

Proof. Without loss of generality we may assume that T and T ∗ satisfy the
S.V.E.P. Since

Sp(T ) = Sp(T ∗) =
⋃

x∈X

Sp(T, x) =
⋃

y∈X∗

Sp(T ∗, y)

we can find x0 ∈ X and y0 ∈ X∗ satisfying the hypothesis of Theorem 4.7, from
which the proof follows.

4.5. Decomposable operators. Lyubich and Matsaev proved in [26] that if T
is a bounded operator with real spectrum and if the function

M(x) = sup
|z|>x

‖(z − T )−1‖, x > 0,

satisfies the Levinson condition:
δ∫

0

ln lnM(x) dx < +∞, for sufficiently small δ > 0,

then T is decomposable. They also proved that the Levinson condition is the best
possible. For this, they considered the multiplication operator by z acting on a
Hilbert space of functions related to a quasianalytic Carleman class C[−1,1](Mn)
(see the introduction of [26]). Recently A. Atzmon and M. Sodin have constructed
an operator on a Hilbert space, such neither T nor T ∗ is decomposable ([2]).

Definition 4.9. Let T ∈ L(X) and x ∈ X. T is said to be decomposable if
for a given open cover (Ui)16i6n of Sp(T ), there exist a closed invariant subspaces
X1, . . . , Xn of T such that:

(i) X = X1 +X2 + · · ·+Xn,
(ii) Sp(T |Xi) ⊂ Ui, i = 1, . . . , n, where T |Xi is the restriction of T to Xi.
If T satisfies the S.V.E.P, we say that T is decomposable at x if for a given

open cover (Ui)16i6n of Sp(T, x), there exist x1, . . . , xn ∈ X such that
(i) x = x1 + x2 + · · ·+ xn,
(ii) Sp(T, xi) ⊂ Ui, i = 1, . . . , n.

Let us first recall that (Ui)16i6n is called an open cover of a set F ⊂ C if
each Ui is open in C and F ⊂

⋃
16i6n

Ui. We have the following result:
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Proposition 4.10. Suppose that T satisfies the S.V.E.P and is decompos-
able at every x ∈ X. Assume that there exist a perfect compact set E with planar
Lebegue measure zero and a non-decreasing function h on (0,+∞) such that

‖(z − T )−1‖ = O
( 1
h(d(z,E))

)
, d(z,E) → 0.

If (2.5) holds, then T is decomposable.

Proof. Let (Ui)16i6n be an open cover of Sp(T ). There exists an open cover
(Vi)16i6n of Sp(T ) such that Vi ⊂ Ui, i = 1, . . . , n. Let Xi = {x ∈ X : Sp(T, x) ⊂
Vi}. It is clear that Xi is a linear subspace of X. Decomposability of T at every
x ∈ X implies that X = X1 + · · ·+Xn. It remains to prove that each Xi is closed.
For this let (xn)n be a sequence in Xi converging to x ∈ X. Take l ∈ X∗ and set

ϕn(z) = 〈Rxn,T (z), l〉.

Each function ϕn has an analytic extension to ρ(T, xn) and in particular to C\Vi.
Moreover, since (xn)n is bounded, there exists a constant c > 0 such that

|ϕn(z)| 6 c‖(z − T )−1‖, z ∈ C \ (Vi ∪ Sp(T, x)).

Thus
|ϕn(z)| 6 const

h(d(z,E))
, z ∈ C \ (Vi ∪ E).

By Corollary 2.4 the family {ϕn : n ∈ N} is normal, therefore there exists a
subsequence of (ϕn)n which converges uniformly on every compact subset of C\Vi

to an analytic function ϕ. Clearly

ϕ(z) = 〈(z − T )−1x, l〉 for z ∈ C \ (Vi ∪ Sp(T )).

So for every l ∈ X∗ the function z → 〈(z−T )−1x, l〉 has an analytic continuation to
C\Vi. It follows from Lemma 4.11 stated below that the function z → (z−T )−1x
has also an analytic continuation to C \ Vi. Hence x ∈ Xi, which proves that Xi

is closed.

The following lemma needed above may be proved by the same argument
used in the proof of [1], Lemma 2.4.

Lemma 4.11. Let E and U be respectively a compact and an open subset of C
such that the interior of E is empty and E ∩U 6= ∅. Let F be an analytic function
from U \ E to X. Assume that for every l ∈ X∗, the function z → 〈F (z), l〉 has
an analytic continuation to U . Then F has also an analytic continuation to U .

Theorem 4.12. Let E be a perfect compact subset of C with planar Lebesgue
measure zero and let h be a non-decreasing function on (0,+∞) such that (2.5)
and (3.2) hold.

(i) If T satisfies the S.V.E.P and x ∈ X is such that

‖Rx,T (z)‖ = O
( 1
h(d(z,E))

)
, d(z,E) → 0,

then T is decomposable at x.
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(ii) If the resolvent of T satisfies

‖(z − T )−1‖ = O
( 1
h(d(z,E))

)
, d(z,E) → 0,

then T is decomposable.

Proof. (i) By Proposition 4.6 and part (i) of Remark 5.3 we may assume that
h satisfies (4.3). Let (Ui)06i6n be an open cover of Sp(T, x). We can find a set
U0 such that U0 ∩ Sp(T, x) = ∅ and E ⊂

⋃
06i6n

Ui. By Theorem 3.2 the algebra

Qh3(E) is nonquasianalytic; so we may construct a partition of unity f0, . . . , fn

in Qh3(E) subordinate to the covering (Ui ∩ E)06i6n of E ([21], Chapter VIII,
Section 5). We obtain x = x0 + x1 + · · · + xn, where xi = fi(T )x, i = 0, . . . , n.
From Lemma 4.4 we get:

Sp(T, xi) ⊂ supp
E

(fi) ∩ Sp(T, x) ⊂ Ui ∩ Sp(T, x), i = 0, . . . , n.

Since Sp(T, x)∩U0 = ∅, we have Sp(T, f0(T )x) = ∅ which implies that x0 = 0. So
that x1, . . . , xn have the required conditions.

(ii) The fact that Sp(T, x) ⊂ E and m2(E) = 0 implies that the interior of
Sp(T, x) is empty and therefore T satisfies the S.V.E.P. The proof of (ii) follows
from the part (i) and Proposition 4.10.

Remark 4.13. Let ϕ be a continuous function on T non identically constant
and suppose ωϕ denotes its modulus of continuity:

ωϕ(t) = sup
|ζ1−ζ2|6t

|ϕ(ζ1)− ϕ(ζ2)|, t > 0.

The Toeplitz operator with symbol ϕ is defined on the usual Hardy space H2 by
Tϕ : f → P+ϕf , f ∈ H2, where P+ is the orthogonal projection from L2 onto H2

(see also [29]).
Peller showed in [30] that if there exist an open disk D and a Lipschitz Jordan

arc E such that

(4.8) ϕ(T) ∩ D 6= ∅ and ϕ(T) ∩ D ⊂ E ∩ D

then the condition

(4.9)
∫
0

ωϕ(t)
t ln 1/t

dt < +∞

implies that Tϕ admits a nontrivial hyperinvariant subspace. It is also proved in
[31] that if the set E is assumed to be C2 then the above result remains true under
the weaker condition

(4.10)
∫
0

ω2
ϕ(t)

t ln 1/t
dt < +∞.

For the proof of these results, Peller proceeds as follows: he proves that the
condition (4.9) or (4.10) ensures that the resolvent of Tϕ satisfies the Levinson con-
dition and concludes through the Ljubich-Matsaev theorem. Using Corollary 4.8
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and the arguments of [30] for the estimate of the resolvent of Tϕ one may prove
the following:

Suppose that there exist a disk D and a compact perfect set E satisfying
(4.8) and such that m2(E) = 0. Suppose also that for every λ ∈ D\E, there exists
a continuous determination αλ of the argument of ϕ− λ such that

sup
λ∈D\E

sup
z∈T

|αλ| < +∞.

If ∫
0

(θE ◦ ωϕ(t))1/2

t ln 1/t(ln ln 1/t)1/2
< +∞,

then Tϕ admits a nontrivial hyperinvariant subspace.
It should be noted that if there exists λ ∈ C \ f(T) such that f − λ has no

continuous branch of the argument, then Tϕ admits a non trivial hyperinvariant
subspace.

5. APPENDIX

The function θE associated with the compact set E plays a decisive part in this
paper. For this reason we investigate some of its properties. Recall first that θE

is defined by
θE(x) = m2({z ∈ C : d(z,E) < x}), x > 0,

where m2 is planar Lebesgue measure.

Proposition 5.1. θE is an increasing continuous function.

Proof. The monotonicity of θE is obvious. For the continuity it suffices to
prove that for every r > 0, m2(Cr) = 0, where Cr = {z ∈ C : d(z,E) = r}.
Suppose w ∈ Cr and z ∈ E, is such that d(z, w) = r. For ε > 0, we denote by
B(w, ε) the ball with center w and radius ε. We have

lim
ε→0

m2(Cr ∩B(w, ε))
m2(B(w, ε))

6 lim
ε→0

m2(B(w, ε) \B(z, r))
m2(B(w, ε))

=
1
2
.

Therefore w is not a point of density. Since w is an arbitrary point in Cr we
conclude that m2(Cr) = 0.

Let NE(ε) be the smallest number of balls of radius ε that cover E and let
ME(ε) be the largest number of disjoint balls with radius ε and centers in E. It
is easy to see that

(5.1) ME(2ε) 6 NE(ε) 6 ME

(ε
2

)
.

The following result shows the relationship between NE and θE .
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Proposition 5.2. There exist positive constants c and C such that

cNE(ε) 6
θE(ε)
ε2

6 CNE(ε), ε > 0.

Proof. Let B1, . . . , BME(ε/2) be disjoint balls with radius ε/2 and centers in
E. We clearly have ⋃

16i6ME(ε/2)

Bi ⊂
{
z ∈ E : d(z,E) <

ε

2

}
.

Thus
π

4
ε2ME

(ε
2

)
6 θE

(ε
2

)
6 θE(ε).

It follows from (5.1) that
π

4
ε2NE(ε) 6 θE(ε).

Consider now B1, . . . , BNE(ε) balls of radius ε that cover E. Denote by B′
i the

concentric ball with Bi of radius 2ε. We have

{z ∈ E : d(z,E) < ε} ⊂
⋃

16i6NE(ε)

B′
i

and so
θE(ε) 6 4πε2NE(ε).

Remark 5.3. (i) It follows from Proposition 5.2 that if θE(0+) = 0, which
means that m2(E) = 0, then there exists a constant a > 0 such that for all
t ∈ (0, 1) and x > 0 we have

θ−1
E (tx) 6 a

√
tθ−1

E (x).

Indeed if 0 < ε1 < ε2 then θE(ε1)
ε2
1

> c
C

θE(ε2)
ε2
2

. If we set ε1 = θ−1
E (tx) and ε2 =

θ−1
E (x), we get the desired inequality with a =

√
C/c. This observation is of use

in Subsection 3.1.
(ii) The lower and upper box-counting dimension of E are given by

dimE = lim
ε→0

lnNE(ε)
ln 1/ε

and dimE = lim
ε→0

lnNE(ε)
ln 1/ε

.

It follows from the above proposition that the box-counting dimension, may be
related to θE by the following equalities:

dimE = 2 + lim
ε→0

ln θE(ε)
ln 1/ε

and dimE = 2 + lim
ε→0

ln θE(ε)
ln 1/ε

,

(see also [20], Proposition 3.2).
From these equalities and [20], Example 3.3, we get that if E is the Cantor

set then for every s < 2− ln 2/ ln 3 we have θE(ε) = O(εs), ε→ 0.

We say that E is a rectifiable arc if there exists a continuous function ϕ :
[a, b] → C such that ϕ([a, b]) = E and

l = sup
n∑

i=1

|ϕ(xi)− ϕ(xi−1)| < +∞
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where the supremum is taken over all partitions a = x0 < x1 < · · · < xn = b

and all integers n > 1. The number l is the length of E corresponding to the
parametrisation ϕ of E.

The following statement may be well known but we are not able to find a
precise reference.

Proposition 5.4. If E is a rectifiable arc not reduced to a single point, then
there exist positive constants c and C such that

cε 6 θE(ε) 6 Cε, 0 < ε < 1.

Proof. Recall first that the diameter of E is the quantity

diamE = sup{|z − w| : z, w ∈ E}.

Let B1, . . . , BME(ε/2) be disjoint balls of radius ε/2 and centers in E. We have for
0 < ε < diamE, ε(ME(ε/2)−1) 6 l, where l is the length of E. So εME(ε/2) 6 2l.
It follows from (5.1) that NE(ε) 6 2l/ε. Therefore, the second inequality follows
from Proposition 5.2.

For the proof of the first inequality we need to introduce the 1-dimensional
Hausdorff measure of E. A countably or finite many sets (Uk)k is said to be an
ε-cover of E if E ⊂

⋃
k

Uk and for all k, diamUk 6 ε. We set

H1(E) = lim
ε→0+

inf
∑

k

diamUk,

where the infimum is taken over all ε-covers of E. By Lemma 3.4 of [19], we have
H1(E) > diamE > 0. Clearly (1/2)H1(E) 6 2εNE(ε) for ε sufficiently small. It
follows from Proposition 5.2 that for some positive constant c, cε 6 θ(ε), ε > 0,
which finishes the proof.

Let f be a real function defined on an interval I. The graph of f in C is

graph(f) = {t+ if(t) : t ∈ I}.

Proposition 5.5. Let f : [0, 1] → R be a continuous function satisfying the
Hölder condition:

|f(u)− f(v)| 6 c|u− v|α, 0 6 u, v 6 1,

where c > 0 and 0 < α 6 1. Then

θE(ε) = O(εα), ε→ 0,

where E = graph(f).

Proof. In the proof of [20], Proposition 11.2, it is shown that NE(ε) =
O(εα−2), ε→ 0. The proof follows now from Proposition 5.2.
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