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Abstract. We generalize the notion of the angular derivative of a holomor-
phic self-map b, of the unit disk, by replacing the usual difference quotient
b(z)−b(z0)

z−z0
with a difference quotient relative to an inner function u, 1−b(z)

1−u(z)
.

We relate properties of this generalized difference quotient to properties of the
Aleksandrov measures associated with the functions b and u. Six conditions
are shown to be equivalent to each other, and these are used to define the
notion of a relative angular derivative. We see that this generalized deriva-
tive can be used to reproduce some known results about ordinary angular
derivatives, and the generalization is shown to obey a form of the product
rule.
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1. INTRODUCTION

In this paper, we will define and analyze the notion of an angular derivative of a
holomorphic self-map of the unit disk relative to a nonconstant inner function.

Let b be a holomorphic self-map of the unit disk, that is, an analytic function
on the unit disk D of the complex plane with |b| < 1 on D. We will take u to be our
nonconstant inner function — a holomorphic function on D with |u| = 1 almost
everywhere on ∂D. This notation will remain fixed.

Our analysis, and even our definition, of relative angular derivatives will come
primarily from the viewpoint of the Aleksandrov measures µλ and νλ (λ ∈ ∂D),
which we derive from our functions b and u. These measures are defined and
discussed in Section 2. Throughout this paper, we will use m to denote the usual
normalized Lebesgue measure on the unit circle. We will also use the notation
µa.c. and µs to denote the absolutely continuous and singular parts of the measure
µ (= µ1) with respect to m. For any function f on the unit disk D, fr will denote
the function on the boundary ∂D such that fr(eiθ) = f(reiθ) for r < 1.

The relationship between Aleksandrov measures and angular derivatives has
been developed by many people recently. The most direct connection comes from
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Theorem 1.1. The function b has angular derivative at a point z0 ∈ ∂D
(where |b(z0)| = 1) exactly where its corresponding Aleksandrov measure µλ has
an atom, and µλ({z0}) = 1/ |b′(z0)| .

This theorem, which appears (somewhat hidden) in [4], Chapter 7 (see also
[7], VI-7), is discussed and even given a different proof in this paper in Section 9.
Indeed, Aleksandrov measures have even been used to provide improvements on
angular derivative conditions in several theorems about composition operators.
For example, Joel Shapiro and P. Taylor showed in [10] that if b has an angular
derivative, then the corresponding composition operator Cb acting on the Hardy
space H2 is not compact. This result was generalized in papers by D. Sarason ([6])
and Shapiro and C. Sundberg ([9]), which together prove that a composition oper-
ator Cb is compact on H2 if and only if the corresponding Aleksandrov measures
µλ are all absolutely continuous, i.e., have not only no atoms (which is equivalent
to no angular derivative for b) but no component singular with respect to Lebesgue
measure. This theorem was proved in a different way by J. Cima and A. Matheson
([2]), who show that the square of the essential norm of Cb (operating on H2) is
equal to sup

λ∈∂D
‖µs

λ‖. The author has also used Aleksandrov measures to generalize

other theorems which give properties of composition operators and composition
operator differences in terms of angular derivatives — see [8]. In the language of
this paper, we will be able to restate the compactness condition for composition
operators as: Cb is compact on H2 if and only if for any ζ ∈ ∂D, the function ζb
has no angular derivative relative to any inner function u.

In this paper we aim to develop further this type of useful generalization
of angular derivatives by studying the more broad category of relative angular
derivatives. We will find new perspectives from which to view the already known
relationships between Aleksandrov measures and angular derivatives, and find new
relationships by studying in detail the behavior of the relative angular derivative
from many perspectives, beginning with the generalization of the difference quo-
tient and using primarily the Aleksandrov measures, but also relating their prop-
erties to the Hardy space H2, and the de Branges–Rovnyak spaces (as done by
Sarason in [7]).

Section 3 contains some background material about angular derivatives. In
Section 4, we generalize the difference quotient, b(z)−b(z0)

z−z0
, which appears in the

definition of an angular derivative, to 1−b
1−u , which will be the primary object un-

der investigation throughout the paper. The study of this generalized difference
quotient allows us to define the notion of an angular derivative relative to an inner
function. It is in this section that we present the theorem which lists six condi-
tions, all of which will be shown to be equivalent, any one of which can be used as
a definition of a relative angular derivative.

Section 5 contains an introduction to the de Branges–Rovnyak spaces, which
will be useful in Section 6, when we analyze the boundary behavior of the gen-
eralized difference quotient with respect to µs. This, then, allows us to get an
integral condition for the existence of a relative angular derivative which is similar
in form to that in the definition of the Hardy spaces. In Section 7, we will similarly
analyze the behavior of the generalized difference quotient with respect to µa.c..
Section 8 presents a use for our characterization of relative angular derivatives to
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produce an analog of the product rule for ordinary derivatives. Finally, in Sec-
tion 9, we see that many known results from the theory of angular derivatives can
be obtained easily by viewing an angular derivative as a special case of a relative
angular derivative.

2. THE ALEKSANDROV MEASURES

For λ ∈ ∂D, the function Re
(

λ+b
λ−b

)
is positive, and, as the real part of an analytic

function, harmonic (on the disk D). It is thus the Poisson integral of a positive
measure on ∂D, which we will call µλ. We have, then,

Re
(

λ + b(z)
λ− b(z)

)
=
∫
∂D

P (θ, z) dµλ(eiθ) = Pµλ(z)

and the Herglotz integral representation,

λ + b(z)
λ− b(z)

=
∫
∂D

H(θ, z) dµλ(eiθ) + i Im
λ + b(0)
λ− b(0)

.

Note that for z ∈ D, the Poisson kernel, P (θ, z) = 1−|z|2
|eiθ−z|2 , is the real part of the

Herglotz kernel, H(θ, z) = eiθ+z
eiθ−z

. The measure µ1 we shall simply call µ. The
measure ν is similarly defined to correspond with the inner function u.

The following are some properties of the Aleksandrov measures defined above:
• All positive Borel measures on ∂D are associated with functions in this

way.
• The absolutely continuous part of µ is given by 1−|b|2

|1−b|2 times the normalized
Lebesgue measure (on ∂D).

• The measure µ is singular if and only if b is an inner function, i.e., |b| = 1
almost everywhere on ∂D.

• For µs
λ-a.e. ξ ∈ ∂D we have Pµλ(ξ) = ∞ and thus b(ξ) = λ.

3. ANGULAR DERIVATIVES

The following is an overview of some of the properties of angular derivatives. Much
of this material can be found in [1], Section 299. I use it primarily as presented
by Sarason in [7], Chapter VI. We use this material as a starting point.

For a holomorphic function b, we can talk about its derivative, b′(z) for z ∈ D,
or, looking at the boundary behavior, the angular derivative of the function at a
point z0 ∈ ∂D.
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Theorem 3.1. For a function b, holomorphic in D, and a point z0 of ∂D,
the following are equivalent:

(i) The function b has a nontangential limit, b(z0), at the point z0, and the
difference quotient (b(z)− b(z0))/(z − z0) has a nontangential limit at z0.

(ii) The derivative b′ has a nontangential limit at z0.

The theorem above is true for any holomorphic b, but if we restrict ourselves
to holomorphic self-maps of the disk, as we do here, and require that the function b
have unit modulus at the boundary point z0, then we say that the function b has
an angular derivative in the sense of Carathéodory at the point z0.

Theorem 3.2. [Carathéodory] If z0 is a point of ∂D and

c = lim inf
z→z0

1− |b(z)|
1− |z|

< ∞,

then b has an angular derivative in the sense of Carathéodory at z0. The relation
b′(z0) = c b(z0)/z0 holds, and 1−|b(z)|

1−|z| tends to c as z tends nontangentially to z0.
The number c is positive.

It is this notion of angular derivative which we will generalize in this paper.

4. GENERALIZATIONS OF ANGULAR DERIVATIVES

Now we will examine extended notions of the angular derivative of the function b
by replacing the identity function z by an arbitrary (nonconstant) inner function
u in the denominator of the standard difference quotient, b(z)−b(z0)

z−z0
. We will then

examine the behavior of this generalized difference quotient, 1−b(z)
1−u(z) .

The main theorem which will provide the basis for our definition of the
relative angular derivative is:

Theorem 4.1. [Main Theorem] The following conditions are equivalent:
(i) ν � µ and dν

dµ ∈ L2(µ);
(ii) 1−b

1−uku
0 ∈ H(b);

(iii) 1−b
1−uku

w ∈ H(b) for all w ∈ D;

(iv)
∫

∂D

∣∣∣ 1−br

1−ur

∣∣∣ dν stays bounded as r ↗ 1;

(v) 1−b
1−u ∈ H2 and 1−b

1−u ∈ H2(µa.c.);
(vi) 1−b

1−u ∈ H2 and 1−b
1−u ∈ H2(µ).

If any of the above hold, then we will say that b has an angular derivative
relative to u.

Of these conditions listed above, the equivalence of (i), (ii), and (v) were
previously known, and shown, in some form, in various parts of [7].

Note that both the definition of an angular derivative and Carathéodory’s
theorem about angular derivatives depend on the behavior of a difference quotient
near only one point. It is clear from the nature of the conditions above that the
notion of relative angular derivative depends on the behavior of the generalized



Relative angular derivatives 269

difference quotient at more than one point. Condition (v), for example, is a condi-
tion on the boundary values m-a.e., and condition (iv) is a condition ν-a.e.. Since
ν is singular with respect to m, the equivalence of these two conditions in defining
a relative angular derivative is somewhat unexpected. Also note that in the defini-
tion of the angular derivative of a function b, we have a value, b′(z0), to associate
with this derivative. Theorem 6.1 will provide us with the basis for defining the
“value” of an angular derivative of a function b relative to a function u. In this
case, we can define the value µs-a.e. on ∂D, and that value can be taken to be
dν
dµ . In Section 9, we will see that this notion of the value of a relative angular
derivative is a good generalization of that for angular derivatives.

Remark 4.2. The definition of relative angular derivatives could have been
expanded to include cases where the functions b and u might not meet the con-
ditions above, but the functions ξb (for some ξ ∈ ∂D) and u do. The function
b, then, “almost” has an angular derivative relative to u. In fact, Theorem 3.2
shows clearly that the condition for b to have an angular derivative in the sense
of Carathéodory is not altered by the multiplication of b by a constant of unit
modulus. A better generalization, perhaps, would maintain this property. We can
accomplish this by altering the definition to:

The holomorphic self-map of the unit disk b has an angular derivative relative
to the inner function u if there is some ξ ∈ ∂D such that any of the six
conditions above hold for the functions ξb and u and their corresponding
measures.

We will not use this modified definition, however, because of the added complica-
tion and the fact that this change does not alter the fundamental notion at all.
We should, in any case, remember this method of generalizing angular derivatives
as it will show up again in Section 9.

5. THE DE BRANGES–ROVNYAK SPACES

The de Branges–Rovnyak spaces are defined as the ranges of certain operators on
H2. For ϕ ∈ L∞ of the unit circle with ‖ϕ‖∞ 6 1, we can define the de Branges–
Rovnyak space H(ϕ). Since we are interested in holomorphic self-maps of the disk
b, we will talk about the spaces H(b) for such b. The space H(b) is defined to be
the range of the operator (1 − TbTb)

1/2, where Tb denotes the Toeplitz operator
with symbol b (a function, in our case, in the unit ball of H∞). The Toeplitz
operator is the multiplication operator followed by the projection onto H2, that is,
Tφf = P+(φf) where P+ is the projection operator from L2 to H2. The space H(b)
defined this way becomes a Hilbert space, with norm ‖ · ‖b and inner product 〈·, ·〉b,
where the inner product is defined by 〈(1−TbTb)

1/2x, (1−TbTb)
1/2y〉b = 〈x, y〉H2 ,

for x, y ⊥ ker(1− TbTb).
We will not here go into full detail on the properties of these de Branges–

Rovnyak spaces. What is presented is an overview of the properties which we will
find useful in relation to relative angular derivatives. Most of this material, as
well as a detailed study of these spaces, can be found in the works of Sarason,
particularly in [7].
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The space H2 has kernel functions kw for w ∈ D, where kw(z) = (1−wz)−1

are such that for f in H2, we have f(w) = 〈f, kw〉. Similarly, there are functions
kb

w in H(b) which have the property that for f in H(b), f(w) = 〈f, kb
w〉b. These

are given by kb
w(z) = (1 − TbTb)kw(z) = (1−b(w)b(z))

1−wz . Note that we can calculate
the norms of these kernel functions in H(b):

‖kb
w‖2

b = kb
w(w) =

1− |b(w)|2

1− |w|2
.

The space H2(µ) can be transformed into the space H(b) by an operator Vb,
which we will make use of in this paper. In order to define Vb, we will consider
the Cauchy integral of a complex Borel measure ρ on ∂D, which is defined (for our
purposes, for z ∈ D) by

Kρf(z) = Kfρ(z) =
∫
∂D

f(eiθ)
1− e−iθz

dρ(eiθ).

This lets us define the operator Vb on the space L2(µ) by
Vbf(z) = (1− b(z))Kµf(z) for z ∈ D.

This operator has the properties that Vbkw = (1−b(w))−1kb
w, and also 〈kw, kz〉µ =

〈Vbkw, Vbkz〉b. (The inner product on H2(µ) is 〈· , ·〉µ, defined by 〈f, g〉µ =
∫

∂D
fg dµ

for f, g ∈ H2(µ).) The operator Vb, then, is an isometry of H2(µ) onto H(b), since
it maps the kernel functions kw of H2, the span of which is a dense linear manifold
in H2(µ), to (a constant times) the kernel functions of H(b), the span of which is
a dense linear manifold in H(b), and it preserves norms for linear combinations of
kernel functions. For more details about the transformation above, see [7], III-6,7.

The following theorem relates the existence of an angular derivative of b
relative to u to the existence of a particular function in the de Branges–Rovnyak
space. It can be found in [7], III-11.

Theorem 5.1. The following are equivalent:
(i) ν � µ and dν

dµ ∈ L2(µ);

(ii) the function
(

1−b
1−u

)
ku
0 is in H(b).

We can extend this theorem to get

Theorem 5.2. The two conditions in Theorem 5.1 are equivalent to the
following third condition:(

1− b

1− u

)
ku

w ∈ H(b) for all w ∈ D.

Proof. First, notice that for w = 0, this third condition is part (ii) of Theo-
rem 5.1, so it implies part (ii). Then, assuming part (i), we (imitating the proof
of the Theorem 5 in [7]) consider

Vb

(
dν

dµ
kw

)
= (1− b)Kµ

(
dν

dµ
kw

)
= (1− b)Kν(kw)

=
(

1− b

1− u

)
Vu(kw) = (1− u(w))−1

(
1− b

1− u

)
ku

w.
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Since dν
dµkw is in L2(µ), it is mapped by Vb to an element of H(b), so we have what

we need to prove Theorem 5.2, and thus the equivalence of parts (i), (ii) and (iii)
of our main theorem.

6. THE SINGULAR PART OF THE MEASURE µ

We will now examine the boundary behavior of our generalized difference quotient
1−b
1−u with respect to the singular part of the measure µ.

Theorem 6.1. The conditions ν � µ and dν
dµ ∈ L2(µ) imply that 1−br

1−ur
→ dν

dµ

in L2(µs) as r ↗ 1.

Proof. For this, we need to make use of the following theorem by A.G. Pol-
toratskii in [5]:

Theorem 6.2. For an element h ∈ H(b), we have

hr −→ V −1
b h

in L2(µs) norm, as r ↗ 1.

Assuming ν � µ and dν
dµ ∈ L2(µ), we may take h = 1−b

1−uku
0 (1− u(0))−1. We

can see from our proof of Theorem 5.2 that Vb( dν
dµ ) = h, and thus h ∈ H(b). Then,

since ku
0 = (1− u(0)u), we have

hr =
1− br

1− ur

(
1− u(0)ur

1− u(0)

)
and we use the theorem of Poltoratskii to get

hr −→ V −1
b (h) =

dν

dµ

in L2(µs) as r ↗ 1. Now we see that

1− br

1− ur
= hr

(
1− u(0)

1− u(0)ur

)
= hr

(
1− u(0)− u(0)ur

1− u(0)ur

)

= hr − hr

(
u(0)(1− ur)
1− u(0)ur

)
−→ dν

dµ
.

This last convergence is seen to be true because hr → dν
dµ , and we can now show

that hr

(
u(0)(1−ur)

1−u(0)ur

)
→ 0 in L2(µs). We do this by noting that

∣∣∣hr

(
u(0)(1−ur)

1−u(0)ur

)∣∣∣2
is both uniformly integrable (with respect to µs) and tends to zero µs-a.e.. It is

uniformly integrable since
(

u(0)(1−ur)

1−u(0)ur

)
is bounded (by 2

1−u(0)
) and |hr|2 converges

in L1(µs), and it tends to zero µs-a.e. since hr → dν
dµ and

(
u(0)(1−ur)

1−u(0)ur

)
→ 0 ν-a.e..

This proves Theorem 6.2.
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We now continue to prove parts of the main theorem.

Theorem 6.3. The conditions ν � µ and dν
dµ ∈ L2(µ) imply that∫

∂D

∣∣∣∣ 1− br

1− ur

∣∣∣∣2 dµs −→
∥∥∥∥dν

dµ

∥∥∥∥2

L2(µ)

and
∫
∂D

∣∣∣∣ 1− br

1− ur

∣∣∣∣ dν −→
∥∥∥∥dν

dµ

∥∥∥∥2

L2(µ)

as r ↗ 1.

Proof. The first part of this theorem is true since it just expresses the fact
that, for the functions 1−br

1−ur
and dν

dµ , Hilbert space convergence (in L2(µs) — by

Theorem 6.2) implies convergence of norms (where
∥∥ dν

dµ

∥∥2

L2(µs)
=
∥∥ dν

dµ

∥∥2

L2(µ)
).

The second part expresses the fact that, for the functions 1−br

1−ur
and du

dµ , the
norm convergence implies weak convergence. This can give us∫

∂D

∣∣∣∣ 1− br

1− ur

∣∣∣∣ dν

dµ
dµ −→

∫
∂D

(
dν

dµ

)2

dµ,

which is equivalent to what we want.

We can express this limit, which appeared in both parts of the theorem, in
several ways: ∥∥∥∥dν

dµ

∥∥∥∥2

L2(µ)

=
∥∥∥∥Vb

(
dν

dµ

)∥∥∥∥2

b

=
∥∥∥∥ 1− b

1− u
ku
0

∥∥∥∥2

b

|1− u(0)|−2

and ∥∥∥∥dν

dµ

∥∥∥∥2

L2(µ)

=
∫
∂D

(
dν

dµ

)2

dµ =
∫
∂D

dν

dµ
dν =

∥∥∥∥dν

dµ

∥∥∥∥
L1(ν)

.

Now we will prove the converse of the second part of Theorem 6.3 above, which
establishes the equivalence of conditions (iv) and (i) in the main theorem.

Theorem 6.4. If
∫

∂D

∣∣∣ 1−br

1−ur

∣∣∣ dν is bounded as r ↗ 1, then we have ν � µ

and dν
dµ ∈ L2(µ).

Proof. We begin the proof by rewriting the relative difference quotient in
terms of Herglotz integrals:

1− b

1− u
=
(

1 + u

1− u

)(
1 + b

1− b

)−1( 1 + b

1 + u

)
,

where we have 1+u
1−u =

∫
∂D

H(θ, z) dν(eiθ) + i Im 1+u(0)
1−u(0) , and the similar formula for

1+b
1−b .

We can write(
1 + u

1− u

)(
1 + b

1− b

)−1

=
Hν

Hµ
=

Hνs + Hνa.c.

Hµ
.

We will now show
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Lemma 6.5. The following are true:
(i) Hνs(z)

Hµ(z) →∞ as z → ξ nontangentially, for νs almost all ξ ∈ ∂D.

(ii) Hνa.c.(z)
Hµ(z) → dua.c.

dµ (ξ) as z → ξ nontangentially, for µs almost all ξ ∈ ∂D.

To do this, we will need a lemma by Poltoratskii in [5].

Lemma 6.6. For ρ a positive Borel measure, and f ∈ L1(ρ), the nontangen-
tial limit lim

z→ξ

Kfρ(z)
Kρ(z) exists for ρ almost every ξ ∈ ∂D and is equal to f(ξ) ρs-a.e.,

where ρs is the singular part of ρ with respect to Lebesgue measure.

For K(θ, z) = 1
1−e−iθz

, the Cauchy kernel, we easily see that

H(θ, z) =
eiθ + z

eiθ − z
= 2K(θ, z)− 1,

so this lemma by Poltoratskii works just as well with the Herglotz kernel in place
of the Cauchy kernel. Part (ii) of Lemma 6.5 above is an almost immediate con-
sequence of this (modified version of the) lemma by Poltoratskii, with ρ = µ, and
f = dνa.c.

dµ . We have dνa.c.

dµ ∈ L1(µ), and

Hνa.c.(z)
Hµ(z)

=
H dνa.c.

dµ µ(z)

Hµ(z)
,

so the result follows.
To prove part (i) of Lemma 6.5, we consider a function f defined on ∂D so

that f = 0 µ-a.e., f = 1 νs-a.e. (as done by Poltoratskii in a similar situation in
[5]). Then we consider the following nontangential limits:

lim
z→ξ

Hf(µ + νs)(z)
H(µ + νs)(z)

= lim
z→ξ

Hνs(z)
H(µ + νs)(z)

= 1 νs-a.e. ξ

by using the above lemma by Poltoratskii with the function f and ρ = µ + νs.
(Note that ν is already singular with respect to Lebesgue measure, and here we
are only interested in the behavior of the above limit νs-a.e..)

We continue to examine other nontangential limits:

lim
z→ξ

Hµ(z)
Hνs(z)

= lim
z→ξ

(
H(µ + νs)(z)

Hνs(z)
− 1
)

= 0 νs-a.e. ξ.

Finally, we get

lim
z→ξ

Hνs(z)
Hµ(z)

= ∞ νs-a.e. ξ,

which is what we wanted to show.
Now we can get around to proving the theorem. To do this we assume that∫

∂D

∣∣ 1−br

1−ur

∣∣dν is bounded as r ↗ 1. We also assume first that ν 6� µ, i.e., that νs

is nonzero, and we derive a contradiction. This will give us ν � µ. We will then
show that dν

dµ ∈ L2(µ).
Assume νs is nonzero. To get our contradiction, we would like to show that

the integrand,
∣∣ 1−br(ξ)
1−ur(ξ)

∣∣, approaches ∞ for all ξ on a set of positive ν-measure.
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Note that if br(ξ) stays bounded away from 1 for all ξ on a set of positive ν-measure,
then the condition above is certainly true, since ur(ξ) → 1 ν-a.e. ξ.

Otherwise, we see that the function 1+br(ξ)
1+ur(ξ) is bounded away from zero, in

fact, it approaches 1 ν-a.e.. We can then write

1− br(ξ)
1− ur(ξ)

=
(

1 + br(ξ)
1 + ur(ξ)

)(
1 + ur(ξ)
1− ur(ξ)

)(
1 + br(ξ)
1− br(ξ)

)−1

=
(

1 + br(ξ)
1 + ur(ξ)

)(
Hνs(rξ) + Hνa.c.(rξ)

Kµ(rξ)

)
.

The right side → ∞ as r ↗ 1, since the first factor → 1, and the second factor
→∞, for νs-a.e. ξ. Hence if νs is not the zero-measure, we do have

∣∣ 1−br(ξ)
1−ur(ξ)

∣∣→∞
for all ξ on a set of positive ν-measure. Now, by a standard measure-theory
argument, we must have

∫
∂D

∣∣ 1−br

1−ur

∣∣dν →∞ as r ↗ 1. This is the contradiction we

were looking for, so we must have νs equal zero, and thus we must have ν � µ.
This means that νa.c. = ν, so we can write

1− br(ξ)
1− ur(ξ)

=
(

1 + br(ξ)
1 + ur(ξ)

)(
Hν(rξ)
Hµ(rξ)

)
.

For ν-a.e. ξ, Hν(rξ) and Hµ(rξ) →∞ as r ↗ 1. So for ν-a.e. ξ,

lim
r↗1

1− br(ξ)
1− ur(ξ)

= lim
r↗1

Hν(rξ)
Hµ(rξ)

(
1 + br(ξ)
1 + ur(ξ)

)
=

dν

dµ
(ξ)

by part (ii) of Lemma 6.5, the fact that ν � µs, and the fact that b(rξ) and
u(rξ) → 1 ν-a.e..

We put everything together now to see that since
∫

∂D

∣∣ 1−br

1−ur

∣∣dν is bounded

as r ↗ 1, we have 1−b
1−u ∈ L1(ν) = H1(ν) since ν is singular. This tells us

that for f(eiθ) the boundary values of the function 1−b
1−u (defined ν-a.e.), we have∫

∂D
|f(eiθ)|dν(eiθ) < ∞, and, in fact, equal to the H1(ν) norm of 1−b

1−u , or the L1(ν)

norm of f .
From the above, we see that the boundary function, f(eiθ), is, ν-a.e., dν

dµ (eiθ),

so
∫

∂D

dν
dµ dν < ∞. Since dν = dν

dµ dµ, we get, finally,
∫

∂D

(
dν
dµ

)2

dµ < ∞, or dν
dµ ∈

L2(µ). This completes the proof of the theorem.

Remark 6.7. We might want to add the following to the list of equivalent
statements in the main theorem:∫

∂D

∣∣∣∣ 1− br

1− ur

∣∣∣∣2 dµs stays bounded as r ↗ 1.

We did, in fact, prove that if b has an angular derivative relative to u, then the
above must hold. This was part of Theorem 6.3. The converse, however, is not
true. We can find b and u such that the above holds, but such that we do not have
ν � µ. Take b(z) = z and u(z) = z2, for example. We get µ = δ1 and ν will have
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atoms at both 1 and −1. The condition,
∫

∂D

∣∣ 1−br

1−ur

∣∣2dµs remains bounded as r ↗ 1

is satisfied, since ∫
∂D

∣∣∣∣ 1− rz

1− (rz)2

∣∣∣∣2 dδ1 =
(

1− r

1− r2

)2

→ 1
4

as r ↗ 1, but we do not have ν � µ. We can, however, imitate the proofs given
in this section to prove

Theorem 6.8. The function b has an angular derivative relative to u if and
only if ν � µ and

∫
∂D

∣∣ 1−br

1−ur

∣∣2 dµs stays bounded as r ↗ 1.

7. THE ABSOLUTELY CONTINUOUS PART OF µ

Here we will discuss the equivalence of parts (i), (v) and (vi) in the main theorem.
The equivalence of part (v) with part (i) comes from a consolidation of two separate
theorems of Sarason in [7]. The reason for this is that the proof given of the
equivalence of the condition ν � µ and dν

dµ ∈ L2(µ) and the condition 1−b
1−u ∈ H2

and H2(µa.c.) depends on whether b is a nonextreme or extreme point in the unit
ball of H∞, i.e., whether or not the function log(1− |b|2) is integrable (on ∂D).

In the case b is nonextreme, i.e., log(1− |b|2) is integrable, Sarason shows in
[7], IV-8:

Theorem 7.1. [Comparison of Measures] For b nonextreme, the following
are equivalent:

(i) ν � µ and dν
dµ ∈ L2(µ);

(ii) 1−b
1−u and a

1−u are in H2.

Here the function a is defined to be the outer function whose boundary values
have modulus (1−|b|2)1/2 and which is positive at the origin. The condition, then,
that a

1−u ∈ H2 is equivalent to 1−b
1−u ∈ H2(µa.c.) (remember that µa.c. = 1−|b|2

|1−b|2 m).

Note that both of these conditions, that a
1−u ∈ H2 and 1−b

1−u ∈ H2(µa.c.) are,
in fact, equivalent to ∫

∂D

1− |b|2

|1− u|2
dm < ∞,

since this integral condition is the same as the assertion that the boundary function
of 1−b

1−u is in L2(µa.c.). Also, we have the function 1−b
1−u , as well as the function a

1−u

in the Nevanlinna class N+, since they are both the quotients of outer functions.
(The functions 1− b and 1−u are outer since they both have real parts which are
positive everywhere in the disk — see [3], page 51). Functions in N+ which are in
L2 are also in H2 (see [3], page 28).

For the case where b is an extreme point of the unit ball of H∞, i.e., log(1−
|b|2) is not integrable, Sarason has in [7], V-9:
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Theorem 7.2. [Comparison of Measures] If b is extreme, then the following
are equivalent:

(i) ν � µ and dν
dµ ∈ L2(µ);

(ii) the function 1−b
1−u is in H2, and the function 1

1−u is in L2(ρ).

Here the measure ρ is (1−|b|2)m, and, for b extreme (and only for b extreme),
we have H2(ρ) = L2(ρ). Part (ii) above, then, also is easily seen to be equivalent
to 1−b

1−u ∈ H2 and 1−b
1−u ∈ H2(µa.c.).

When we put the extreme and the nonextreme cases together, we get part
(v) of the main theorem.

We already proved earlier (Theorem 6.3) that if b has an angular derivative
relative to u then 1−b

1−u ∈ L2(µs), and, since H2(µs) = L2(µs), we have 1−b
1−u ∈

H2(µs). This, together with the previous result gives us 1−b
1−u ∈ H2(µ), which then

gives us part (vi) of the main theorem.

8. THE PRODUCT RULE

We can use the characterization of when b has an angular derivative relative to
u from Section 6 to create an analog of the regular product rule for derivatives.
In this case, we will consider what happens when we have two functions, b1 and
b2, both holomorphic self-maps of the disk, and the function b = b1b2. Under
what conditions will this b have an angular derivative relative to an inner function
u? It will be shown to be sufficient to assume that both b1 and b2 have angular
derivatives relative to u.

Theorem 8.1. If b1 and b2 are holomorphic self maps of the unit disk, both
with angular derivatives relative to u, then the function b = b1b2 has an angular
derivative relative to u.

Proof. Under the assumptions of the theorem, we have, by condition (iv) of
our main theorem (proved in the Section 6):∫

∂D

∣∣∣∣1− b1r

1− ur

∣∣∣∣ dν and
∫
∂D

∣∣∣∣1− b2r

1− ur

∣∣∣∣ du

are both bounded as r ↗ 1. We now use

1− b = 1− b1b2 = (1− b1) + (1− b2)− (1− b1)(1− b2)

to get ∫
∂D

∣∣∣∣ 1− br

1− ur

∣∣∣∣ dν =
∫
∂D

∣∣∣∣ (1− b1r)
1− ur

+
(1− b2r)
1− ur

− (1− b1r)(1− b2r)
1− ur

∣∣∣∣ dν

6
∫
∂D

∣∣∣∣ (1− b1r)
1− ur

∣∣∣∣ dν +
∫
∂D

∣∣∣∣ (1− b2r)
1− ur

∣∣∣∣ dν

+
∫
∂D

∣∣∣∣ (1− b1r)(1− b2r)
1− ur

∣∣∣∣ dν.
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We know that ν-almost everywhere the integrand in the third term on the right
above tends to zero as r ↗ 1, and, by the same argument as used in the proof of
Theorem 6.1, the integral, too, tends to zero. The first two terms stay bounded
(and even approach

∥∥ dν
dµ1

∥∥
L1(ν)

and
∥∥ dν

dµ2

∥∥
L1(ν)

as r ↗ 1), so we get from this,
and part (iv) of the main theorem, b has an angular derivative relative to u.

From the point of view of the measures, this theorem tells us that if two
measures, µ1 and µ2 both have a common singular measure ν satisfying ν � µ1

and ν � µ2, as well as dν
dµ1

∈ L2(µ1) and dν
dµ2

∈ L2(µ2), then the measure µ which
corresponds to the function which is the product of the two functions corresponding
to µ1 and µ2 satisfies the conditions ν � µ and dν

dµ ∈ L2(µ).
In fact, because of Theorem 6.1, we get the value, ν-a.e., of the angular

derivative; dν
dµ is just given by the limit as r ↗ 1 of the function 1−br

1−ur
= (1−b1r)

1−ur
+

(1−b2r)
1−ur

− (1−b1r)(1−b2r)
1−ur

. The first term on the right has limit µs
1-a.e. of dν

dµ1
, and

the second term has limit µs
2-a.e. of dν

dµ2
, and third term has limit zero ν-a.e..

Thus, since ν � µ1 and ν � µ2, we get

dν

dµ
(ξ) =

dν

dµ1
(ξ) +

dν

dµ2
(ξ)

for ν-a.e. ξ.

9. RELATIVE ANGULAR DERIVATIVES AS GENERALIZATIONS

OF ANGULAR DERIVATIVES

We can now examine the special case of a relative angular derivative which we have
when our inner function u is a multiple of the identity function, u(z) = z0z for
some z0 ∈ ∂D. Since we are interested in the behavior of a holomorphic function
b near the point z0, we will let ζ = b(z0) and analyze the angular derivative of ζb
relative to u. Our generalized difference quotient is now

(9.1)
1− ζb(z)
1− u(z)

=
1− ζb(z)
1− z0z

=
z0

ζ

(
ζ − b(z)
z0 − z

)
,

which is just (z0/ζ times) a regular difference quotient for a function b. We should
thus expect that in our theorems, if we take this choice for u, we will get results
that apply to angular derivatives (in the sense of Carathéodory — assuming, as
we shall, that |b(z0)| = 1).

For this choice of u, we can easily see that ν = δz0 , since

1 + u(z)
1− u(z)

=
z0 + z

z0 − z
= H(z0, z) =

∫
∂D

H(θ, z) dδz0 .

Thus if we are to have a function b such that ζb has an angular derivative relative
to this u, we must have δz0 � µζ , that is, µζ must have an atom at the point z0.
Note that the second condition, that dν

dµζ
∈ L2(µ) is then automatic.

This gives us, as in [7], VI-7,
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Theorem 9.1. [Special Case] For b a holomorphic self-map of the disk, with
ζ = b(z0), ζb has an angular derivative at a point z0 of ∂D if and only if the
corresponding measure µζ has an atom at z0.

If z → z0 nontangentially, then the limit of the left side in equation (9.1)
above must be dν

dµζ
(z0), and the limit of the right side must be z0b

′(z0)/ζ. Thus

dν

dµζ
(z0) = z0b

′(z0)/ζ.

Since dν
dµζ

is real and positive, we get

Theorem 9.2. [Special Case] For a holomorphic function b with an angu-
lar derivative in the sense of Carathéodory at z0, we must have z0b

′(z0)/b(z0) =
|b′(z0)|.

(This result can be found in slightly different form in [1], Section 299 and is part
of [7], VI-3, presented here as Theorem 3.2.)

As we have already mentioned, µζ must have an atom at z0, and since ν =
δz0 = dν

dµζ
µζ we must have dν

dµζ
(z0) = 1/µζ({z0}), so this gives us

Theorem 9.2. [Special Case] If b has an angular derivative at a point z0,
and ζ = b(z0), then µζ({z0}) = 1/|b′(z0)|.

This is a result proved in a different way in [7], VI-7.
Now let us examine the case where, for some point z0 ∈ ∂D, both b and u

have angular derivatives at z0. The measures µb(z0) and νu(z0) will then both have
atoms at z0, with

µb(z0)({z0}) =
b(z0)

z0b′(z0)
and νu(z0)({z0}) =

u(z0)
z0u′(z0)

.

We can now use νu(z0) = dνu(z0)

dµb(z0)
µb(z0) to get

dνu(z0)

dµb(z0)
(z0) =

νu(z0)({z0})
µb(z0)({z0})

=
z0b

′(z0)u(z0)
z0b(z0)u′(z0)

=
b′(z0)
u′(z0)

u(z0)
b(z0)

.

Another way to get the above result is by considering

dνu(z0)

dµb(z0)
(z0) = lim

r↗1

1− b(z0)br

1− u(z0)ur

(z0)

= lim
r↗1

(
u(z0)
b(z0)

)(
b(z0)− br(z0)

z0 − rz0

)(
z0 − rz0

u(z0)− ur(z0)

)
=

b′(z0)
u′(z0)

u(z0)
b(z0)

.

This gives us
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Theorem 9.4. [Special Case] At any point z0 where both b and u have angu-
lar derivatives (in the sense of Carathéodory), the value of the angular derivative
of b(z0)b relative to u(z0)u at z0 is equal to the quotient of the angular derivatives
of b and of u at z0 divided by the quotient of the values of b and u at z0.

Note that at any boundary point z0 where u has an angular derivative, it is
necessary for b to have an angular derivative in the sense of Carathéodory, too,
if we are to have any ζ ∈ ∂D such that ζb has an angular derivative relative to
u(z0)u, and if this is the case, then we necessarily have ζ = b(z0), and the theorem
above holds.

From the Hilbert Space perspective, we get

Theorem 9.5. [Special Case] A holomorphic self-map of the disk b has an
angular derivative at a point z0 if and only if there is some ζ ∈ ∂D such that the
function b(z)−ζ

z−z0
lies in H(b).

This comes as a consequence of applying part (ii) of our main theorem to
the function ζb, where ζ = b(z0) (again, with u(z) = z0z). The theorem then tells
us that b has an angular derivative at z0 if and only if 1−ζb

1−z0z ∈ H(b) (note: ku
0 = 1

for this u) which is the same as b(z)−ζ
z−z0

∈ H(b). We must choose ζ = b(z0), by the

way, since, for any other value of ζ, the function b(z)−ζ
z−z0

will not even be in H2.
This theorem is part of [7], VI-4, in which it is further proved that the above are
equivalent to: Every function in H(b) has a nontangential limit at the point z0.
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