
J. OPERATOR THEORY

46(2001), 281–288

c© Copyright by Theta, 2001

ADJOINING A UNIT TO AN OPERATOR ALGEBRA

RALF MEYER

Communicated by William B. Arveson

Abstract. We show that the matricial norms of a non-unital operator al-
gebra determine those of the algebra obtained by adjoining a unit to it. As
applications, we classify two-dimensional unital operator algebras and show
that the algebra of bounded holomorphic functions on a strongly pseudocon-
vex domain has a contractive representation that is not completely contrac-
tive.
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1. INTRODUCTION

A (concrete) operator algebra on a Hilbert space H is a closed subalgebra of the
algebra B(H) of bounded operators on H. An operator algebra A on H is called
unital iff idH ∈ A. If A is an operator algebra on H, then the algebra Mn(A)
of n × n-matrices with entries in A is an operator algebra on the Hilbert space
Cn ⊗ H. The C∗-norms on B(Cn ⊗ H) therefore yield canonical norms ‖ · ‖n on
Mn(A) for all n ∈ N. We write Ball(Mn(A)) for the open unit ball of Mn(A).

Two operator algebras A,B are called completely isometric iff there is an
algebra isomorphism ϕ : A → B such that the induced maps ϕn : Mn(A) → Mn(B)
are isometric for all n ∈ N.

A linear map ϕ : A → B is called completely contractive iff ϕn is contractive
for all n ∈ N; a complete quotient map iff ϕn is a quotient map for all n ∈ N;
and completely isometric iff ϕn is isometric for all n ∈ N. Finally, we define
‖ϕ‖n := ‖ϕn‖ for n ∈ N and ‖ϕ‖∞ := sup

n∈N
‖ϕ‖n. See [6] for this terminology.
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Let A ⊂ B(H) be a closed subalgebra with idH /∈ A. Consider the corre-
sponding unital operator algebra

A+ := {x + λ · idH | x ∈ A, λ ∈ C} ⊂ B(H).

We show that if ϕ : A → B is a complete isometry, then the unital extension
ϕ+ : A+ → B+ is also a complete isometry. That is, the norms on Mn(A+) do
not depend on the choice of a completely isometric representation of A. Moreover,
if ϕ : A → B is completely contractive or a complete quotient map, then so is
ϕ+ : A+ → B+.

The uniqueness of the matricial norms on A+ has already been noticed by
Poon and Ruan ([8]) in the special case of operator algebras with a contractive ap-
proximate identity. However, this special case is quite restrictive and does not cover
the applications in Section 4 below. There we deal mainly with finite dimensional
operator algebras. It is easy to verify that a finite dimensional operator algebra
with a contractive approximate identity is automatically unital with ‖1‖ 6 1.

The reason for the uniqueness of the matricial norms on A+ is that the
domains D(n) := Ball(Mn) have a large group of automorphisms. Certain auto-
morphisms of D(n) operate also on Ball(B) for any unital operator algebra B. We
show that we get all of Ball(A+) by applying these automorphisms to elements of
Ball(A). To make the computations more transparent, we define the positive cone
Cone(B) of a unital operator algebra B ⊂ B(H) to be the set of all x ∈ B for which
Re x := (x + x∗)/2 is positive and invertible. We show that functional calculus
with the rational function C(z) := (1− z)/(1 + z) gives rise to a bijection between
Ball(B) and Cone(B).

The last section contains several applications. LetA be a commutative, unital
operator algebra. Then a d− 1-contractive unital representation A → Md is nec-
essarily completely contractive. In particular, a contractive unital representation
A → M2 is completely contractive. This generalizes a result of Agler ([1]).

If A is a 2-dimensional unital operator algebra, then A has a completely
isometric representation A → M2.

Another simple case is B ∼= I+ with I · I = 0. Then B is called a unital
zero algebra. These algebras occur as quotients of less trivial operator algebras
as follows. Let A be a commutative, unital operator algebra, I ⊂ A a maximal
ideal, and J ⊂ A an ideal with I · I ⊂ J ⊂ I. Then A/J is algebraically
isomorphic to (I/J )+. It is shown in [2] that quotients of unital operator algebras
with the obvious matricial norms are again completely isometric to unital operator
algebras. Thus A/J ∼= (I/J )+ completely isometrically, that is, A/J is a unital
zero algebra. We compute I/J in some cases where A = H∞(M) is the algebra of
bounded holomorphic functions on a domain M ⊂ Ck. If I/J has a contractive,
not completely contractive representation, then this carries over to H∞(M). Using
this we reprove and extend a result of Paulsen ([7]): The operator algebra H∞(M)
has a contractive, not completely contractive representation if M is an absolutely
convex domain with dim M > 5. Furthermore, such a representation exists if M
is a strongly pseudoconvex domain with dimM > 2.
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2. THE POSITIVE CONE OF A UNITAL OPERATOR ALGEBRA

Evidently, the rational function C(z) := (1− z)/(1+ z) maps the domain C \ {−1}
into itself and satisfies C ◦ C = id on C \ {−1}. Let

D := Ball(B(H)) := {X ∈ B(H) | ‖X‖ < 1};
D+ := Cone(B(H)) := {X ∈ B(H) | Re X positive and invertible}.

Lemma 2.1. If X ∈ D then the spectrum of X is contained in the open disk
{z ∈ C | |z| < 1}. If X ∈ D+, then the spectrum of X is contained in the right half
plane {z ∈ C | Re z > 0}. Consequently, C(X) is well-defined for X ∈ D ∪D+.

X 7→ C(X) is a bijection D → D+ with inverse C.

Proof. It is well-known that the spectrum of X ∈ D is contained in the open
unit ball. If Re z 6 0, X ∈ D+, then X − z ∈ D+ as well. Hence if we show that
all X ∈ D+ are invertible, it follows that X − z is invertible for all X ∈ D+ and
Re z 6 0. That is, the spectrum of X is contained in the right half plane. To
invert X ∈ D+, first conjugate X by the invertible operator (Re X)−1/2 to reduce
to the case Re X = 1. Then X = 1 + iS with S self-adjoint. Such an operator is
evidently invertible.

It remains to prove C(D) ⊂ D+ and C(D+) ⊂ D. The computation

Re C(X) =
1
2
(1 + X)−1((1−X)(1 + X∗) + (1 + X)(1−X∗))(1 + X∗)−1

= (1 + X)−1(1−XX∗)(1 + X∗)−1

shows that Re C(X) is positive and invertible for X ∈ D. That is, C(D) ⊂ D+.
Similarly,

1− C(X)C(X)∗ = 4(1 + X)−1 Re(X)(1 + X∗)−1

is positive and invertible for X ∈ D+, so that C(D+) ⊂ D.

Theorem 2.2. Let A be a unital operator algebra, let n ∈ N, and let X ∈
Mn(A). The following assertions are equivalent:

(i) X = C(Y ) for some Y ∈ Ball(Mn(A));
(ii) 1 + X is invertible in Mn(A) and ‖C(X)‖ < 1;
(iii) ρn(X) ∈ D+ for all n-contractive unital representations ρ : A → B(H);
(iv) ρn(X) ∈ D+ for at least one n-isometric unital representation ρ : A →

B(H).

Definition 2.3. The set of elements satisfying one of these equivalent con-
ditions is called the (positive) cone Cone(Mn(A)) of Mn(A).

Proof. Replacing A by Mn(A), if necessary, reduce to the case n = 1, that
is, X ∈ A. Since A is complete, all elements of 1 + Ball(A) are invertible in A, so
that C(Y ) is defined and lies in A for all Y ∈ Ball(A). Thus the equivalence of (i)
and (ii) follows easily from C ◦ C = id. If ρ is a unital contractive representation
and X = C(Y ) with Y ∈ Ball(A), then ρ(X) = C(ρ(Y )) ∈ D+ by Lemma 2.1.
Hence (i) implies (iii). (iii) trivially implies (iv). It remains to show that (iv)
implies (ii).

Let ρ : A → B(H) be any isometric unital representation. Suppose that
ρ(X) ∈ D+. We will show below that 1 + X is invertible in A. Taking this for
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granted, we get that C(X) is a well-defined element of A. Furthermore, ρ(C(X)) =
C(ρ(X)) ∈ D by Lemma 2.1. Since ρ is isometric, ‖C(X)‖ < 1 as desired.

It remains to show that if ρ(X) ∈ D+, then 1 + X is invertible in A. By
Lemma 2.1, the spectrum of ρ(X) is contained in the simply connected domain
{z ∈ C | Re z > 0}. Thus the function z 7→ 1/(1 + z) can be approximated by
polynomials uniformly on the spectrum of ρ(X). The inverse of 1+ρ(X) therefore
lies in ρ(A) because ρ(A) is closed. Hence 1 + X is invertible in A.

Consequently, the matricial norms on a unital operator algebra A ⊂ B(H)
can equally well be described by the collection of sets Cone(Mn(A)), n ∈ N.

Theorem 2.2 implies that a unital homomorphism ϕ : A → B is n-contractive
iff it maps Cone(MnA) into Cone(MnB).

3. ADJOINING A UNIT TO AN OPERATOR ALGEBRA

If A is a not necessarily unital algebra, let A+ be the algebra obtained by adjoining
a unit to A. If ρ : A → B is a homomorphism of algebras, let ρ+ : A+ → B+ be
the unital homomorphism extending ρ.

Let A be a not necessarily unital operator algebra. We show that the norms
on Mn(A) can be extended to Mn(A+) in a unique way so as to obtain a unital op-
erator algebra. The proof uses certain natural automorphisms of Cone(Mn(A+)).

The domain D+(n) := Cone(Mn) is one of the classical symmetric domains.
If S ∈ Mn is invertible and T ∈ Mn satisfies Re T = 0, then

(3.1) ΦS,T : X 7→ SXS∗ + T

defines a bijection from D+(n) onto itself. The inverse is ΦS−1,T ′ with T ′ :=
−S−1T (S−1)∗. These maps ΦS,T form a subgroup G of the automorphism group
of D+(n). It operates transitively on D+(n) because any X ∈ D+(n) is of the
form ΦS,T (1) with S := (Re X)1/2, T := Im X.

If B is a unital operator algebra, let ΦS,T operate on Cone(Mn(B)) by the
same formula (3.1), considering Mn ⊂ Mn(B) via the inclusion X 7→ X ⊗ 1B.
Evidently, ΦS,T maps Cone(Mn(B)) into itself. Consequently, the map C ◦ΦS,T ◦C
is a bijection Ball(Mn(B)) → Ball(Mn(B)).

Theorem 3.1. Let B be a unital operator algebra and let A ⊂ B be a 1-
codimensional ideal. Thus algebraically B ∼= A+.

Then Y ∈ Cone(Mn(B)) iff Y = ΦS,T ◦ C(X) for some X ∈ Ball(Mn(A))
and some ΦS,T ∈ G. Hence

(3.2) Ball(Mn(B)) = C(Cone(MnB)) =
⋃

Φ∈G

C ◦ Φ ◦ C(Ball(MnA)).

As a result, the norm on Mn(A) uniquely determines the norm on Mn(B).

Proof. Since C maps Ball(Mn(B)) onto Cone(Mn(B)) and ΦS,T maps
Cone(Mn(B)) into itself it is clear that elements of the form ΦS,T ◦ C(X) are
in Cone(Mn(B)). Conversely, let Y ∈ Cone(Mn(B)).

Let π : B → C be the character with ker π = A, π(1) = 1. It is well-known
that characters are completely contractive. Thus πn(Y ) ∈ Cone(Mn) = D+(n).
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Since G operates transitively on D+(n) we have ΦS,T (1) = πn(Y ) for some
ΦS,T ∈ G. Put X := C ◦Φ−1

S,T (Y ), then ΦS,T ◦ C(X) = Y as desired. Theorem 2.2
yields X ∈ Ball(Mn(B)). In addition, X ∈ Mn(A) because

πn(X) = C ◦ Φ−1
S,T ◦ πn(Y ) = C ◦ Φ−1

S,T ◦ ΦS,T (1) = C(1) = 0.

This yields the desired description of Cone(Mn(B)). Equation (3.2) and the last
assertion follow immediately.

Corollary 3.2. There are unique matricial norms on A+ for which A+ is
a unital operator algebra with ‖1‖ 6 1 and the injection A → A+ is completely
isometric.

Proof. Uniqueness is dealt with by Theorem 3.1. Existence is easy. Choose a
completely isometric representation ρ : A → B(H). If it happens that idH ∈ ρ(A),
replace ρ by the degenerate representation ρ⊕ 0 on H⊕C. Thus we may assume
that idH /∈ ρ(A). Then ρ+(z + x) := z · idH + ρ(x) for z ∈ C, x ∈ A defines a
representation of A+ having the desired properties.

If A itself is a unital operator algebra, then A+ is completely isometric to
the orthogonal direct sum A ⊕ C because the latter is a unital operator algebra
containing A as a 1-codimensional ideal.

Corollary 3.3. Let ϕ : A → B be a homomorphism between operator
algebras and let n ∈ N. ϕ is n-contractive if and only if ϕ+ is n-contractive. ϕ is
n-isometric if and only if ϕ+ is n-isometric. ϕ is an n-quotient map if and only
if ϕ+ is.

Proof. The naturality of the automorphisms ΦS,T implies ϕ+
n ◦ ΦS,T =

ΦS,T ◦ ϕ+
n .

If ϕ is n-contractive, then ϕn maps Ball(Mn(A)) into Ball(Mn(B)). Thus
(ϕ+)n maps Ball(Mn(A+)) into Ball(Mn(B+)) by Theorem 3.1. This means
that ϕ+ is n-contractive. Conversely, if ϕ+ is n-contractive, so is ϕ as the re-
striction of ϕ+ to A. The remaining assertions are proved similarly.

4. APPLICATIONS

Let A be a unital operator algebra and let I ⊂ A be a 1-codimensional ideal.
Then A ∼= I+. Thus the study of A can be reduced to the study of I. In this
section, we give some applications of this idea.

Theorem 4.1. Let A be a commutative unital operator algebra, d ∈ N. Then
any d− 1-contractive unital homomorphism ρ : A → Md is completely contractive.

Proof. Let B := ρ(A), let J be a maximal ideal in B, and let I := ρ−1(J ).
Then A = I+, B = J +, and ρ = (ρ|I)+. By Corollary 3.3, it suffices to show that
ρ|I is completely contractive.

There is a vector x ∈ Cd \ {0} that is annihilated by all elements of J ,
because J is a non-unital, commutative subalgebra of Md. The same reasoning
yields a vector y ∈ Cd \ {0} annihilated by all adjoints T ∗ of elements T ∈ J .
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Thus elements of J can be viewed as operators from Cd 	 x to Cd 	 y,
with 	 denoting the orthogonal complement. This yields a completely isometric
linear representation ϕ : J → Md−1. Since ϕ◦ρ|I is a d−1-contractive linear map
to Md−1, Theorem 5.1 of [6] yields that ϕ ◦ ρ|I is completely contractive. Thus
ρ|I is completely contractive.

In particular, if A is a commutative unital operator algebra, then any con-
tractive unital representation A → M2 is completely contractive. For certain
representations of function algebras, this was observed by Agler in his proof of
Lempert’s theorem ([1]) and later by Salinas ([9]) and Chu ([3]).

4.1. Two-dimensional unital operator algebras. For c ∈ [0, 1], let

Tc :=
(

0
√

1− c2

0 c

)
.

Clearly, ‖Tc‖ = 1 and T 2
c = cTc. Thus the linear span Qc of 1 and Tc is a unital

subalgebra of M2.
Theorem 4.2. Let A be a two-dimensional unital operator algebra. Then A

is completely isometric to Qc for a unique c ∈ [0, 1] and thus has a completely
isometric unital representation by 2× 2-matrices.

Proof. Let A ⊂ B(H) be a 2-dimensional unital operator algebra. A is
necessarily commutative and thus contains a maximal ideal I. Choose T ∈ A
with ‖T‖ = 1. We have T 2 = c · T for some c ∈ C. Rescaling T by some constant
of modulus 1, we can achieve c > 0. Actually, c ∈ [0, 1] because c = ‖cT‖ =
‖T 2‖ 6 ‖T‖2 = 1. Let x ∈ Mn, then ‖x⊗T‖ = ‖x‖ · ‖T‖ = ‖x‖ · ‖Tc‖ = ‖x⊗Tc‖.
Thus the homomorphism ϕ : I → M2 defined by T 7→ Tc is completely isometric.
By Corollary 3.3, it follows that ϕ+ : A → Qc ⊂ M2 is completely isometric. It
is elementary to verify that c is unique, that is, the algebras Qc are not isometric
for different values of c.

If ρ : Qc → Qd is a homomorphism, then ‖ρ‖∞ = ‖ρ‖. This peculiarity was
first observed by Holbrook ([4]) and can be established by direct computations
in M2.

4.2. Unital zero algebras. A unital operator algebra A is called a unital zero
algebra iff it is obtained by adjoining a unit to an algebra with zero multiplication.
A unital operator algebra A is a unital zero algebra iff there is a 1-codimensional
ideal I ⊂ A with I · I = 0. The ideal I is the only maximal ideal of A and thus
uniquely determined. Any unital homomorphism I+ → J + between unital zero
algebras is of the form ρ+ for some linear map ρ : I → J .

If V ⊂ B(H) is an operator space, then V endowed with the zero multiplica-

tion is an operator algebra. The map x 7→
(

0 x
0 0

)
defines a completely isometric

multiplicative representation of V on B(H ⊕H). More generally, any linear rep-
resentation ρ : V → B(H′) yields a multiplicative representation V → B(H′ ⊕H′)
and thus a unital, multiplicative representation ρ̂ : V+ → B(H′ ⊕ H′). If V has
badly behaved linear representations, say, contractive representations that are not
completely contractive, then this carries over to V+ by Corollary 3.3. We can in-
deed prove the following strengthening of Corollary 3.3 that is only true for unital
zero algebras.
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Theorem 4.3. Let V and W be operator spaces, let ρ : V → W be a linear
map, and let ρ+ : V+ → W+ be its unital extension. Then, for all n ∈ N ∪ {∞},

(4.1) ‖ρ+‖n = max{1, ‖ρ‖n}.

Proof. The inequality “>” is trivial. To prove “6”, assume C := ‖ρ‖n < ∞.
If C 6 1, the assertion follows from Theorem 3.1. Thus assume C > 1 and let
µ : V → V be the map T 7→ CT . Then ρ = ρ ◦ µ−1 ◦ µ, and ‖ρ ◦ µ−1‖n = 1.
Hence ‖ρ+ ◦ (µ−1)+‖n 6 1, so that it remains to prove ‖µ+‖∞ 6 C.

Therefore, consider V ⊂ B(H) and represent V+ ⊂ B(H ⊕ H) as above.
Define

S :=
(

C1/2 0
0 C−1/2

)
∈ B(H⊕H).

Then µ+(T ) = STS−1 for all T ∈ V+ because both sides of this equation are
unital maps that coincide on V. Thus ‖µ+‖∞ 6 ‖S‖ · ‖S−1‖ = C as desired.

Let M ⊂ Ck be a domain and let x ∈ M . Let A := H∞(M),

I := {f ∈ A | f(x) = 0}, J := {f ∈ A | f(x) = 0, Df(x) = 0}.

We have written Df for the derivative of f . We call I/J ∼= T∗
xM the cotangent

space of M at x. The axiomatic description of abstract operator spaces and
abstract unital operator algebras in [2] yields that I/J is an operator space and
that A/J is a unital operator algebra. Theorem 3.1 implies A/J ∼= (I/J )+
completely isometrically, so that A/J is a unital zero algebra.

An element of Mn(I/J ) may be viewed as a linear function TxM → Mn. It
satisfies ‖f‖ 6 1 iff f is the derivative of a holomorphic function f : M → Ball(Mn)
with f(x) = 0.

If M is a balanced domain (that is, λy ∈ M whenever y ∈ M , λ ∈ C,
|λ| 6 1) and x = 0, then I/J can be computed precisely. If M is strongly
pseudoconvex instead, then I/J can be computed approximately if x approaches
the boundary. In both cases, if the dimension of M is sufficiently big, then I/J
has a contractive, but not completely contractive representation. Thus H∞(M)
has a contractive, but not completely contractive representation in the following
cases: If M is balanced and dim M > 5 (this is due to Paulsen ([7])); if M is a
strongly pseudoconvex domain and dim M > 2.

Let M be a balanced domain and let x := 0. Let f : TxM → Mn be
a linear map. We view f as a function from M ⊂ TxM to Mn. Evidently, if
f(M) ⊂ Ball(Mn) then ‖f‖ 6 1. The converse is also true: If f̃ : M → Ball(Mn)
is a holomorphic function with f̃(0) = 0, Df̃(0) = f , then f(M) ⊂ Ball(Mn). This
follows from the Schwarz inequality applied to the restrictions of f̃ to disks D · y
with y ∈ ∂M . Hence we get a completely isometric embedding T∗

xM → Cb(M).
Thus T∗

xM is completely isometric to MIN(V ), where V is the normed space whose
unit ball is the polar M̌ ⊂ Cn of M . The minimal and maximal operator space
structures MIN(V ) and MAX(V ) are defined in [7].

Let i : MIN(V ) → MAX(V ) be the identity map and let α := ‖i‖∞. Consider
the homomorphism

ϕ : A → A/I ∼= MIN(V )+ → MAX(V )+.
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By Theorem 4.3, ϕ is contractive and ‖ϕ‖∞ = α > 1. Hence if M has the desirable
property that all contractive representations of A are completely contractive, then
necessarily α = 1. As Paulsen shows in [7], this fails for most normed spaces V .
It fails if dim V > 5 or if V is a Hilbert space with dim V > 2.

This negative result of Paulsen can be extended to strongly pseudoconvex
domains M (with C2 boundary) with d = dim M > 2. Close to the boundary,
such a domain looks more and more like the unit ball Dd of the Hilbert space `2d of
dimension d. This is made more precise by Ma ([5]). Theorem 3.3 and Lemma 3.4
of [5] imply that there are holomorphic maps f : Dd → M and g : M → Dd such
that f(0) = x, g(x) = 0, and Dg(x) ◦Df(0) = (1− ε)id with ε → 0 for x → ∂M .
It follows that g ◦ f converges towards the identity map on Dd for x → ∂M .

Define the distance between two operator spaces by
dist∞(V,W) := log(inf{‖ρ‖∞ · ‖ρ−1‖∞ | ρ : V → W invertible}).

It follows that dist∞(T∗
xM,T∗

0Dd) → 0 for x → ∂M . We have seen above that
T∗

0Dd
∼= MIN(`2d). Since MIN(`2d) 6= MAX(`2d) for d > 2, the operator space

T∗
xM has a contractive representation that is not completely contractive if x is

sufficiently close to ∂M . Thus H∞(M) has a contractive representation that is
not completely contractive.
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