# ADJOINING A UNIT TO AN OPERATOR ALGEBRA 

RALF MEYER

Communicated by William B. Arveson


#### Abstract

We show that the matricial norms of a non-unital operator algebra determine those of the algebra obtained by adjoining a unit to it. As applications, we classify two-dimensional unital operator algebras and show that the algebra of bounded holomorphic functions on a strongly pseudoconvex domain has a contractive representation that is not completely contractive.


KEYWORDS: Non-selfadjoint operator algebra, matricial norms.
MSC (2000): Primary 47L55; Secondary 47L30, 47L07.

## 1. INTRODUCTION

A (concrete) operator algebra on a Hilbert space $\mathcal{H}$ is a closed subalgebra of the algebra $\mathbb{B}(\mathcal{H})$ of bounded operators on $\mathcal{H}$. An operator algebra $\mathcal{A}$ on $\mathcal{H}$ is called unital $\operatorname{iff} \operatorname{id}_{\mathcal{H}} \in \mathcal{A}$. If $\mathcal{A}$ is an operator algebra on $\mathcal{H}$, then the algebra $\mathbb{M}_{n}(\mathcal{A})$ of $n \times n$-matrices with entries in $\mathcal{A}$ is an operator algebra on the Hilbert space $\mathbb{C}^{n} \otimes \mathcal{H}$. The $C^{*}$-norms on $\mathbb{B}\left(\mathbb{C}^{n} \otimes \mathcal{H}\right)$ therefore yield canonical norms $\|\cdot\|_{n}$ on $\mathbb{M}_{n}(\mathcal{A})$ for all $n \in \mathbb{N}$. We write $\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{A})\right)$ for the open unit ball of $\mathbb{M}_{n}(\mathcal{A})$.

Two operator algebras $\mathcal{A}, \mathcal{B}$ are called completely isometric iff there is an algebra isomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that the induced maps $\varphi_{n}: \mathbb{M}_{n}(\mathcal{A}) \rightarrow \mathbb{M}_{n}(\mathcal{B})$ are isometric for all $n \in \mathbb{N}$.

A linear map $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is called completely contractive $\operatorname{iff} \varphi_{n}$ is contractive for all $n \in \mathbb{N}$; a complete quotient map iff $\varphi_{n}$ is a quotient map for all $n \in \mathbb{N}$; and completely isometric iff $\varphi_{n}$ is isometric for all $n \in \mathbb{N}$. Finally, we define $\|\varphi\|_{n}:=\left\|\varphi_{n}\right\|$ for $n \in \mathbb{N}$ and $\|\varphi\|_{\infty}:=\sup _{n \in \mathbb{N}}\|\varphi\|_{n}$. See [6] for this terminology.

Let $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ be a closed subalgebra with $\operatorname{id}_{\mathcal{H}} \notin \mathcal{A}$. Consider the corresponding unital operator algebra

$$
\mathcal{A}^{+}:=\left\{x+\lambda \cdot \operatorname{id}_{\mathcal{H}} \mid x \in \mathcal{A}, \lambda \in \mathbb{C}\right\} \subset \mathbb{B}(\mathcal{H})
$$

We show that if $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a complete isometry, then the unital extension $\varphi^{+}: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$is also a complete isometry. That is, the norms on $\mathbb{M}_{n}\left(\mathcal{A}^{+}\right)$do not depend on the choice of a completely isometric representation of $\mathcal{A}$. Moreover, if $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is completely contractive or a complete quotient map, then so is $\varphi^{+}: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$.

The uniqueness of the matricial norms on $\mathcal{A}^{+}$has already been noticed by Poon and Ruan ([8]) in the special case of operator algebras with a contractive approximate identity. However, this special case is quite restrictive and does not cover the applications in Section 4 below. There we deal mainly with finite dimensional operator algebras. It is easy to verify that a finite dimensional operator algebra with a contractive approximate identity is automatically unital with $\|1\| \leqslant 1$.

The reason for the uniqueness of the matricial norms on $\mathcal{A}^{+}$is that the domains $\mathfrak{D}(n):=\operatorname{Ball}\left(\mathbb{M}_{n}\right)$ have a large group of automorphisms. Certain automorphisms of $\mathfrak{D}(n)$ operate also on $\operatorname{Ball}(\mathcal{B})$ for any unital operator algebra $\mathcal{B}$. We show that we get all of $\operatorname{Ball}\left(\mathcal{A}^{+}\right)$by applying these automorphisms to elements of $\operatorname{Ball}(\mathcal{A})$. To make the computations more transparent, we define the positive cone Cone $(\mathcal{B})$ of a unital operator algebra $\mathcal{B} \subset \mathbb{B}(\mathcal{H})$ to be the set of all $x \in \mathcal{B}$ for which $\operatorname{Re} x:=\left(x+x^{*}\right) / 2$ is positive and invertible. We show that functional calculus with the rational function $\mathcal{C}(z):=(1-z) /(1+z)$ gives rise to a bijection between $\operatorname{Ball}(\mathcal{B})$ and Cone $(\mathcal{B})$.

The last section contains several applications. Let $\mathcal{A}$ be a commutative, unital operator algebra. Then a $d$ - 1 -contractive unital representation $\mathcal{A} \rightarrow \mathbb{M}_{d}$ is necessarily completely contractive. In particular, a contractive unital representation $\mathcal{A} \rightarrow \mathbb{M}_{2}$ is completely contractive. This generalizes a result of Agler ([1]).

If $\mathcal{A}$ is a 2 -dimensional unital operator algebra, then $\mathcal{A}$ has a completely isometric representation $\mathcal{A} \rightarrow \mathbb{M}_{2}$.

Another simple case is $\mathcal{B} \cong \mathcal{I}^{+}$with $\mathcal{I} \cdot \mathcal{I}=0$. Then $\mathcal{B}$ is called a unital zero algebra. These algebras occur as quotients of less trivial operator algebras as follows. Let $\mathcal{A}$ be a commutative, unital operator algebra, $\mathcal{I} \subset \mathcal{A}$ a maximal ideal, and $\mathcal{J} \subset \mathcal{A}$ an ideal with $\mathcal{I} \cdot \mathcal{I} \subset \mathcal{J} \subset \mathcal{I}$. Then $\mathcal{A} / \mathcal{J}$ is algebraically isomorphic to $(\mathcal{I} / \mathcal{J})^{+}$. It is shown in [2] that quotients of unital operator algebras with the obvious matricial norms are again completely isometric to unital operator algebras. Thus $\mathcal{A} / \mathcal{J} \cong(\mathcal{I} / \mathcal{J})^{+}$completely isometrically, that is, $\mathcal{A} / \mathcal{J}$ is a unital zero algebra. We compute $\mathcal{I} / \mathcal{J}$ in some cases where $\mathcal{A}=H^{\infty}(M)$ is the algebra of bounded holomorphic functions on a domain $M \subset \mathbb{C}^{k}$. If $\mathcal{I} / \mathcal{J}$ has a contractive, not completely contractive representation, then this carries over to $H^{\infty}(M)$. Using this we reprove and extend a result of Paulsen ([7]): The operator algebra $H^{\infty}(M)$ has a contractive, not completely contractive representation if $M$ is an absolutely convex domain with $\operatorname{dim} M \geqslant 5$. Furthermore, such a representation exists if $M$ is a strongly pseudoconvex domain with $\operatorname{dim} M \geqslant 2$.

## 2. THE POSITIVE CONE OF A UNITAL OPERATOR ALGEBRA

Evidently, the rational function $\mathcal{C}(z):=(1-z) /(1+z)$ maps the domain $\mathbb{C} \backslash\{-1\}$ into itself and satisfies $\mathcal{C} \circ \mathcal{C}=\mathrm{id}$ on $\mathbb{C} \backslash\{-1\}$. Let

$$
\begin{aligned}
\mathfrak{D} & :=\operatorname{Ball}(\mathbb{B}(\mathcal{H})):=\{X \in \mathbb{B}(\mathcal{H}) \mid\|X\|<1\} \\
\mathfrak{D}_{+} & :=\operatorname{Cone}(\mathbb{B}(\mathcal{H})):=\{X \in \mathbb{B}(\mathcal{H}) \mid \operatorname{Re} X \text { positive and invertible }\}
\end{aligned}
$$

Lemma 2.1. If $X \in \mathfrak{D}$ then the spectrum of $X$ is contained in the open disk $\left\{z \in \mathbb{C}||z|<1\}\right.$. If $X \in \mathfrak{D}_{+}$, then the spectrum of $X$ is contained in the right half plane $\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$. Consequently, $\mathcal{C}(X)$ is well-defined for $X \in \mathfrak{D} \cup \mathfrak{D}_{+}$.
$X \mapsto \mathcal{C}(X)$ is a bijection $\mathfrak{D} \rightarrow \mathfrak{D}_{+}$with inverse $\mathcal{C}$.
Proof. It is well-known that the spectrum of $X \in \mathfrak{D}$ is contained in the open unit ball. If $\operatorname{Re} z \leqslant 0, X \in \mathfrak{D}_{+}$, then $X-z \in \mathfrak{D}_{+}$as well. Hence if we show that all $X \in \mathfrak{D}_{+}$are invertible, it follows that $X-z$ is invertible for all $X \in \mathfrak{D}_{+}$and $\operatorname{Re} z \leqslant 0$. That is, the spectrum of $X$ is contained in the right half plane. To invert $X \in \mathfrak{D}_{+}$, first conjugate $X$ by the invertible operator $(\operatorname{Re} X)^{-1 / 2}$ to reduce to the case $\operatorname{Re} X=1$. Then $X=1+\mathrm{i} S$ with $S$ self-adjoint. Such an operator is evidently invertible.

It remains to prove $\mathcal{C}(\mathfrak{D}) \subset \mathfrak{D}_{+}$and $\mathcal{C}\left(\mathfrak{D}_{+}\right) \subset \mathfrak{D}$. The computation

$$
\begin{aligned}
\operatorname{Re} \mathcal{C}(X) & =\frac{1}{2}(1+X)^{-1}\left((1-X)\left(1+X^{*}\right)+(1+X)\left(1-X^{*}\right)\right)\left(1+X^{*}\right)^{-1} \\
& =(1+X)^{-1}\left(1-X X^{*}\right)\left(1+X^{*}\right)^{-1}
\end{aligned}
$$

shows that $\operatorname{Re} \mathcal{C}(X)$ is positive and invertible for $X \in \mathfrak{D}$. That is, $\mathcal{C}(\mathfrak{D}) \subset \mathfrak{D}_{+}$. Similarly,

$$
1-\mathcal{C}(X) \mathcal{C}(X)^{*}=4(1+X)^{-1} \operatorname{Re}(X)\left(1+X^{*}\right)^{-1}
$$

is positive and invertible for $X \in \mathfrak{D}_{+}$, so that $\mathcal{C}\left(\mathfrak{D}_{+}\right) \subset \mathfrak{D}$.
Theorem 2.2. Let $\mathcal{A}$ be a unital operator algebra, let $n \in \mathbb{N}$, and let $X \in$ $\mathbb{M}_{n}(\mathcal{A})$. The following assertions are equivalent:
(i) $X=\mathcal{C}(Y)$ for some $Y \in \operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{A})\right)$;
(ii) $1+X$ is invertible in $\mathbb{M}_{n}(\mathcal{A})$ and $\|\mathcal{C}(X)\|<1$;
(iii) $\rho_{n}(X) \in \mathfrak{D}_{+}$for all $n$-contractive unital representations $\rho: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$;
(iv) $\rho_{n}(X) \in \mathfrak{D}_{+}$for at least one $n$-isometric unital representation $\rho: \mathcal{A} \rightarrow$ $\mathbb{B}(\mathcal{H})$.

Definition 2.3. The set of elements satisfying one of these equivalent conditions is called the (positive) cone Cone $\left(\mathbb{M}_{n}(\mathcal{A})\right)$ of $\mathbb{M}_{n}(\mathcal{A})$.

Proof. Replacing $\mathcal{A}$ by $\mathbb{M}_{n}(\mathcal{A})$, if necessary, reduce to the case $n=1$, that is, $X \in \mathcal{A}$. Since $\mathcal{A}$ is complete, all elements of $1+\operatorname{Ball}(\mathcal{A})$ are invertible in $\mathcal{A}$, so that $\mathcal{C}(Y)$ is defined and lies in $\mathcal{A}$ for all $Y \in \operatorname{Ball}(\mathcal{A})$. Thus the equivalence of (i) and (ii) follows easily from $\mathcal{C} \circ \mathcal{C}=$ id. If $\rho$ is a unital contractive representation and $X=\mathcal{C}(Y)$ with $Y \in \operatorname{Ball}(\mathcal{A})$, then $\rho(X)=\mathcal{C}(\rho(Y)) \in \mathfrak{D}_{+}$by Lemma 2.1. Hence (i) implies (iii). (iii) trivially implies (iv). It remains to show that (iv) implies (ii).

Let $\rho: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$ be any isometric unital representation. Suppose that $\rho(X) \in \mathfrak{D}_{+}$. We will show below that $1+X$ is invertible in $\mathcal{A}$. Taking this for
granted, we get that $\mathcal{C}(X)$ is a well-defined element of $\mathcal{A}$. Furthermore, $\rho(\mathcal{C}(X))=$ $\mathcal{C}(\rho(X)) \in \mathfrak{D}$ by Lemma 2.1. Since $\rho$ is isometric, $\|\mathcal{C}(X)\|<1$ as desired.

It remains to show that if $\rho(X) \in \mathfrak{D}_{+}$, then $1+X$ is invertible in $\mathcal{A}$. By Lemma 2.1, the spectrum of $\rho(X)$ is contained in the simply connected domain $\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$. Thus the function $z \mapsto 1 /(1+z)$ can be approximated by polynomials uniformly on the spectrum of $\rho(X)$. The inverse of $1+\rho(X)$ therefore lies in $\rho(\mathcal{A})$ because $\rho(\mathcal{A})$ is closed. Hence $1+X$ is invertible in $\mathcal{A}$.

Consequently, the matricial norms on a unital operator algebra $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ can equally well be described by the collection of sets Cone $\left(\mathbb{M}_{n}(\mathcal{A})\right), n \in \mathbb{N}$.

Theorem 2.2 implies that a unital homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is $n$-contractive iff it maps Cone $\left(\mathbb{M}_{n} \mathcal{A}\right)$ into $\operatorname{Cone}\left(\mathbb{M}_{n} \mathcal{B}\right)$.

## 3. ADJOINING A UNIT TO AN OPERATOR ALGEBRA

If $A$ is a not necessarily unital algebra, let $A^{+}$be the algebra obtained by adjoining a unit to $A$. If $\rho: A \rightarrow B$ is a homomorphism of algebras, let $\rho^{+}: A^{+} \rightarrow B^{+}$be the unital homomorphism extending $\rho$.

Let $\mathcal{A}$ be a not necessarily unital operator algebra. We show that the norms on $\mathbb{M}_{n}(\mathcal{A})$ can be extended to $\mathbb{M}_{n}\left(\mathcal{A}^{+}\right)$in a unique way so as to obtain a unital operator algebra. The proof uses certain natural automorphisms of Cone $\left(\mathbb{M}_{n}\left(\mathcal{A}^{+}\right)\right)$.

The domain $\mathfrak{D}_{+}(n):=$ Cone $\left(\mathbb{M}_{n}\right)$ is one of the classical symmetric domains. If $S \in \mathbb{M}_{n}$ is invertible and $T \in \mathbb{M}_{n}$ satisfies $\operatorname{Re} T=0$, then

$$
\begin{equation*}
\Phi_{S, T}: X \mapsto S X S^{*}+T \tag{3.1}
\end{equation*}
$$

defines a bijection from $\mathfrak{D}_{+}(n)$ onto itself. The inverse is $\Phi_{S^{-1}, T^{\prime}}$ with $T^{\prime}:=$ $-S^{-1} T\left(S^{-1}\right)^{*}$. These maps $\Phi_{S, T}$ form a subgroup $G$ of the automorphism group of $\mathfrak{D}_{+}(n)$. It operates transitively on $\mathfrak{D}_{+}(n)$ because any $X \in \mathfrak{D}_{+}(n)$ is of the form $\Phi_{S, T}(1)$ with $S:=(\operatorname{Re} X)^{1 / 2}, T:=\operatorname{Im} X$.

If $\mathcal{B}$ is a unital operator algebra, let $\Phi_{S, T}$ operate on $\operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$ by the same formula (3.1), considering $\mathbb{M}_{n} \subset \mathbb{M}_{n}(\mathcal{B})$ via the inclusion $X \mapsto X \otimes 1_{\mathcal{B}}$. Evidently, $\Phi_{S, T}$ maps Cone $\left(\mathbb{M}_{n}(\mathcal{B})\right)$ into itself. Consequently, the map $\mathcal{C} \circ \Phi_{S, T} \circ \mathcal{C}$ is a bijection $\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right) \rightarrow \operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right)$.

Theorem 3.1. Let $\mathcal{B}$ be a unital operator algebra and let $\mathcal{A} \subset \mathcal{B}$ be a 1codimensional ideal. Thus algebraically $\mathcal{B} \cong \mathcal{A}^{+}$.

Then $Y \in \operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$ iff $Y=\Phi_{S, T} \circ \mathcal{C}(X)$ for some $X \in \operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{A})\right)$ and some $\Phi_{S, T} \in G$. Hence

$$
\begin{equation*}
\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right)=\mathcal{C}\left(\operatorname{Cone}\left(\mathbb{M}_{n} \mathcal{B}\right)\right)=\bigcup_{\Phi \in G} \mathcal{C} \circ \Phi \circ \mathcal{C}\left(\operatorname{Ball}\left(\mathbb{M}_{n} \mathcal{A}\right)\right) \tag{3.2}
\end{equation*}
$$

As a result, the norm on $\mathbb{M}_{n}(\mathcal{A})$ uniquely determines the norm on $\mathbb{M}_{n}(\mathcal{B})$.
Proof. Since $\mathcal{C}$ maps $\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right)$ onto $\operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$ and $\Phi_{S, T}$ maps $\operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$ into itself it is clear that elements of the form $\Phi_{S, T} \circ \mathcal{C}(X)$ are in Cone $\left(\mathbb{M}_{n}(\mathcal{B})\right)$. Conversely, let $Y \in \operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$.

Let $\pi: \mathcal{B} \rightarrow \mathbb{C}$ be the character with $\operatorname{ker} \pi=\mathcal{A}, \pi(1)=1$. It is well-known that characters are completely contractive. Thus $\pi_{n}(Y) \in \operatorname{Cone}\left(\mathbb{M}_{n}\right)=\mathfrak{D}_{+}(n)$.

Since $G$ operates transitively on $\mathfrak{D}_{+}(n)$ we have $\Phi_{S, T}(1)=\pi_{n}(Y)$ for some $\Phi_{S, T} \in G$. Put $X:=\mathcal{C} \circ \Phi_{S, T}^{-1}(Y)$, then $\Phi_{S, T} \circ \mathcal{C}(X)=Y$ as desired. Theorem 2.2 yields $X \in \operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right)$. In addition, $X \in \mathbb{M}_{n}(\mathcal{A})$ because

$$
\pi_{n}(X)=\mathcal{C} \circ \Phi_{S, T}^{-1} \circ \pi_{n}(Y)=\mathcal{C} \circ \Phi_{S, T}^{-1} \circ \Phi_{S, T}(1)=\mathcal{C}(1)=0
$$

This yields the desired description of $\operatorname{Cone}\left(\mathbb{M}_{n}(\mathcal{B})\right)$. Equation (3.2) and the last assertion follow immediately.

Corollary 3.2. There are unique matricial norms on $\mathcal{A}^{+}$for which $\mathcal{A}^{+}$is a unital operator algebra with $\|1\| \leqslant 1$ and the injection $\mathcal{A} \rightarrow \mathcal{A}^{+}$is completely isometric.

Proof. Uniqueness is dealt with by Theorem 3.1. Existence is easy. Choose a completely isometric representation $\rho: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$. If it happens that id $\mathcal{H} \in \rho(\mathcal{A})$, replace $\rho$ by the degenerate representation $\rho \oplus 0$ on $\mathcal{H} \oplus \mathbb{C}$. Thus we may assume that $\operatorname{id}_{\mathcal{H}} \notin \rho(\mathcal{A})$. Then $\rho^{+}(z+x):=z \cdot \operatorname{id}_{\mathcal{H}}+\rho(x)$ for $z \in \mathbb{C}, x \in \mathcal{A}$ defines a representation of $\mathcal{A}^{+}$having the desired properties.

If $\mathcal{A}$ itself is a unital operator algebra, then $\mathcal{A}^{+}$is completely isometric to the orthogonal direct sum $\mathcal{A} \oplus \mathbb{C}$ because the latter is a unital operator algebra containing $\mathcal{A}$ as a 1 -codimensional ideal.

Corollary 3.3. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a homomorphism between operator algebras and let $n \in \mathbb{N}$. $\varphi$ is n-contractive if and only if $\varphi^{+}$is $n$-contractive. $\varphi$ is $n$-isometric if and only if $\varphi^{+}$is $n$-isometric. $\varphi$ is an $n$-quotient map if and only if $\varphi^{+}$is.

Proof. The naturality of the automorphisms $\Phi_{S, T}$ implies $\varphi_{n}^{+} \circ \Phi_{S, T}=$ $\Phi_{S, T} \circ \varphi_{n}^{+}$.

If $\varphi$ is $n$-contractive, then $\varphi_{n}$ maps $\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{A})\right)$ into $\operatorname{Ball}\left(\mathbb{M}_{n}(\mathcal{B})\right)$. Thus $\left(\varphi^{+}\right)_{n}$ maps $\operatorname{Ball}\left(\mathbb{M}_{n}\left(\mathcal{A}^{+}\right)\right)$into $\operatorname{Ball}\left(\mathbb{M}_{n}\left(\mathcal{B}^{+}\right)\right)$by Theorem 3.1. This means that $\varphi^{+}$is $n$-contractive. Conversely, if $\varphi^{+}$is $n$-contractive, so is $\varphi$ as the restriction of $\varphi^{+}$to $\mathcal{A}$. The remaining assertions are proved similarly.

## 4. APPLICATIONS

Let $\mathcal{A}$ be a unital operator algebra and let $\mathcal{I} \subset \mathcal{A}$ be a 1 -codimensional ideal. Then $\mathcal{A} \cong \mathcal{I}^{+}$. Thus the study of $\mathcal{A}$ can be reduced to the study of $\mathcal{I}$. In this section, we give some applications of this idea.

Theorem 4.1. Let $\mathcal{A}$ be a commutative unital operator algebra, $d \in \mathbb{N}$. Then any d-1-contractive unital homomorphism $\rho: \mathcal{A} \rightarrow \mathbb{M}_{d}$ is completely contractive.

Proof. Let $\mathcal{B}:=\rho(\mathcal{A})$, let $\mathcal{J}$ be a maximal ideal in $\mathcal{B}$, and let $\mathcal{I}:=\rho^{-1}(\mathcal{J})$. Then $\mathcal{A}=\mathcal{I}^{+}, \mathcal{B}=\mathcal{J}^{+}$, and $\rho=(\rho \mid \mathcal{I})^{+}$. By Corollary 3.3, it suffices to show that $\rho \mid \mathcal{I}$ is completely contractive.

There is a vector $x \in \mathbb{C}^{d} \backslash\{0\}$ that is annihilated by all elements of $\mathcal{J}$, because $\mathcal{J}$ is a non-unital, commutative subalgebra of $\mathbb{M}_{d}$. The same reasoning yields a vector $y \in \mathbb{C}^{d} \backslash\{0\}$ annihilated by all adjoints $T^{*}$ of elements $T \in \mathcal{J}$.

Thus elements of $\mathcal{J}$ can be viewed as operators from $\mathbb{C}^{d} \ominus x$ to $\mathbb{C}^{d} \ominus y$, with $\ominus$ denoting the orthogonal complement. This yields a completely isometric linear representation $\varphi: \mathcal{J} \rightarrow \mathbb{M}_{d-1}$. Since $\varphi \circ \rho \mid \mathcal{I}$ is a $d-1$-contractive linear map to $\mathbb{M}_{d-1}$, Theorem 5.1 of [6] yields that $\varphi \circ \rho \mid \mathcal{I}$ is completely contractive. Thus $\rho \mid \mathcal{I}$ is completely contractive.

In particular, if $\mathcal{A}$ is a commutative unital operator algebra, then any contractive unital representation $\mathcal{A} \rightarrow \mathbb{M}_{2}$ is completely contractive. For certain representations of function algebras, this was observed by Agler in his proof of Lempert's theorem ([1]) and later by Salinas ([9]) and Chu ([3]).
4.1. Two-dimensional unital operator algebras. For $c \in[0,1]$, let

$$
T_{c}:=\left(\begin{array}{cc}
0 & \sqrt{1-c^{2}} \\
0 & c
\end{array}\right)
$$

Clearly, $\left\|T_{c}\right\|=1$ and $T_{c}^{2}=c T_{c}$. Thus the linear span $\mathcal{Q}_{c}$ of 1 and $T_{c}$ is a unital subalgebra of $\mathbb{M}_{2}$.

Theorem 4.2. Let $\mathcal{A}$ be a two-dimensional unital operator algebra. Then $\mathcal{A}$ is completely isometric to $\mathcal{Q}_{c}$ for a unique $c \in[0,1]$ and thus has a completely isometric unital representation by $2 \times 2$-matrices.

Proof. Let $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ be a 2-dimensional unital operator algebra. $\mathcal{A}$ is necessarily commutative and thus contains a maximal ideal $\mathcal{I}$. Choose $T \in \mathcal{A}$ with $\|T\|=1$. We have $T^{2}=c \cdot T$ for some $c \in \mathbb{C}$. Rescaling $T$ by some constant of modulus 1 , we can achieve $c \geqslant 0$. Actually, $c \in[0,1]$ because $c=\|c T\|=$ $\left\|T^{2}\right\| \leqslant\|T\|^{2}=1$. Let $x \in \mathbb{M}_{n}$, then $\|x \otimes T\|=\|x\| \cdot\|T\|=\|x\| \cdot\left\|T_{c}\right\|=\left\|x \otimes T_{c}\right\|$. Thus the homomorphism $\varphi: \mathcal{I} \rightarrow \mathbb{M}_{2}$ defined by $T \mapsto T_{c}$ is completely isometric. By Corollary 3.3, it follows that $\varphi^{+}: \mathcal{A} \rightarrow \mathcal{Q}_{c} \subset \mathbb{M}_{2}$ is completely isometric. It is elementary to verify that $c$ is unique, that is, the algebras $\mathcal{Q}_{c}$ are not isometric for different values of $c$.

If $\rho: \mathcal{Q}_{c} \rightarrow \mathcal{Q}_{d}$ is a homomorphism, then $\|\rho\|_{\infty}=\|\rho\|$. This peculiarity was first observed by Holbrook ([4]) and can be established by direct computations in $\mathbb{M}_{2}$.
4.2. Unital Zero algebras. A unital operator algebra $\mathcal{A}$ is called a unital zero algebra iff it is obtained by adjoining a unit to an algebra with zero multiplication. A unital operator algebra $\mathcal{A}$ is a unital zero algebra iff there is a 1 -codimensional ideal $\mathcal{I} \subset \mathcal{A}$ with $\mathcal{I} \cdot \mathcal{I}=0$. The ideal $\mathcal{I}$ is the only maximal ideal of $\mathcal{A}$ and thus uniquely determined. Any unital homomorphism $\mathcal{I}^{+} \rightarrow \mathcal{J}^{+}$between unital zero algebras is of the form $\rho^{+}$for some linear map $\rho: \mathcal{I} \rightarrow \mathcal{J}$.

If $\mathbf{V} \subset \mathbb{B}(\mathcal{H})$ is an operator space, then $\mathbf{V}$ endowed with the zero multiplication is an operator algebra. The map $x \mapsto\left(\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right)$ defines a completely isometric multiplicative representation of $\mathbf{V}$ on $\mathbb{B}(\mathcal{H} \oplus \mathcal{H})$. More generally, any linear representation $\rho: \mathbf{V} \rightarrow \mathbb{B}\left(\mathcal{H}^{\prime}\right)$ yields a multiplicative representation $\mathbf{V} \rightarrow \mathbb{B}\left(\mathcal{H}^{\prime} \oplus \mathcal{H}^{\prime}\right)$ and thus a unital, multiplicative representation $\widehat{\rho}: \mathbf{V}^{+} \rightarrow \mathbb{B}\left(\mathcal{H}^{\prime} \oplus \mathcal{H}^{\prime}\right)$. If $\mathbf{V}$ has badly behaved linear representations, say, contractive representations that are not completely contractive, then this carries over to $\mathbf{V}^{+}$by Corollary 3.3. We can indeed prove the following strengthening of Corollary 3.3 that is only true for unital zero algebras.

Theorem 4.3. Let $\mathbf{V}$ and $\mathbf{W}$ be operator spaces, let $\rho: \mathbf{V} \rightarrow \mathbf{W}$ be a linear map, and let $\rho^{+}: \mathbf{V}^{+} \rightarrow \mathbf{W}^{+}$be its unital extension. Then, for all $n \in \mathbb{N} \cup\{\infty\}$,

$$
\begin{equation*}
\left\|\rho^{+}\right\|_{n}=\max \left\{1,\|\rho\|_{n}\right\} \tag{4.1}
\end{equation*}
$$

Proof. The inequality " $\geqslant$ " is trivial. To prove " $\leqslant$ ", assume $C:=\|\rho\|_{n}<\infty$. If $C \leqslant 1$, the assertion follows from Theorem 3.1. Thus assume $C>1$ and let $\mu: \mathbf{V} \rightarrow \mathbf{V}$ be the map $T \mapsto C T$. Then $\rho=\rho \circ \mu^{-1} \circ \mu$, and $\left\|\rho \circ \mu^{-1}\right\|_{n}=1$. Hence $\left\|\rho^{+} \circ\left(\mu^{-1}\right)^{+}\right\|_{n} \leqslant 1$, so that it remains to prove $\left\|\mu^{+}\right\|_{\infty} \leqslant C$.

Therefore, consider $\mathbf{V} \subset \mathbb{B}(\mathcal{H})$ and represent $\mathbf{V}^{+} \subset \mathbb{B}(\mathcal{H} \oplus \mathcal{H})$ as above. Define

$$
S:=\left(\begin{array}{cc}
C^{1 / 2} & 0 \\
0 & C^{-1 / 2}
\end{array}\right) \in \mathbb{B}(\mathcal{H} \oplus \mathcal{H})
$$

Then $\mu^{+}(T)=S T S^{-1}$ for all $T \in \mathbf{V}^{+}$because both sides of this equation are unital maps that coincide on $\mathbf{V}$. Thus $\left\|\mu^{+}\right\|_{\infty} \leqslant\|S\| \cdot\left\|S^{-1}\right\|=C$ as desired.

Let $M \subset \mathbb{C}^{k}$ be a domain and let $x \in M$. Let $\mathcal{A}:=H^{\infty}(M)$,

$$
\mathcal{I}:=\{f \in \mathcal{A} \mid f(x)=0\}, \quad \mathcal{J}:=\{f \in \mathcal{A} \mid f(x)=0, D f(x)=0\} .
$$

We have written $D f$ for the derivative of $f$. We call $\mathcal{I} / \mathcal{J} \cong \mathbf{T}_{x}^{*} M$ the cotangent space of $M$ at $x$. The axiomatic description of abstract operator spaces and abstract unital operator algebras in [2] yields that $\mathcal{I} / \mathcal{J}$ is an operator space and that $\mathcal{A} / \mathcal{J}$ is a unital operator algebra. Theorem 3.1 implies $\mathcal{A} / \mathcal{J} \cong(\mathcal{I} / \mathcal{J})^{+}$ completely isometrically, so that $\mathcal{A} / \mathcal{J}$ is a unital zero algebra.

An element of $\mathbb{M}_{n}(\mathcal{I} / \mathcal{J})$ may be viewed as a linear function $\mathbf{T}_{x} M \rightarrow \mathbb{M}_{n}$. It satisfies $\|f\| \leqslant 1$ iff $f$ is the derivative of a holomorphic function $f: M \rightarrow \operatorname{Ball}\left(\mathbb{M}_{n}\right)$ with $f(x)=0$.

If $M$ is a balanced domain (that is, $\lambda y \in M$ whenever $y \in M, \lambda \in \mathbb{C}$, $|\lambda| \leqslant 1$ ) and $x=0$, then $\mathcal{I} / \mathcal{J}$ can be computed precisely. If $M$ is strongly pseudoconvex instead, then $\mathcal{I} / \mathcal{J}$ can be computed approximately if $x$ approaches the boundary. In both cases, if the dimension of $M$ is sufficiently big, then $\mathcal{I} / \mathcal{J}$ has a contractive, but not completely contractive representation. Thus $H^{\infty}(M)$ has a contractive, but not completely contractive representation in the following cases: If $M$ is balanced and $\operatorname{dim} M \geqslant 5$ (this is due to Paulsen ([7])); if $M$ is a strongly pseudoconvex domain and $\operatorname{dim} M \geqslant 2$.

Let $M$ be a balanced domain and let $x:=0$. Let $f: \mathbf{T}_{x} M \rightarrow \mathbb{M}_{n}$ be a linear map. We view $f$ as a function from $M \subset \mathbf{T}_{x} M$ to $\mathbb{M}_{n}$. Evidently, if $f(M) \subset \operatorname{Ball}\left(\mathbb{M}_{n}\right)$ then $\|f\| \leqslant 1$. The converse is also true: If $\tilde{f}: M \rightarrow \operatorname{Ball}\left(\mathbb{M}_{n}\right)$ is a holomorphic function with $\widetilde{f}(0)=0, D \widetilde{f}(0)=f$, then $f(M) \subset \operatorname{Ball}\left(\mathbb{M}_{n}\right)$. This follows from the Schwarz inequality applied to the restrictions of $\widetilde{f}$ to disks $\mathbb{D} \cdot y$ with $y \in \partial M$. Hence we get a completely isometric embedding $\mathbf{T}_{x}^{*} M \rightarrow C_{b}(M)$. Thus $\mathbf{T}_{x}^{*} M$ is completely isometric to $\operatorname{MIN}(V)$, where $V$ is the normed space whose unit ball is the polar $\check{M} \subset \mathbb{C}^{n}$ of $M$. The minimal and maximal operator space structures $\operatorname{MIN}(V)$ and $\operatorname{MAX}(V)$ are defined in [7].

Let $i: \operatorname{MIN}(V) \rightarrow \operatorname{MAX}(V)$ be the identity map and let $\alpha:=\|i\|_{\infty}$. Consider the homomorphism

$$
\varphi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{I} \cong \operatorname{MIN}(V)^{+} \rightarrow \operatorname{MAX}(V)^{+}
$$

By Theorem 4.3, $\varphi$ is contractive and $\|\varphi\|_{\infty}=\alpha \geqslant 1$. Hence if $M$ has the desirable property that all contractive representations of $\mathcal{A}$ are completely contractive, then necessarily $\alpha=1$. As Paulsen shows in [7], this fails for most normed spaces $V$. It fails if $\operatorname{dim} V \geqslant 5$ or if $V$ is a Hilbert space with $\operatorname{dim} V \geqslant 2$.

This negative result of Paulsen can be extended to strongly pseudoconvex domains $M$ (with $C^{2}$ boundary) with $d=\operatorname{dim} M \geqslant 2$. Close to the boundary, such a domain looks more and more like the unit ball $\mathbb{D}_{d}$ of the Hilbert space $\ell_{d}^{2}$ of dimension $d$. This is made more precise by Ma ([5]). Theorem 3.3 and Lemma 3.4 of [5] imply that there are holomorphic maps $f: \mathbb{D}_{d} \rightarrow M$ and $g: M \rightarrow \mathbb{D}_{d}$ such that $f(0)=x, g(x)=0$, and $D g(x) \circ D f(0)=(1-\varepsilon)$ id with $\varepsilon \rightarrow 0$ for $x \rightarrow \partial M$. It follows that $g \circ f$ converges towards the identity map on $\mathbb{D}_{d}$ for $x \rightarrow \partial M$.

Define the distance between two operator spaces by
$\operatorname{dist}_{\infty}(\mathbf{V}, \mathbf{W}):=\log \left(\inf \left\{\|\rho\|_{\infty} \cdot\left\|\rho^{-1}\right\|_{\infty} \mid \rho: \mathbf{V} \rightarrow \mathbf{W}\right.\right.$ invertible $\left.\}\right)$.
It follows that $\operatorname{dist}_{\infty}\left(\mathbf{T}_{x}^{*} M, \mathbf{T}_{0}^{*} \mathbb{D}_{d}\right) \rightarrow 0$ for $x \rightarrow \partial M$. We have seen above that $\mathbf{T}_{0}^{*} \mathbb{D}_{d} \cong \operatorname{MIN}\left(\ell_{d}^{2}\right)$. Since $\operatorname{MIN}\left(\ell_{d}^{2}\right) \neq \operatorname{MAX}\left(\ell_{d}^{2}\right)$ for $d \geqslant 2$, the operator space $\mathbf{T}_{x}^{*} M$ has a contractive representation that is not completely contractive if $x$ is sufficiently close to $\partial M$. Thus $H^{\infty}(M)$ has a contractive representation that is not completely contractive.

## REFERENCES

1. J. AGLER, Operator theory and the Carathéodory metric, Invent. Math. 101(1990), 483-500.
2. D.P. Blecher, Z.-J. Ruan, A.M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89(1990), 188-201.
3. C.-C. Chu, Finite dimensional representations of function algebras, Ph.D. Thesis, University of Houston, 1992.
4. J.A.R. Holbrook, Distortion coefficients for cryptocontractions, Linear Algebra Appl. 18(1977), 229-256.
5. D.W. MA, Boundary behavior of invariant metrics and volume forms on strongly pseudoconvex domains, Duke Math. J. 63(1991), 673-697.
6. V.I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific and Technical, Harlow 1986.
7. V.I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry, J. Funct. Anal. 109(1992), 113-129.
8. Y.T. Poon, Z.-J. Ruan, Operator algebras with contractive approximate identities, Canad. J. Math. 46(1994), 397-414.
9. N. Salinas, The Carathéodory and Kobayashi infinitesimal metrics and completely bounded homomorphisms, J. Operator Theory 26(1991), 433-443.

## RALF MEYER

SFB Geometrische Strukturen in der Mathematik Universität Münster Hittorfstraße 27 48149 Münster GERMANY
E-mail: rameyer@math.uni-muenster.de

