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1. INTRODUCTION AND MAIN RESULTS

1.1. Let E be a finite-dimensional complex Hilbert space, B(E) the space of
linear operators in E (such operators will often be called matrices), and let us set
H = L2(Rn;E). If ϕ : Rn → B(E) is a Borel function, then the operators ϕ(Q)
and ϕ(P ) in the Hilbert space H are defined by the rules [ϕ(Q)f ](x) = ϕ(x)f(x)
and ϕ(P ) = F∗ϕ(Q)F . Here F : H → H is the (unitary) Fourier transform. Qj is
just the operator of multiplication by the xj variable and Pj = −i∂j = −i∂/∂xj .

If h : Rn → B(E) is a symmetric operator valued borelian function then
we associate to it the self-adjoint operator in H defined by H0 = h(P ). This is a
matrix valued pseudo-differential operator with constant coefficients. Our purpose
is to study self-adjoint operators H such that (H + i)−1− (H0 + i)−1 is a compact
operator. For this we use the conjugate operator method initiated by E. Mourre
in [13], which is one of the most powerful techniques that are now available in the
spectral analysis of self-adjoint operators.

We first isolate a class of operators H0, the locally scalar (or Dirac type)
operators, which admit conjugate operators of a simple form (see (2.7)). This
class contains the usual scalar operators (i.e. those associated to real functions h;
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note that R ⊂ B(E)) and the Dirac operators, but is considerably larger. Then
we consider perturbed operators H which admit conjugate operators of the same
form. We show that the theory developed in Section 7.6 of [1] for the case of scalar
hypoelliptic operators can be extended (in an improved version) to locally scalar
operators. In other terms, the class of locally scalar operators is a natural and rich
extension of the class of scalar operators. We observe that here “locally” should
be interpreted as “locally in the spectrum of H0”, and not in the spatial variable
x. The main results of this part of our paper are Theorems 2.17 and 2.18.

Then we go further and treat perturbations H of H0 which have high singu-
larities on a compact set. In rough terms, we show that if H is locally compact
and if, on some neighbourhood of infinity, H differs from H0 by a short-range
plus a long-range operator, then the limiting absorption principle holds for H in a
natural space, in particular H has no singular continuous spectrum. These results
are summarized in Theorem 3.6 (see also Lemma 3.8).

We feel that the spectral theory of (perturbed) matrix valued pseudo-diffe-
rential operators is an important and not enough studied subject. One of the main
problems to which one is confronted here is the lack of a satisfactory definition of
the “threshold set” τ(H) of the hamiltonian H. In any case, τ(H) should be a real
set such that H has conjugate operators outside it. A possible definition of τ(H)
is presented and discussed in Subsection 2.4: although it is not as general as one
would like, it has the quality that outside threshold points the hamiltonian formally
admits a conjugate operator which is naturally related to the asymptotic velocity
observable. This point of view will be further developed in [6]; here we restrict
ourselves mainly to the case of locally scalar hamiltonians. In [7], C. Gérard and
F. Nier are able to show that conjugate operators exist outside a discrete real set if
the function h is analytic and proper. So, although they do not explicitly describe
τ(H), they show that it is a small set. By starting with our Definition 2.5 of
the threshold set (which is well suited for the operators considered in [7]) one can
avoid the analyticity requirement: outside this set conjugate operators exist. The
advantage is that τ(H) is now explicitly defined. Of course, without analyticity
conditions, τ(H) can be quite large (even in the scalar case).

In this paper the space E is assumed to be finite dimensional only because this
suffices for the main example we have in mind, the Dirac operator. Generalizations
to the infinite dimensional case, with h(p) operators having purely discrete spectra,
are straightforward.

1.2. The rest of this introduction is devoted to a detailed description of our results
in the particular but important case of the usual Dirac operators.

Let α0 = β, α1, . . . , αn be a set of symmetric operators in E such that the
following anticommutation relations

(1.1) αjαk + αkαj = 2δjk

hold for all j, k ∈ {0, 1, . . . , n}. We fix a strictly positive real number m and
consider the free Dirac operator

(1.2) H0 = α · P +mβ =
n∑

j=1

αjPj +mβ.



On the spectral theory of singular Dirac type hamiltonians 291

H0 is a self-adjoint operator in the Hilbert space H, the operator FH0F∗ acting
as multiplication by the B(E)-valued function h(p) = α ·p+mβ, p ∈ Rn. We may
also write H0 = h(P ).

Recall that the Sobolev spaceHs is defined for all s ∈ R by the norm ‖〈P 〉s ·‖,
where ‖ · ‖ is the norm of H and 〈x〉 = (1 + x2)1/2. Then the domain and form
domain of H0 are given by D(H0) = H1, D(|H0|1/2) = H1/2.

We are interested in the spectral theory of perturbed Dirac operators H =
H0 + V . We shall treat perturbations V which are non-local, have high local sin-
gularities, and at infinity are a mixture of short-range and long-range components.
If V is a (pseudo-)differential operator, we allow it to be of the same order as H0,
so, for example, in H the matrices αj , β could depend on x and p.

In the next definition, where we give a precise meaning to the notions of
short-range and long-range behaviour at infinity, ξ is an arbitrary C∞-function on
Rn such that ξ(x) = 0 if |x| 6 1 and ξ(x) = 1 if |x| > 2. The properties stated
below are clearly independent of the choice of ξ. We denote by ‖S‖(1/2) the norm
of an operator S : H1/2 → H−1/2.

Definition 1.1. Let T : H1/2 → H−1/2 be linear continuous and symmetric.
We say that T is a short-range operator if

∞∫
1

dr‖ξ(Q/r)T‖(1/2) <∞.

We say that T is a long-range operator if

n∑
j=1

∞∫
1

dr
r

{
‖ξ(Q/r)[Qj , T ]‖(1/2) + ‖ξ(Q/r)|Q|[Pj , T ]‖(1/2)

}
<∞.

T is called small at infinity if

lim
r→∞

‖ξ(Q/r)T‖H1→H−1/2 = 0.

In order to clarify the content of the next hypothesis, we make a comment
now on the definition of a sum H = H0 + V as a self-adjoint operator in H.
Assume, more generally, that H0 is a self-adjoint operator in H with form domain
G = D(|H0|1/2) (equipped with the graph-topology) and identify as usual G ⊂
H = H∗ ⊂ G∗ (in the Dirac case G = H1/2 and G∗ = H−1/2). If V : G → G∗
is a linear, symmetric (hence continuous) operator, then H = H0 + V : G → G∗
is well-defined, linear and symmetric. One can associate to H an operator in H,
namely its restriction Ĥ to D(Ĥ) = {f ∈ G | (H0 + V )f ∈ H}. It is easy to prove
that Ĥ is self-adjoint if H−z : G → G∗ is bijective for some complex number z. In
this case we keep the same notation H for Ĥ and for its extension H : G → G∗. In
the Dirac case Ĥ is sometimes called the “distinguished” self-adjoint realization
of H0 + V (see Section 4.3 in [18] and references therein). It is important to note
that the form domain of H could be different from G in general. For a detailed
discussion of these points see the beginning of Section 7.5.2 and the last part of
Section 2.8 in [1].
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Hypothesis 1.2. The operator V : H1/2 → H−1/2 can be written as the
sum V = VS + VL of a short-range operator VS and a long-range small at infinity
operator VL. The operator H = H0 + V is such that H − z : H1/2 → H−1/2 is
bijective for some z; we use the same notation H for the self-adjoint operator in
H associated to it.

One more notion will be useful.

Definition 1.3. Let H be a self-adjoint operator and J a real open set. We
shall say that the spectrum of H in J is normal if H has no singularly continuous
spectrum in J and the eigenvalues of H in J have finite multiplicity and can
accumulate only towards the boundary of J .

In other terms, this means that there is a locally finite subset Σ of J such
that, if E is the spectral measure of H, then E({λ}) is of finite rank for λ ∈ Σ
and E(N) = 0 if N ⊂ J \ Σ and N has Lebesgue measure zero.

Theorem 1.4. Assume that H verifies Hypothesis 1.2. Then the spectrum
of H in R \ {−m,+m} is normal.

The continuous parts of two operators H which differ by a short-range per-
turbation are unitarily equivalent. Indeed, the relative wave operators exist and
are complete:

Theorem 1.5. Let H1,H2 be two operators both satifying Hypothesis 1.2.
Denote by Ec

k the continuous component of the spectral measure of Hk (k = 1, 2).
If the operator H1 −H2 : H1/2 → H−1/2 is short-range, then the wave operators

s-lim
t→±∞

eitH2e−itH1Ec
1(R)

exist and their ranges are equal to Ec
2(R)H.

The absence of the singularly continuous spectrum and the existence of the
wave operators are straightforward consequences of the following strong version of
the limiting absorption principle. We use the notation

R(H) = {λ ∈ R | λ 6= ±m and λ is not an eigenvalue of H}.
As a consequence of Theorem 1.4, this is an open real set if H satisfies Hypothe-
sis 1.2. The spaces H±1/2

s,q are weighted Sobolev spaces; their definition, in a more
general context, can be found in (2.19) and (2.20).

Theorem 1.6. Let H be as in Hypothesis 1.2. Then the limits

lim
ε↘0

(H − λ∓ iε)−1 ≡ R(λ± i0)

exist in the weak* topology of B(H−1/2
1/2,1;H

1/2
−1/2,∞), locally uniformly in λ ∈ R(H).

In particular, the maps

λ 7→ R(λ± i0) ∈ B(H−1/2
1/2,1;H

1/2
−1/2,∞)

are weak* continuous on R(H).

We have more detailed results on the regularity of the applications λ 7→
R(λ± i0):
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Theorem 1.7. Let H be as in Hypothesis 1.2. Choose a real number s > 1/2
and assume that we can decompose V =

∑
06k<s+1/2

Vk, where Vk : H1/2 → H−1/2

satisfies

(1.3) ‖ξ(Q/r) ada
Q adb

P Vk‖(1/2) 6 Cr−s−1/2+k−|b|

for all multi-indices a, b with |a|+ |b| 6 k. Then the maps

R(H) 3 λ→ R(λ± i0) ∈ B(H−1/2
s,∞ ;H1/2

−s,1)

are locally of Hölder-Zygmund class Λs−1/2.

We have set, for example, adQjT = [Qj , T ] and ada
Q = ada1

Q1
· · · adan

Qn
. If Vk

is the operator of multiplication by a matrix valued function then (1.3) means

(1.4) ‖ξ(Q/r)V (b)
k ‖(1/2) 6 Cr−s−1/2+k−|b|

for |b| 6 k, and this condition is satisfied if

‖〈Q〉s+1/2−k+|b|V
(b)
k ‖(1/2) <∞.

The following is a quite explicit sufficient condition for (1.4) to hold:[ ∫
|x−x′|61

dx′‖V (b)
k (x′)‖n

B(E)

]1/n

6 C|x|−s−1/2+k−|b|

for large x (stronger singularities are allowed locally). For the definition of the
Hölder-Zygmund classes see [5]. We also send to this paper for several other
abstract results which can be applied in the present context (once a conjugate
operator for H is constructed) in order to get, for example, propagation properties.

1.3. All but one of the conditions we put on V in the preceding theorems are rather
explicit, general and natural. The only implicit condition, namely the requirement
that the operator H0 + V − z be a bijection between H1/2 and H−1/2 for some
z ∈ C, is mainly a restriction on the local singularities of V . We make now more
detailed comments in connection with this question, because it is of some physical
interest. For the same reason we assume n = 3. Observe that the usual hypothesis
dim E = 4 (which amounts to asking that the representation of the relations (1.1)
be irreducible) is not necessary.

For simplicity we consider now only the case when V is the operator of
multiplication by a function. Let V = V 0 + V c where V 0 : R3 → B(E) and
V c : R3 → B(E) are symmetric matrix valued Borel functions such that:

(a) V 0 is locally of class L3 and

(1.5) lim
|a|→∞

∫
|x−a|61

dx | V 0(x) |3B(E)= 0;

(b) there is a finite set Γ ⊂ R3 and a number ν > 0 such that

‖V c(x)‖B(E) 6
∑
a∈Γ

ν

|x− a|
.
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From the results of Nenciu ([14], [15]; see also [9]) it follows that if ν < 1 (which
corresponds to a nuclear charge < 137) then H0 +V − z : H1/2 → H−1/2 is indeed
bijective for every z /∈ R. So our theorems apply to this class of potentials (of
course, conditions on the behaviour at infinity of V must be added).

1.4. Some explanations are needed in order to compare our results with those in
[4]. For questions related to the self-adjoint realizations of the Dirac operator we
send to Section 4.3 in [18] and references therein. It is easy to show that under
the above conditions (a) and (b) the operator V 0 is H0-bounded with relative
bound zero (hence H0 +V 0 is self-adjoint on the domain H1; in particular its form
domain is H1/2) and the operator V c is H0-bounded with relative bound 6 2ν (2
comes from the Hardy inequality in three dimensions). So H0 +V is a well-defined
symmetric operator in H on the domain H1. From the Rellich theorem we get that
H is self-adjoint onH1 if ν < 1/2 and this is optimal with respect to ν in the matrix
valued case. However, the result remains true if ν <

√
3/2 ≈ 0.87 and V c(x) is

a scalar matrix in the neighbourhood of Γ (see [11], [12], [3] and [9]). In any
case, if H is self-adjoint on H1, then its form domain is equal to the form domain
of H0, i.e. D(|H|1/2) = H1/2. As far as we know, in other cases there are no
informations concerning D(|H|1/2). More precisely, there are no informations on
the form domain of a distinguished self-adjoint extension of H0 + V ; the difficulty
is explained at an abstract level at the end of Section 2.8 in [1]. To sum up, the
results of [4] cover the cases ν < 1/2 with arbitrary V c and ν <

√
3/2 with scalar

V , while our results described above cover ν < 1 with arbitrary V c. Below (see
Subsection 1.5) we shall, however, treat much more singular situations, including
scalar potentials with arbitrary Coulomb singularities.

We mention that, in order to agree with the terminology in use in the physical
literature, we should call the scalar valued potentials electric (or electrostatic)
potentials, cf. Section 4.2 from [18]. Indeed, a “scalar potential” is not a scalar
valued map, according to this terminology.

We shall also make a comment concerning the behaviour at infinity of the
potentials. In [4], the long-range part VL of the interaction is required to satisfy a
supplementary condition, namely

(1.6)
n∑

j=1

∞∫
1

dr
r
‖ξ(Q/r)[αjβ, VL]‖(1/2) <∞.

This is clearly not a natural assumption and it appears in [4] just because the
conjugate operator they use has a complicated matrix structure. We were able to
get rid of (1.6) because our conjugate operator is a scalar operator. Of course,
at this level (1.6) is a rather harmless hypothesis, but using a matrix valued
conjugate operator has rather awkward consequences when one studies higher
order regularity properties of the boundary values of the resolvent. For example,
in [16] the conditions (1.4) are replaced by

n∑
j=1

∥∥ξ(Q/r)ada
αjβV

(b)
k

∥∥
(1/2)

6 Cr−s−1/2+k−|b|−a
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for a + |b| 6 k. If, for example, b = 0, we see that the decay of Vk must improve
after taking the commutator with some αjβ, a rather strange condition when Vk

is not a scalar function.

1.5. We come now to the case of very singular potentials. Note that the preceding
results are true even if m = 0, but for the next two theorems the condition m > 0
is needed (see Hypothesis 3.2). We first point out a result which is very general,
but which contains an implicit condition. We recall that a self-adjoint operator
S on H is called locally compact if ϕ(Q)(S + i)−1 is a compact operator for each
ϕ ∈ C∞c (Rn) (space of C∞-functions with compact support).

Theorem 1.8. Let H be as in Hypothesis 1.2 and assume that V is the
operator of multiplication by a B(E)-valued function. Let H̃ be a locally compact
self-adjoint operator such that, for an open neighbourhood Ω of infinity, if f ∈
D(H) and supp f ⊂ Ω then f ∈ D(H̃) and H̃f = Hf . Then:

(i) The spectrum of H̃ in R \ {−m,m} is normal.
(ii) If R(H̃) is the set of λ ∈ R distinct from ±m and from the eigen-

values of H̃, then the limits lim
ε↘0

(H̃ − λ ∓ iε)−1 exist in the weak* topology of

B(H1/2,1,H−1/2,∞) locally uniformly in λ ∈ R(H̃).
(iii) Let Ec, Ẽc be the continuous components of the spectral measures of H

and H̃, respectively. Then the wave operators

s-lim
t→±∞

eitH̃e−itHEc(R)

exist and are complete, i.e. their ranges are equal to Ẽc(R)H.

Further regularity properties of the boundary values (H̃ − λ ∓ i0)−1 are
described in the Remark 4.1.

The next result covers the case when the potential has a finite number of
Coulomb singularities of arbitrary strength:

Theorem 1.9. Let U : R3 → B(E) be a symmetric matrix valued borelian
function and Γ ⊂ R3 a finite set. Assume that:

(i) U = US + UL, where US is short-range and UL is long-range.
(ii) U is locally L3 in R3 \ Γ and satisfies (1.5).
(iii) There exists ε > 0 such that for any a ∈ Γ one has U(x) = ua(|x−a|) if

|x− a| < ε, where ua : (0, ε) → R is a continuous function with the property that
a finite limit lim

t→0
tua(t) exists.

Define H0+U on C∞c (R3;E) and choose a self-adjoint extension H̃ of H0+U .
Then H̃ has the properties (i) and (ii) of Theorem 1.8. If UL = 0 then the wave
operators associated to the pair (H̃,H0) exist and are complete.

In Subsection 4.7 we shall also prove the existence of the self-adjoint exten-
sion H̃ in the physically most interesting cases. For example, it suffices that the
function U be bounded on the region where dist(x,Γ) > ε.
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1.6. We shall sketch now the content of the remaining part of this paper in which,
among other things, Theorems 1.4–1.9 will be proved.

As we already said in Subsection 1.1, we shall constantly rely on the conjugate
operator method, so it is convenient to begin with a short description of the main
ideas of this approach. Assume, for example, that we would like to show that
the spectrum of a self-adjoint operator H in the open interval J is normal (see
Definition 1.3). For this, it suffices to find a second self-adjoint operator A, called
conjugate operator, such that:

(i) The map τ 7→ e−iτAHeiτA has certain regularity properties, see (2.17); in
particular this should imply that the commutator [H, iA] is a continuous sesquilin-
ear form on D(H).

(ii) One can find a number a > 0 and a compact operator K such that the
Mourre estimate

E(J)[H, iA]E(J) > aE(J) +K

is valid, where E is the spectral measure of H.

Of course, if such an operator A exists, then there is a large freedom in the
choice of the explicit form of A. A good choice of A is important, because it allows
one to cover general and physically natural classes of hamiltonians H by imposing
a minimum of restrictions. The final comment in Subsection 1.4 shows just one
example backing this claim. Another purpose which a suitable choice of A may
serve is the simplicity of the proofs.

For these reasons we dedicated Section 2 to the study of a class of operators
H = h(P ) + V which allow a simple (in this case scalar) conjugate operator:
this is the class of “Dirac type” hamiltonians refered to in the title of our paper.
A significantly more general situation will be considered in a future work ([6]),
but we give already here the definition of the threshold set for a rather arbitrary
function h. The general results of Section 2 are applied to Dirac operators in
the first part of Section 4. In particular, we prove Theorem 1.6 in Subsection 4.2
(and this implies Theorems 1.4 and 1.5). The computations which show that (1.3)
implies the conditions of Theorem A in [5] (thus giving a proof of Theorem 1.7)
are identical to those from [16] (in the hypoelliptic case) and will not be repeated
here.

The situation in Theorems 1.8 and 1.9 is too singular to be treated by the
methods of Section 2. Therefore we dedicate Section 3 to the study of singular
perturbations in a general setting. We are given a couple of self-adjoint operators
H, H̃. We assume that H is as in Section 2, has a spectral gap and satisfies a
weak locality condition (Hypothesis 3.2). H̃ is a selfadjoint operator in H which
coincides with H outside a compact set K; inside K, H̃ may be very singular.
We prove then that the difference between the resolvents of H̃ and of H is a
short-range operator. In particular, H̃ will be of class C1,1(A) (i.e. it is of class
C1,1 in the resolvent sense) hence the abstract theory developed in [1] can be
used: if H̃ is locally compact then H̃ will admit the same conjugate operator
A as H. The results of Section 3 may be used to prove Theorem 1.8; this is
done in Subsection 4.3. In Theorem 1.8 there is one implicit condition, namely
that H̃ be locally compact. In Subsections 4.4 and 4.5 a framework is presented
in which the problem of local compactness for very singular Dirac operators is
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naturally settled. By combining these results with Theorem 1.8, we give a proof
of Theorem 1.9 in Subsection 4.6. Finally, in Subsection 4.7 we prove a result
concerning the existence of self-adjoint realizations of singular Dirac operators.

2. LOCALLY SCALAR MATRIX VALUED PSEUDO-DIFFERENTIAL OPERATORS

2.1. In this section we shall study operators of the form H0 = h(P ) where h
is a continuous function defined on Rn and taking values in B(E), the set of all
bounded linear operators in the finite-dimensional complex Hilbert space E. The
operators h(p) are always assumed to be symmetric. The spectrum σ(H0) is the
closure of the set

⋃
p∈Rn

σ(h(p)), where σ(h(p)) is the spectrum of the operator h(p)

acting in E.
For any subset I of R we set

Ω(I) = {p ∈ Rn | σ(h(p)) ∩ I 6= ∅}.

If h is scalar valued (i.e. h(p) ∈ R ⊂ B(E)) then Ω(I) is just h−1(I). Note that
Ω(I) is open if I is open and closed if I is closed. The first assertion follows from
the continuity in p of the eigenvalues of the matrix h(p). For the second one we
argue as follows. Let {pk} be a sequence in Ω(I) which converges to some p ∈ Rn,
let λk be an eigenvalue of h(pk) in I, and let ek be a vector of norm 1 in E such
that h(pk)ek = λkek. Since the unit sphere in E is compact we may assume that
{ek} converges to some e of norm 1. From h(pk) → h(p) we deduce that the
sequence {λk} converges to some λ ∈ I and h(p)e = λe. So λ is an eigenvalue of
h(p) in I, hence p ∈ Ω(I).

Let us denote by ES the spectral measure of a self-adjoint operator S. We
use the abbreviation EH0 = E0 and denote by χV the characteristic function of the
Borel set V . Since FE0(I)F∗ = FχI(h(P ))F∗ is the operator of multiplication
by the matrix valued function p 7→ χI(h(p)) = Eh(p)(I), we have

(2.1) E0(I) = χΩ(I)(P )E0(I) = E0(I)χΩ(I)(P ).

Definition 2.1. We say that the operator H0 is scalar on an open real set
I if

(2.2) H0E0(I) = µ(P )E0(I)

for some Borel function µ : Rn → R. H0 is called scalar at a point λ ∈ R if λ has
an open neighbourhood on which H0 is scalar. The (open) set of real points at
which H0 is scalar is denoted by Ξ(H0). If Ξ(H0) = R then H0 is called locally
scalar.

We shall also refer to the function h as being scalar on a set or at a point
and we shall set Ξ(h) = Ξ(H0). H0 (or h) is locally scalar on an open set U if
U ⊂ Ξ(H0).

The function µ obviously depends of I. Equation (2.2) is equivalent to
h(p)Eh(p)(I) = µ(p)Eh(p)(I) for almost every p ∈ Rn. Since p ∈ Ω(I) is equivalent
to Eh(p)(I) 6= 0, we see that µ may be chosen arbitrarily on Rn \ Ω(I) but its
restriction to Ω(I) is uniquely defined; we shall denote by µI this restriction. It is
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clear that a function µ satisfying (2.2) exists if and only if for each p ∈ Ω(I) the
matrix h(p) has exactly one eigenvalue in I; this eigenvalue is just µ(p) ≡ µI(p).

The function µI is continuous, as follows from the continuous dependence on
p of the eigenvalues of h(p). Moreover, µI shares the smoothness properties of the
function h|Ω(I). This is an immediate consequence of the formulae

(2.3)

Eh(p)(I) =
1

2πi

∮
|z−µ0|=r

dz
z − h(p)

,

µ(p)Eh(p)(I) =
1

2πi

∮
|z−µ0|=r

zdz
z − h(p)

,

where µ0 = µ(p0), r is sufficiently small and p belongs to some small neighbourhood
of p0.

Remark 2.2. The main example we have in mind in this paper is the Dirac
operator with strictly positive mass and this is a locally scalar operator. The
Dirac operator with mass m = 0 and, more generally, the uniformly propagative
operators are locally scalar on R \ {0}. If n = 1 and h is analytic and proper
(in the sense of [7]) then H0 is locally scalar outside a discrete set which can be
explicitly described.

2.2. We shall give now a formal argument to justify our choice of the conjugate
operator. Let us assume that (2.2) is verified and let J be an open set whose
closure is a compact subset of I. Then we formally have

(2.4)

E0(J)[H0, iA]E0(J) = E0(J)H0iAE0(J)− E0(J)iAH0E0(J)

= E0(J)µ(P )iAE0(J)− E0(J)iAµ(P )E0(J)

= E0(J)[µ(P ), iA]E0(J).

We would like to reduce ourselves to the proof of the Mourre estimate for the
scalar operator µ(P ). From (2.2) we get

(2.5) ϕ(H0)E0(I) = ϕ[µ(P )]E0(I)

for any bounded Borel function ϕ on R. Hence

E0(J) = χJ(H0)E0(I) = χJ [µ(P )]E0(I) = Eµ(J)E0(I) = E0(I)Eµ(J),

where we abbreviated Eµ(P ) = Eµ. Going back to (2.4) we see that

E0(J)[H0, iA]E0(J) = E0(J)Eµ(J)[µ(P ), iA]Eµ(J)E0(J).

So, if one has a Mourre estimate for µ(P ) with respect to A, one also gets one for
H0. For example, if

(2.6) Eµ(J)[µ(P ), iA]Eµ(J) > Eµ(J)

then
E0(J)[H0, iA]E0(J) > E0(J).
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We construct conjugate operators for µ(P ) by using an observation which
goes back to Mourre ([13]). If F : Rn → Rn is a smooth vector field and

(2.7) A =
1
2
{F (P ) ·Q+Q · F (P )},

then
[µ(P ), iA] = F (P ) · (∇µ)(P ).

Hence, if we take F = η∇µ with η a positive function, then

[µ(P ), iA] = η(P )|(∇µ)(P )|2 > 0.

The critical points of the function µ prevent us from getting a Mourre estimate,
but if one finds an J such that |∇µ(p)| > b > 0 whenever µ(p) ∈ J , then we may
take

η(p) =
θ[µ(p)]

|(∇µ)(p)|2
,

where θ ∈ C∞c (I) such that θ|J = 1 and we are done. In order to avoid unnecessary
differentiability requirements on µ, we shall make later a more convenient choice
for F .

2.3. The next lemma gives a simple method of checking that H0 is locally scalar.
If S is a self-adjoint operator on E, we set

δ(S) = min{|λ− λ′|
∣∣λ, λ′ ∈ σ(S), λ 6= λ′}.

Lemma 2.3. If

(2.8) inf
p∈Rn

δ(h(p)) > 0.

then H0 is locally scalar.

Proof. If (2.8) is true, the number of points of σ(h(p)) is a constant N inde-
pendent of p and there are real functions λ1, . . . , λN on Rn such that

λ1(p) < λ2(p) < · · · < λN (p), σ(h(p)) = {λ1(p), . . . , λN (p)}

for all p ∈ Rn. The functions λk are continuous and have the same smoothness
properties as h (use a suitable analogue of formula (2.3) with µ replaced by λk).
Now let I be an open real set with diameter strictly less than the inf in (2.8).
Then we have

(2.9) λ−1
j (I) ∩ λ−1

k (I) = ∅ if j 6= k.

Clearly we have Ω(I) =
N⋃

k=1

λ−1
k (I), the union being disjoint. For any p ∈ λ−1

k (I)

one has
Eh(p)(I)h(p) = Eh(p)(I)λk(p).

Then, defining µ on Ω(I) by

(2.10) µ(p) = λk(p) if p ∈ λ−1
k (I)

we see that (2.2) is verified.
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Remark 2.4. If πk(p) is the spectral projection of h(p) corresponding to
the eigenvalue λk(p), one has

(2.11) h(p) =
N∑

k=1

λk(p)πk(p).

Replacing µ by λk in (2.3), it follows that the functions πk : Rn → B(E) are con-
tinuous and have the same smoothness properties as h. One has the decomposition

H0 =
N∑

k=1

λk(P )πk(P ).

If we set Πk = πk(P ), then {Πk}k=1,...,N is a family of pairwise orthogonal projec-

tions in H such that
N∑

k=1

Πk = 1. So H0 is unitarily equivalent to a direct sum of

operators λ1(P ), . . . , λN (P ) (λk(P ) acts in L2(Rn) and has to be taken dimπk(p)
times; note that this dimension is independent of p). This clearly suggests choosing
an operator of the form

(2.12) A =
N∑

k=1

ΠkAkΠk

in order to get a Mourre estimate for H0, where Ak is a conjugate operator for
λk(P ). A suitable modification of this approach works in rather general situations
(see [7]), but (2.12) is quite an intricate object and, when possible, the choice we
make in Subsection 2.5 is a better one. We intend to treat by our technique the
class of operators considered in [7] in a separate publication ([6]).

2.4. In this subsection we shall define the threshold set τ(H0) ofH0. The definition
is adapted to our needs in this paper (in particular it facilitates the choice of a
very simple conjugate operator); in some situations a more refined choice has to
be made.

From now on we assume that h is at least of class C1. It will be convenient
to use the following abbreviations: for each 1 6 j 6 n and λ ∈ R we set

∇λ
j h(p) = Eh(p)({λ})(∂jh)(p)Eh(p)({λ})

and we denote by ∇λh(p) = (∇λ
1h(p), . . . ,∇λ

nh(p)). If q ∈ Rn then q∇λh(p) =
n∑

k=1

qk∇λ
kh(p). These operators appear naturally in the perturbation theory of

linear operators, see [10] for example. We always consider them as acting in the
space Eh(p)({λ})E.
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Definition 2.5. Let h : Rn → B(E) be symmetric operator valued and of
class C1 and let λ be a real number.

(i) We say that λ is a critical value of h if there is p with λ ∈ σ(h(p)) such
that for each q ∈ Rn zero is an eigenvalue of the operator q∇λh(p) (acting in the
space Eh(p)({λ})E).

(ii) We say that λ is an asymptotic value of h if for each neighbourhood J
of λ the set Ω(J) is unbounded.

(iii) We say that λ is a threshold value of h if it is either a critical or an
asymptotic value of h.

The threshold set τ(h) of h is the set of all its threshold values. If H0 = h(P )
then we also say threshold value of H0 and define τ(H0) = τ(h).

Remark 2.6. This definition applies, in particular, to scalar functions h :
Rn → R of class C1, because R ⊂ B(E). The situation (i) will correspond then to
the critical values of h in the usual sense, i.e. the numbers λ such that λ = h(p) for
some p ∈ Rn with (∇h)(p) = 0. And (ii) will mean that for each neighbourhood J
of λ the set h−1(J) is not bounded; in other terms, there is a sequence {pi} such
that pi →∞ and h(pi) → λ (this explains the terminology we use). Now it is easy
to show that λ /∈ τ(h) if and only if there is a compact neighbourhood J of λ such
that h−1(J) is compact and ∇h(p) 6= 0 on h−1(J). Hence τ(h) is closed and for
each compact set J disjoint from τ(h) there exists b > 0 such that |(∇h)(p)| > b
if h(p) ∈ J .

One of the drawbacks of the Definition 2.5 is now clear: if h is a simply
characteristic scalar polynomial then we get τ(h) = R in general. Or if |h(p)| +
|∇h(p)| → ∞ when p→∞ the set τ(h) should be equal to the set of critical values
of h.

The next lemma clarifies our definition of the threshold set.

Lemma 2.7. Assume that the function h has a representation of the form
(2.11), where λk : Rn → R and πk : Rn → B(E) are functions of class C1 such

that πk 6= 0, πj(p)πk(p) = δjkπk(p),
N∑

k=1

πk(p) = 1 for all p ∈ Rn. Then:

(i) For each real set J one has Ω(J) =
⋃
k

λ−1
k (J). In particular, Ω(J) is

bounded if and only if for each k the set λ−1
k (J) is bounded.

(ii) For each λ ∈ R denote by ∆(λ, p) the set of j ∈ {1, . . . , N} such that
λj(p) = λ. Then Eh(p)({λ}) =

∑
j∈∆(λ,p)

πj(p) (a sum over an empty set being equal

to zero) and
∇λh(p) =

∑
k∈∆(λ,p)

∇λk(p) · πk(p).

Proof. Assertion (i) is easy, we prove only (ii). Clearly ∇h =
∑
k

(πk∇λk +

λk∇πk). If we set Πλ
p = Eh(p)({λ}), then

∇λh(p) =
N∑

k=1

Πλ
pπk(p)Πλ

p∇λk(p) +
N∑

k=1

λk(p)Πλ
p∇πk(p)Πλ

p .
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Since the projections πj(p) are pairwise orthogonal, one has Πpπk(p)Πp = πk(p) if
k ∈ ∆(λ, p) and = 0 otherwise. So it suffices to prove that the second sum above
is equal to zero. We assume λ ∈ σ(h(p)), otherwise there is nothing to prove.

Let r > 0 be such that the distance between two consecutive eigenvalues
of h(p) is > 2r. If ν ∈ σ(h(p)) we abbreviate ∆(ν) = ∆(ν, p), so the family
{∆(ν) | ν ∈ σ(h(p))} is a partition of the set {1, . . . , N}. We also denote by
Iν = [ν − r/2, ν + r/2]. Choose ε > 0 such that |λk(q) − λk(p)| < r/2 for all k
if |q − p| < ε. So if |q − p| < ε then σ(h(q)) ∩ Iν = {λk(q) | k ∈ ∆(ν)}. Clearly
then Eh(q)(Iν) =

∑
k∈∆(ν)

πk(q); in particular this is a C1-function of q in the ball

|q − p| < ε. We set Πν
q = Eh(q)(Iν) and note that for q = p and ν = λ we get the

same operator as before.
Assume |q − p| < ε, differentiate with respect to q the relation (Πλ

q )2 = Πλ
q ,

and multiply to the left the result by Πλ
q ; we get Πλ

q · ∇Πλ
q · Πλ

q = 0. If ν 6= λ we
have Πλ

q Πν
q = 0. Differentiating this with respect to q and multiplying the result

to the right by Πλ
q we get Πλ

q · ∇Πν
q ·Πλ

q = 0.
Finally, we are able to show that the second sum in the expression we have

obtained above for ∇λh(p) is equal to zero. Indeed,

N∑
k=1

λk(p)Πλ
p∇πk(p)Πλ

p =
∑

ν∈σ(h(p))

νΠλ
p

[ ∑
k∈∆(ν)

∇πk(p)
]
Πλ

p .

We would like to commute the sum and the derivative, but it is not clear whether
we are allowed to do it because ∆(ν) = ∆(ν, p) depends on p. However, for each
q in the ball |q − p| < ε and each ν ∈ σ(h(p)) we have

0 = Πλ
q · ∇Πν

q ·Πλ
q = Πλ

q

[ ∑
k∈∆(ν)

∇πk(q)
]
Πλ

q

and here we may take q = p. This finishes the proof.

For the class of locally scalar operators we have the following description of
the threshold set.

Proposition 2.8. Assume that H0 is scalar on the open real set I and let µ
be as in (2.2). Then a real number λ ∈ I is not a threshold value of H0 if and only
if λ has a compact neighbourhood J in I such that the set µ−1

I (J) = µ−1(J)∩Ω(I)
is compact and ∇µ(p) 6= 0 on it. In particular, τ(H0) ∩ Ξ(H0) is a closed subset
of Ξ(H0). If h is as in Lemma 2.7, in particular if (2.8) is satisfied, then τ(H0) =
N⋃

k=1

τ(λk).

Proof. We begin by noting that λ /∈ τ(h) if and only if there is a neighbour-
hood J of λ such that Ω(J) is a bounded set and for each p such that λ ∈ σ(h(p))
there is q such that q∇λh(p) has not zero as eigenvalue in the space Eh(p)({λ})E.
We may assume that Ω(J) is compact because if J is closed then Ω(J) is also
closed.
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If the conditions of Definition 2.1 are satisfied then Ω(J) = µ−1(J) ∩ Ω(I)
for J ⊂ I. So the proof of the first part of the proposition will be finished once we
have shown that

(2.13) ∇λh(p) = ∇µ(p) · Eh(p)({λ})

for all λ ∈ I, p ∈ Rn. If p /∈ Ω(I) then h(p) has no eigenvalue in I and if
p ∈ Ω(I) then h(p) has just one eigenvalue in I, namely µ(p). Hence we may
assume p ∈ Ω(I) and λ = µ(p), otherwise both sides above are zero. In this case
we also have Eh(p)({λ}) = Eh(p)(I) ≡ π(p). Then π is a C1-function on Ω(I) and
we have (h− µ)π = 0 on Ω(I). So we get (∇h−∇µ)π + (h− µ)∇π = 0 on Ω(I).
Multiplying to the left and to the right by π, which commutes with h − µ, and
using π · ∇π · π = 0, we get (2.13).

Now let us prove the last assertion of the proposition. From (i) of Lemma 2.7
it follows that λ is an asymptotic value of h if and only if there is k such that λ−1

k (J)
is unbounded for each neighbourhood J of λ, i.e. if and only if there is k such
that λ is an asymptotic value of λk. On the other hand, from (ii) of Lemma 2.7 it
follows that λ is a critical value of h if and only if there is p such that ∆(λ, p) 6= ∅
and such that for each q the operator

∑
k∈∆(λ,p)

q∇λk(p)·πk(p) has zero as eigenvalue

in the space Eh(p)({λ})E. This last fact is clearly equivalent to q∇λk(p) = 0 for
some k depending on q. Since Rn cannot be the union of n subspaces of dimension
n − 1 we see that there must exist k such that q∇λk(p) = 0 for all q. Hence λ is
a critical value of h if and only if there is k such that λk(p) = λ and ∇λk(p) = 0,

i.e. λ is a critical value of λk. Finally, we see that the equality τ(H0) =
N⋃

k=1

τ(λk)

holds under the hypotheses of Lemma 2.7.

2.5. We are finally in a position to define conjugate operators for H0 at scalar
non-threshold points. Let λ /∈ τ(H0) and let I be an open neighbourhood of λ
on which H is scalar. Let µ be such that (2.2) holds and remark that it is a
C1-function on Ω(I). Replacing, if needed, I by a slightly smaller set, we may
assume that µ has been extended to a C1-function on Rn (in order to be able to
define µ(P ) and (∇µ)(P ); but note that the values taken by µ on Rn \Ω(I) will be
irrelevant). Now let J be a compact neighbourhood of λ included into I \ τ(H0).
Then µ−1

I (J) is a compact subset of the open set Ω(I) and there is a number b > 0
such that |(∇µ)(p)| > b if p ∈ Ω(I) and µ(p) ∈ J . Hence there is a C∞-function
F : Rn → Rn with compact support contained in Ω(I) such that

F (p) · (∇µ)(p) > 1 if p ∈ Ω(I) ∩ µ−1(J)

(see page 337 in [1]). The operator A given by (2.7) is self-adjoint and (2.6) is
verified.
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Definition 2.9. The (unique) self-adjoint realization A of an expression of
the form (2.7) with F : Rn → Rn a C∞-function with compact support is called a
standard (conjugate) operator.

Theorem 2.10. Assume that the symmetric matrix valued function h is of
class C1 and let λ ∈ R \ τ(H0) such that H0 is scalar at λ. Then there is a
neighbourhood J of λ and there is a standard conjugate operator A such that

E0(J)[H0, iA]E0(J) > E0(J).

Remark 2.11. We discuss here a technical point concerning the interpreta-
tion of the commutator [H0, iA]. In the sense of sesquilinear forms on C∞c (Rn;E)
we clearly have [H0, iA] = F (P ) · (∇h)(P ), so the form [H0, iA] extends to a
bounded operator on H for which we shall keep the same notation. Moreover, the
unitary group generated by A has the property eitAD(H0) ⊂ D(H0) for any t ∈ R
(see Lemma 7.5.6 and the proof of Proposition 7.6.3 (a) in [1]).

Proof of Theorem. 2.10. By taking into account the preceding considerations,
we are left with proving the formal steps in the calculation (2.4). So, we have to
show that the two bounded operators

(2.14) E0(J)[H0, iA]E0(J) = E0(J)F (P ) · (∇h)(P )E0(J)

and

(2.15) E0(J)[µ(P ), iA]E0(J) = E0(J)F (P ) · (∇µ)(P )E0(J)

are equal. For this it suffices to prove that for all f ∈ C∞c (Rn;E) and for all
ϕ ∈ C∞c (I) one has

(2.16) 〈ϕ(H0)f, [H0, iA]ϕ(H0)f〉 = 〈ϕ(H0)f, [µ(P ), iA]ϕ(H0)f〉.
From Remark 2.11 (or from the explicit form of ϕ(H0)) it follows that

ϕ(H0)D(A) ⊂ D(A). On the other hand, from (2.5) we get ϕ(H0) = ϕ[µ(P )]E0(I),
hence ϕ(H0)H ⊂ D[µ(P )] ∩D(H0). So the commutators in (2.16) may be devel-
opped (f ∈ D(A) would be sufficient) and the computation in (2.4) is justified.

Remark 2.12. If (2.8) is satisfied then the following proof of Theorem 2.10
is simpler. Instead of proving that the left-hand sides of (2.14) and (2.15) are
equal, let us do this for the right-hand sides, by using Remark 2.4. In fact, one
must show that

χJ [h(p)] {F (p) · (∇h)(p)− F (p) · (∇µ)(p)}χJ [h(p)] = 0 for all p ∈ Rn.

But, p being fixed, there is a unique k0 ∈ {1, . . . , N} such that χI [h(p)] = πk0(p).
Hence, by also using (2.11), we need to show

n∑
l=1

Fl(p)πk0(p)
{
∂l

[ n∑
k=1

λk(p)πk(p)
]
− (∂lµ)(p)

}
πk0(p) = 0.

This follows immediatly by using the obvious relations πk0(p)πk(p) = δk0kπk0(p)
and πk0(p)(∂lπk)(p)πk0(p) = 0.

2.6. Our purpose is to treat perturbations H = H0 + V and for this we shall
summarize some general facts. It will be convenient to stay at an abstract level.
Proofs of these facts may be found in Section 7.5. of [1].
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Let G,H be Hilbert spaces such that G ⊂ H continuously and densely. By
taking into account G∗, the adjoint space (i.e. topological anti-dual) of G, we get
a standard triplet G ⊂ H ⊂ G∗. Moreover, we assume that a self-adjoint operator
A is given in H and that eiτAG ⊂ G for every τ ∈ R. Then

D(A;G) = {f ∈ G ∩D(A) | Af ∈ G} = {f ∈ G | lim
τ→0

(eiτAf − f)τ−1exists in G}

is dense in G.
Assume now that H0,H are symmetric operators from G to G∗ such that

H0 + i and H + i are isomorphisms from G to G∗. We shall assume that H0 and
H are A-regular, more precisely

(2.17)

1∫
0

dτ
τ2

∥∥eiτAHe−iτA + e−iτAHeiτA − 2H
∥∥
G→G∗ <∞

and similarly forH0. Under these assumptions one can show that the commutators
[H0, iA] and [H, iA], which are welldefined as sesquilinear forms onD(A;G), extend
to continuous, symmetric operators from G to G∗. By Lemma 7.5.3 in [1], one can
associate to H0 and H self-adjoint operators Ĥ0 and Ĥ in H. For example, Ĥ
has domain D(Ĥ) = (H + i)−1H and Ĥ = H|D(Ĥ). Furthermore, if ϕ ∈ C∞c (R),
the bounded operator ϕ(Ĥ) in H extends to a continuous operator from G∗ to G
(similarly for Ĥ0). From now on we shall set Ĥ0 = H0 and Ĥ = H. Let us recall
that if one of the operators H0 or H is semibounded, its form domain will coincide
with G. But this is not necessarly true in general. In fact, for the Dirac case which
will be treated in Section 4 we shall take by definition G to be the form-domain
of “the free operator” H0, but the form domain of its perturbation H could differ
from G in some important instances.

Now let I be an open, real set such that A is locally conjugate to H0 on I.
This means that for each λ ∈ I there are a compact neighbourhood J of λ, a
number a > 0 and a compact operator K in H such that the following Mourre
estimate holds:

E0(J)[H0, iA]E0(J) > aE0(J) +K.

Under the above hypothesis, the operator H0 has nice spectral properties in I. By
imposing a certain compactness assumption, the same will be true for H. Indeed,
one has (see Proposition 7.5.6 in [1]):

Proposition 2.13. Besides the preceding hypotheses, let us assume that the
difference (H + i)−1 − (H0 + i)−1 is a compact operator in H. Then the spectrum
of H in I is normal.

2.7. Our next purpose is to prove a version of the so-called limiting absorption
principle in a framework which is suited to perturbations of matrix valued hamil-
tonians, i.e. the Hilbert space H is L2(Rn;E) and H0 = h(P ). Then G will be
the form domain of H0, i.e. G = D(|H0|1/2) (equipped with the graph topology).
Explicitly, F|H0|1/2F∗ is the operator of multiplication by the matrix valued func-
tion p 7→ |h(p)|1/2 = [h(p)2]1/4. In the particular case of the Dirac operator, G
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is just the Sobolev space H1/2(Rn;E), but in general it might not be a stan-
dard space of distributions. For this reason and in order not to impose too many
constraints on h, besides G we shall use a generalization of the Sobolev spaces
allowing some anisotropy in P . This will also lead to a more transparent form of
the limiting absorption principle. A detailed study of these spaces may be found
in Subsection 10.1 from [8].

Let us denote by S = S(Rn;E) the space of Schwartz test functions on Rn

taking values in E and by S∗ its adjoint space. By considering the usual topologies
on S and S∗ and by identifying H = L2(Rn;E) with its adjoint space one gets the
following continuous, dense embeddings of topological vector spaces: S ⊂ H ⊂ S∗.
We recall that the Fourier transform is an isomorphism both in S and in S∗.

We shall consider continuous functions ω : Rn → (0,∞) such that

(2.18) ω(p+ p′) 6 Cω(p)〈p′〉N

for some constants C,N > 0 and all p, p′ ∈ Rn. Then ω(P ) = F∗ω(Q)F is a well-
defined continuous injective operator ω(P ) : S → H. So we may define the Hilbert
space Hω as the completion of S with respect to the norm ‖f‖Hω = ‖ω(P )f‖.

We shall slightly modify the terminology of Hörmander and call weight a
function ω with the preceding properties. According to the remark after Theo-
rem 10.1.5 in [8], there is a temperate weight function ω′ (in the sense of Defini-
tion 10.1.1 in [8]) such that ω 6 ω′ 6 Cω for a constant C <∞. Hence the norms
defined by ω and ω′ are equivalent and they define the same topological vector
space Hω. In particular, from Theorem 10.1.7 we get that Hω coincides with the
set of distributions f ∈ S∗ such that the Fourier transform f̂ is a function and

‖f‖Hω =
[ ∫

Rn

dp|ω(p)f̂(p)|2
]1/2

<∞.

We have S ⊂ Hω ⊂ S∗ continuously and densely, so the adjoint space (Hω)∗ can
be realized such that S ⊂ (Hω)∗ ⊂ S∗. The function 1/ω clearly is a weight
and Theorem 10.1.14 from [8] gives a canonical identification (Hω)∗ = H1/ω as
topological vector spaces.

The class of weight functions is clearly stable under multiplication and under
taking arbitrary real powers. So, if ω0, ω1 are weights and 0 < θ < 1 is a real
number then ωθ = ω1−θ

0 ωθ
1 is again a weight. It follows that the class of spaces

Hω is stable under complex interpolation and one has [Hω0 ,Hω1 ]θ = Hωθ . In
particular, if ω, ω0, ω1 are weights and T is a linear operator such that T : Hω →
Hω0 continuosly and T : Hω → Hω1 compactly, then T : Hω → Hωθ is a compact
operator for each 0 < θ 6 1.

From (2.18) and the relation e−ip·Qω(P )eip·Q = ω(P + p) it follows easily
that {eip·Q}p∈Rn induces a strongly continuous polynomially bounded n-parameter
group of bounded operators in Hω. In particular, if ϕ ∈ S(Rn), then ϕ(Q) is a
bounded linear operator in Hω and if 0 < ε < 1 then the family of operators ϕ(εQ)
is uniformly bounded in B(Hω). Let Hω

s,q (s ∈ R, 1 6 q 6 ∞) be the Besov scale
associated to this group in Hω (cf. the beginning of Section 4.1 in [1]). We shall
briefly describe the main properties of these spaces (see Theorems 3.6.14 and 3.4.3
in [1]).



On the spectral theory of singular Dirac type hamiltonians 307

Choose θ, θ̃ ∈ C∞c (Rn) such that θ(x) > 0 if 1 < |x| < 2 and θ(x) = 0
otherwise, and θ̃(x) = 1 if |x| 6 1. For any s ∈ R and q ∈ [1,∞] we set

(2.19) Hω
s,q = {f ∈ S∗ | ‖f‖Hω

s,q
<∞},

where

(2.20) ‖f‖Hω
s,q

= ‖θ̃(Q)f‖Hω +
[ ∞∫

1

dr
r
‖rsθ(Q/r)f‖q

Hω

]1/q

.

If q = ∞, the last term in (2.20) should be interpreted as sup
r>1

‖rsθ(Q/r)f‖Hω . If

q = 2, the space Hω
s,2 is usually denoted by Hω

s and an equivalent norm on it is
given by ‖〈Q〉sf‖Hω .

Hω
s,q are Banach spaces such that S ⊂ Hω

s,q ⊂ S∗ continuously. The first
embedding is dense if and only if q 6= ∞; we shall denote by H̆ω

s,∞ the closure of
S in Hω

s,∞. The second embedding allows us to compare the spaces Hω
s,q. Let us

write (s1, q1) 6 (s2, q2) if and only if s1 > s2 or s1 = s2 and q1 6 q2. Then we
have Hω

s1,q1
⊂ Hω

s2,q2
if and only if (s1, q1) 6 (s2, q2).

Since S is dense in Hω
s,q if q <∞, the dual space (Hω

s,q)
∗ is a subspace of S∗;

similarly for (H̆ω
s,∞)∗. These spaces are explicitly given by

(Hω
s,q)

∗ = H1/ω
−s,q′ if 1 6 q <∞,

(H̆ω
s,∞)∗ = H1/ω

−s,1,

where q′ is given by 1/q + 1/q′ = 1.
Concerning the dependence on ω of the spaces Hω

s,q, one has Hω1
s,q ⊂ Hω2

s,q for
some (hence for all) s, q if and only if ω2 6 Cω1 (see Theorem 10.1.8 in [8]).

Now assume that ω2(p)/ω1(p) → 0 as p → ∞ and let ϕ ∈ S(Rn). We shall
prove that ϕ(Q) : Hω1 → Hω2 is a compact operator. Let ω = ω2

1 and w = ω2
2ω

−2
1 .

Then ϕ(Q) : H → Hw is compact (because w(P )ϕ(Q) is a compact operator in
H) and ϕ(Q) : Hω → Hω is bounded. Hence for 0 < θ < 1

ϕ(Q) : [H,Hω]θ = Hωθ

→ [Hw,Hω]θ = Hw1−θωθ

is compact. The result follows by taking θ = 1/2.
The particular case of the usual Sobolev spaces is important and we shall

introduce a special notation for it: if ω(p) = 〈p〉t for some t ∈ R (recall that
〈p〉 = (1 + |p|2)1/2), then we set Hω

s,q = Ht
s,q. If t = 0 then the upper index is

simply dropped. Notice that, by our rules of identification, if ω > c > 0 for some
constant c, then

S ⊂ Hω
s,q ⊂ Hs,q ⊂ H1/ω

s,q ⊂ S∗.
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2.8. The following technical result will be important later on.

Theorem 2.14. Let ω1, ω2 be continuous, positive functions on Rn such
that ωi(p+ p′) 6 Cωi(p)〈p′〉N for some constants C,N > 0 and all p, p′ ∈ Rn. Let
S : Hω1 → Hω2 be a continuous, linear map such that

∞∫
1

dr
{
‖θ(Q/r)S‖Hω1→Hω2 + ‖Sθ(Q/r)‖Hω1→Hω2

}
<∞

for some θ ∈ C∞(Rn) with θ(x) > 0 if 1 < |x| < 2 and θ(x) = 0 otherwise.
Then S ∈ B

(
H̆ω1
−1/2,∞,H

ω2
1/2,1

)
.

Remark 2.15. (i) We have not stated the theorem in its full generality.
The result remains true (with the same proof) if Hω1 , Hω2 are replaced by re-
flexive Banach spaces equipped with polynomially bounded, strongly continuous
representations of Rn (then Theorem 3.6.14 from [1] can be used).

(ii) If S is a local operator (i.e suppSf ⊂ supp f for each f ∈ Hω1), then the
reciprocal assertion is also true, cf. the proof of Theorem 7.6.10 in [1].

Proof of Theorem 2.14. Since S, hence C∞c (Rn;E), is dense in H̆ω1
−1/2,∞, it

suffices to show that there is C > 0 such that

(2.21) ‖Sf‖Hω2
1/2,1

6 C‖f‖Hω1
−1/2,∞

for all f ∈ C∞c (Rn;E). We can further simplify later arguments by observing that
it is enough to prove this under the assumption f(x) = 0 if |x| < 1. Indeed, choose
ψ ∈ C∞c (Rn) with ψ(x) = 1 if |x| 6 1; then

‖Sf‖Hω2
1/2,1

6 ‖S[1− ψ(Q)]f‖Hω2
1/2,1

+ ‖Sψ(Q)f‖Hω2
1/2,1

.

If (2.21) holds if f(x) = 0 in {x
∣∣ |x| 6 1}, then the first term in the right-hand

side above is dominated by C‖[1−ψ(Q)]f‖Hω1
−1/2,∞

6 C1‖f‖Hω1
−1/2,∞

. On the other
hand

‖Sψ(Q)f‖Hω2
1/2,1

= ‖θ̃(Q)Sψ(Q)f‖Hω2 +

∞∫
1

dr√
r
‖θ(Q/r)Sψ(Q)f‖Hω2

6 C2‖ψ(Q)f‖Hω1 6 C3‖f‖Hω1
−1/2,∞

for some C2, C3 ∈ R.
It remains to prove (2.21) for f ∈ C∞c (Rn;E) and such that f(x) = 0 if

|x| 6 1. We do this with the help of a Littlewood-Paley type decomposition of
f . Let ξ ∈ C∞(Rn) with ξ(x) = 0 if |x| 6 1 and ξ(x) = 1 if |x| > 2 and set
η(x) = x · (∇ξ)(x). Then η ∈ C∞(Rn) and has support in {x | 1 6 |x| 6 2}.
Furthermore, ξ may be chosen such that η = θ2 for some θ ∈ C∞(Rn) with
θ(x) > 0 if 1 < |x| < 2. For 0 < a < b we then have

ξ(bx)− ξ(ax) =

b∫
a

dε
ε
η(εx)
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for all x ∈ Rn, hence

ξ(bQ)f − ξ(aQ)f =

b∫
a

dε
ε
η(εQ)f.

Note that the map ε 7→ η(εQ)f ∈ Hω1 is of class C∞ on (0,∞) and is equal to
zero for ε small or large (by the conditions on the support of f), so the integral
exists strongly in Hω1 . Also ξ(aQ)f = 0 if a is small and ξ(bQ)f = f if b > 2. So
we have

f =

2∫
0

dε
ε
η(εQ)f

in Hω1 . The operator S : Hω1 → Hω2 being linear and continuous, we get

Sf =

2∫
0

dε
ε
Sη(εQ)f =

∞∫
1/2

dr
r
Sθ2(Q/r)f.

We have to estimate the norm

‖Sf‖Hω2
1/2,1

= ‖θ̃(Q)Sf‖Hω2 +

∞∫
1

dr√
r
‖θ(Q/r)Sf‖Hω2 .

For both terms we use the preceding representation of Sf . We have:

‖θ̃(Q)Sf‖Hω2 6 C1‖Sf‖Hω2 6 C1

∞∫
1/2

dr
r
‖Sθ(Q/r)‖Hω1→Hω2 · ‖θ(Q/r)f‖Hω1

6 C1

∞∫
1/2

dr√
r
‖Sθ(Q/r)‖Hω1→Hω2 · sup

|r|>1/2

‖r−1/2θ(Q/r)f‖Hω1

6 C2‖f‖Hω1
−1/2,∞

.

Then for the second term:
∞∫
1

dr√
r
‖θ(Q/r)Sf‖Hω2

6

∞∫
1

dr√
r

∞∫
1/2

ds√
s
‖θ(Q/r)Sθ(Q/s)‖Hω1→Hω2 · sup

|s|>1/2

‖s−1/2θ(Q/s)f‖Hω1 .

So it suffices to show that
∞∫
1

∞∫
1

drds√
rs
‖θ(Q/r)Sθ(Q/s)‖Hω1→Hω2 <∞.
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We consider separately the contributions of the regions s < r and s > r. For
example ∫ ∫

16s<r<∞

drds√
rs
‖θ(Q/r)Sθ(Q/s)‖Hω1→Hω2

6 C3

∞∫
1

dr√
r

r∫
1

ds√
s
‖θ(Q/r)S‖Hω1→Hω2

= C3/2

∞∫
1

dr√
r
(
√
r − 1)‖θ(Q/r)S‖Hω1→Hω2 <∞.

We used the obvious estimate ‖θ(Q/s)‖B(Hω1 ) 6 C3, with C3 independent of s.
This finishes the proof.

2.9. Let us now introduce two classes of bounded operators : Hω → H1/ω, defined
in terms of the asymptotic behaviour with respect to Q. Our purpose is to gener-
alize Definition 1.1. We recall that ξ is an arbitrary C∞-function on Rn such that
ξ(x) = 0 if |x| 6 1 and ξ(x) = 1 if |x| > 2.

Definition 2.16. (i) We say that T ∈ B(Hω,H1/ω) is a short-range opera-
tor with respect to ω if T is symmetric and

∞∫
1

dr‖ξ(Q/r)T‖Hω→H1/ω <∞.

(ii) We say that T ∈ B(Hω,H1/ω) is a long-range operator with respect to ω
if T is symmetric and

n∑
j=1

∞∫
1

dr
r
{‖ξ(Q/r)[Qj , T ]‖Hω→H1/ω + ‖ξ(Q/r)|Q|[Pj , T ]‖Hω→H1/ω} <∞.

A simple argument shows that one gets the same class of short-range oper-
ators if the function ξ in (i) is replaced by a function θ ∈ C∞c (Rn) which satisfies
θ(x) > 0 if a < |x| < b (for some 0 < a < b < ∞) and θ(x) = 0 otherwise (see
Remark 7.6.9 in [1]).

If ω(p) →∞ when |p| → ∞ it is useful to introduce the following generaliza-
tion of the notion of smallness at infinity considered in Definition 1.1. We say that
an operator T is small at infinity with respect to ω if T : Hω → H1/ω is symmetric
and satisfies one of the equivalent conditions:

(1) ‖ξ(Q/r)T‖Hω→H1/ω2 −→ 0 as r →∞;
(2) ‖ξ(Q/r)T‖Hω2→H1/ω −→ 0 as r →∞;
(3) T : Hω → H1/ω2

is compact;
(4) T : Hω2 → H1/ω is compact.

Note that the power two which appears above plays no special role: we can replace
ω2 by ωs with s > 1 arbitrary and get an equivalent definition. For example, the
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fact that (3) implies the compacity of T : Hω → H1/ωs

for 1 < s 6 2 follows by
interpolation, see Subsection 2.7.

Let us prove the equivalence of the preceding four assertions. We set ε = 1/r
and assume ε ∈ (0, 1). If w is an arbitrary weight then ‖ξ(εQ)‖B(Hw) 6 C and
ξ(εQ)f = 0 if f has compact support and ε is small, so ξ(εQ) → 0 strongly in
B(Hw). Hence (3) ⇒ (1) and (4) ⇒ (2). One has (3) ⇔ (4) by the symmetry
of T . It remains to prove (1) ⇒ (3), for example. But 1 − ξ ∈ C∞c (Rn), hence
1 − ξ(εQ) : H1/ω → H1/ω2

is compact, see Subsection 2.7. So (1 · ξ(εQ))T are
compact operators Hω → H1/ω2

and they converge in norm to T in B(Hω,H1/ω2
).

We observe that a short-range operator is small at infinity. Indeed, we clearly
have ‖ξ(Q/r)T‖Hω→H1/ω → 0, which is more than needed. In particular, if T is
short-range then T : Hω2 → H1/ω is compact.

2.10. We shall asume now that there is a continuous function ω : Rn → [1,∞)
verifying (2.18) such that for a finite constant C independent on p ∈ Rn one has

(2.22) ω(p)21E 6 C[1E + |h(p)|].

In other terms, if λ0(p) is the nearest to zero eigenvalue of h(p) then ω(p)2 6
C(1 + |λ0(p)|). This implies that G is embedded continuously in Hω, so we have
the following scale of spaces:

G ⊂ Hω ⊂ H ⊂ H1/ω ⊂ G∗.

One may always choose ω = 1 (and in this case Hω = H = H1/ω), but the
assertions of Theorem 2.17 become stronger if ω is larger. Since Hω ⊂ H̆ω

−1/2,∞

and H1/ω
1/2,1 ⊂ H1/ω, one has

B(G∗,G) ⊂ B
(
H1/ω

1/2,1,H
ω
−1/2,∞

)
.

Under suitable hypotheses the resolvent (H−z)−1, which does not satisfy a uniform
estimate in B(G∗,G) (or in B(H)) when z approaches the spectrum of H, will have
boundary values in B

(
H1/ω

1/2,1,H
ω
−1/2,∞

)
.

The next theorem is a consequence of the existence of standard conjugate
operators, see Theorem 2.10 above, and of Propositions 7.5.6 and 7.5.7 and Theo-
rem 7.5.8 from [1]. The details of the proof are similar to those of Theorem 7.6.8
([1]) and will not be repeated here. Note, however, that even if h is a scalar func-
tion, the next result is much stronger than that of Theorem 7.6.8. For example,
the hypoellipticity type conditions imposed on h at page 343 in [1] are no longer
needed.

Theorem 2.17. Assume that h is of class C2. Let ω > 1 be a weight function
satisfying (2.22). Denote by G the form domain of H0 = h(P ) and let H : G → G∗
be a symmetric operator such that (H + i)G = G∗ and (H + i)−1 − (H0 + i)−1 is a
compact operator in H. Assume that H −H0 = VS + VL, where VS is short-range
with respect to ω and VL is long-range with respect to ω. Then:

(i) Let C± = {z ∈ C | ±=z > 0}. The holomorphic maps

C± 3 z 7→ (H − z)−1 ∈ B
(
H1/ω

1/2,1,H
ω
−1/2,∞

)
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extend to weak* continuous maps on [C± ∪ Ξ(H0)]\ [τ(H0)∪σp(H)], where σp(H)
is the point spectrum of H.

(ii) The spectrum of H in Ξ(H0) \ τ(H0) is normal.

We mention that h need not be C2, the local Besov class B1,1
∞ suffices.

The hypothesis concerning the compactness of (H + i)−1 − (H0 + i)−1 can
easily be checked in general. For example, assume that ω(p) → ∞ as |p| → ∞;
then this condition is satisfied if VL is small at infinity with respect to ω. Indeed,
one has in B(G∗,G)

(H0 + i)−1 − (H + i)−1 = (H + i)−1(VS + VL)(H0 + i)−1

so the left-hand side is compact on H if VS+VL is a compact operator D(H0) → G∗
(we avoid the use of D(H) because we do not have any information on it). We have
H1/ω ⊂ G∗ and from (2.22) it also follows that D(H0) ⊂ Hω2

, hence it suffices that
VS + VL be a compact operator Hω2 → H1/ω. The short-range part always has
this property (see Subsection 2.9) and the long-range part has it by hypothesis.

As a consequence of Theorems 2.17 and 2.14 we get a result on the existence
and completeness of the relative wave operators (use Theorem 7.5.5 from [1]). This
is an extension of Theorem 7.6.11 ([1]): indeed, we have eliminated the unnatural
condition (ii) from that theorem (without imposing a locality condition).

We denote by Ec
T the continuous part of the spectral measure of the self-

adjoint operator T .

Theorem 2.18. Let H1 and H2 be two self-adjoint operators of the same
form as H in Theorem 2.17 (corresponding to the same H0). Assume that the
operator H1 −H2 : G → G∗ extends to a bounded operator : Hω → H1/ω which is
short-range with respect to ω. Then the limits

s-lim
t→±∞

eitH2e−itH1Ec
H1

[Ξ(H0) \ τ(H0)]

exist and their ranges are equal to Ec
H2

[Ξ(H0) \ τ(H0)]H.

3. LOCALLY SINGULAR PERTURBATIONS

3.1. In this paragraph we shall show that if two self-adjoint operators H and H̃
acting in H = L2(Rn;E) coincide in some neighbourhood of infinity and if one of
them has a certain regularity property with respect to the position observable Q,
then the difference of their resolvents is short-range. We first need a “resolvent
identity” valid under general assumptions on the domains

Lemma 3.1. Let H, H̃ be self-adjoint operators and S a bounded operator
such that SD(H) ⊂ D(H) ∩D(H̃). For z /∈ σ(H) ∪ σ(H̃) set R = (H − z)−1 and
R̃ = (H̃ − z)−1. Then

(3.1) (R̃−R)S = (R̃−R)[S,H]R+ R̃(H − H̃)SR.
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Proof. Assume first that H̃ is a bounded operator. By usingRS = R[S,H]R+
SR, we get

(R̃−R)S = R̃(H − H̃)RS = R̃(H − H̃)R[S,H]R+ R̃(H − H̃)SR,

hence we have (3.1).
For the general case, choose a sequence of bounded self-adjoint operators

H̃n such that σ(H̃n) ⊂ σ(H̃) and H̃nf → H̃f if f ∈ D(H̃). Then setting R̃n =
(H̃n − z)−1, we have R̃n → R̃ strongly and for each n:

(R̃n −R)S = (R̃n −R)[S,H]R+ R̃n(H − H̃n)SR.

Since [S,H]R is a bounded operator and SR is also bounded, with range in D(H̃),
we get (3.1) by letting n→∞ in the last formula.

We isolate the properties of the operator H which are needed for our pur-
poses in

Hypothesis 3.2. H is a self-adjoint operator in H = L2(Rn;E) such that
(i) ϕ(Q)D(H) ⊂ D(H) for all ϕ ∈ C∞c (Rn);
(ii) H has a spectral gap;
(iii) for all θ ∈ C∞c (Rn \ {0}) one has
∞∫
1

dr
{
‖[θ(Q/r),H]‖2D(H)→H + ‖[θ(Q/r), [θ(Q/r),H]]‖D(H)→H

}
<∞.

Remark 3.3. (a) Condition (i) is fulfilled, for instance, if H = h(P ) + V ,
where V is a multiplication operator which is small with respect to h(P ) in the
operator sense and h : Rn → B(E) is of class Cm for some m > 2, satisfies
(∂αh)(p)2 6 Cα(1 + h(p)2) for |α| < m, and ∂αh is bounded for |α| = m. So h
could be a matrix valued hypoelliptic polynomial.

(b) Condition (iii) is correctly formulated due to (i). It is obviously implied
by H ∈ C2(Q;D(H),H), which means (by definition) that for all j, k ∈ {1, . . . , n}
the commutators [Qj ,H] and [Qj , [Qk,H]] are in B(D(H),H). In fact, in this case
the integrand is O(r−2).

If Ω is an open subset of Rn, we define HΩ as the restriction of H to the
subspace D(HΩ) = {f ∈ D(H) | supp f ⊂ Ω}. Note that for ϕ ∈ C∞c (Ω) we shall
have ϕ(Q)D(H) ⊂ D(HΩ). Observe also that the next lemma is valid without the
spectral gap assumption (ii) from Hypothesis 3.2.

Lemma 3.4. Assume that H satisfies Hypothesis 3.2 and let H̃ be a self-
adjoint operator in H such that HΩ ⊂ H̃ for some neighbourhood of infinity Ω in
Rn. Then for each z /∈ σ(H)∪ σ(H̃) the operator R̃−R = (H̃ − z)−1− (H − z)−1

is short-range in the following sense (see the remark after the Definition 2.16): for
any θ ∈ C∞c (Rn \ {0})

(3.2)

∞∫
1

dr‖θ(Q/r)(R̃−R)‖ <∞.



314 V. Georgescu and M. Măntoiu

Proof. Replacing z by z̄ and taking adjoints, we see that it is enough to
consider the expression ‖(R̃−R)θ(Q/r)‖. Moreover, it is clear that we can reduce
ourselves to the case when θ is the square of a function with similar properties, so
it suffices to estimate (R̃−R)θ2(εQ) for ε > 0 small.

In Lemma 3.1 we take S = θ(εQ) and, by using Hθ(εQ)f = H̃θ(εQ)f if ε is
small and f ∈ D(H), we get

(3.3) (R̃−R)θ(εQ) = (R̃−R)[θ(εQ),H]R.

We multiply this to the right by θ(εQ) and use

Rθ(εQ) = (R̃−R)[θ(εQ),H]R+ θ(εQ)R

to get

(R̃−R)θ2(εQ) = (R̃−R)[θ(εQ),H]R[θ(εQ),H]R

+ (R̃−R)[[θ(εQ),H], θ(εQ)]R+ (R̃−R)θ(εQ)[θ(εQ),H]R.

Finally, using once again (3.3), we obtain

(R̃−R)θ2(εQ) = 2(R̃−R)[θ(εQ),H]R[θ(εQ),H]R− (R̃−R)[θ(εQ), [θ(εQ),H]]R

for all small ε. This clearly implies the assertion of the lemma.

Remark 3.5. The relation (3.2) suffices for Theorem 3.6, where the A-
regularity of H̃ is deduced from the corresponding property of H. But the idea of
the preceding proof can be used in order to prove other useful estimates. For exam-
ple, if H ∈ C∞(Q;D(H),H) (i.e. all the succesive commutators ada

Q(H), a ∈ Nn,
are in B(D(H),H)), then R̃−R will decay rapidly at infinity: 〈Q〉m1(R̃−R)〈Q〉m2

is bounded for all m1,m2 ∈ N. In fact, this stronger conclusion will effectively hold
for Dirac operators with potentials which are multiplication operators by matrix
valued functions.

3.2. We recall that a self-adjoint realizationA of an expression of the form 1
2{F (P )·

Q+Q ·F (P )} with F : Rn → Rn a C∞-function with compact support was called
a standard (conjugate) operator.

Theorem 3.6. Let H be a self-adjoint operator in H satisfying Hypothe-
sis 3.2. Assume that there is a standard operator A such that H is A-regular (see
(2.17)) and A is locally conjugate to H on an open real set J . Let H̃ be a second
self-adjoint operator in H such that HΩ ⊂ H̃ for some neighbourhood of infinity Ω
and such that (H̃ + i)−1 − (H + i)−1 is a compact operator. Then:

(i) The spectrum of H̃ in J is normal.
(ii) Let Ec, Ẽc the continuous components of the spectral measures of H and

H̃ respectively. Then the wave operators

s-lim
t→±∞

eitH̃e−itHEc(J)

exist and their ranges are equal to Ẽc(J)H.
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(iii) Let J̃0 = J \σp(H̃). Then the limits lim
ε↘0

(H−λ∓ iε)−1 exist in the weak*

topology of B
(
H1/2,1,H−1/2,∞

)
, locally uniformly in λ ∈ J̃0.

Proof. Since the operators H and H̃ have the same essential spectrum and
H has a spectral gap, they have a common spectral gap, so there is z ∈ R \
σ(H) ∪ σ(H̃). We set R = (H − z)−1 and R̃ = (H̃ − z)−1, so R, R̃ are bounded,
self-adjoint operators and R̃−R is compact and short-range in the sense described
in Lemma 3.4. If we apply Theorem 7.5.8 from [1] with G = H and Λ = 〈Q〉 we
get that R̃−R is A-regular in the following sense:

1∫
0

dτ
τ2

∥∥eiτA(R̃−R)e−iτA + e−iτA(R̃−R)eiτA − 2(R̃−R)
∥∥ <∞.

This immediatly implies that H̃ is of class C1,1 with respect to A (see Defini-
tion 6.2.2 in [1]). So we may apply Theorem 7.2.9 from [1] and deduce that A is
locally conjugate to H̃ on J .

Now (i) and (iii) follow from Theorems 7.4.1 and 7.4.2 from [1] (remark that
the domain of 〈Q〉 is contained in D(A)). Finally, (ii) is an immediate consequence
of Theorem 7.4.3 from [1] because of Theorem 2.14 (set ω1 = ω2 = 1 and S =
R̃−R) and of Lemma 3.4.

3.3. There is one non-explicit assumption in Theorem 3.6, namely the condition
that (H̃ + i)−1 − (H + i)−1 be a compact operator. We shall check this property
with the help of the next lemma.

We first recall the notion of local compactness.

Definition 3.7. Let S be a closed operator in H and D(S) its domain
equipped with the graph-norm. We say that S is locally compact if θ(Q) : D(S) →
H is a compact operator for each θ ∈ C∞c (Rn).

If S is self-adjoint, this may be reformulated in the following way: for each
θ ∈ C∞c (Rn) the operator θ(Q)(S+ i)−1 is compact in H. Local compactness of S
must be thought as a local (in Q-space) regularity condition on the domain of S
(recall the Riesz-Kolmogorov compacity criterion). For exemple, if there is s > 0
such that D(S) ⊂ Hs

loc, then S is locally compact.

Lemma 3.8. Let H be a locally compact self-adjoint operator such that, for
each ϕ ∈ C∞c (Rn), ϕ(Q)D(H) ⊂ D(H). Let H̃ be a self-adjoint operator in H such
that HΩ ⊂ H̃ for some neighbourhood Ω of infinity. Assume that [θ(Q),H](H+i)−1

is a compact operator if θ ∈ C∞c (Rn). Then (H̃ + i)−1 − (H + i)−1 is compact if
and only if H̃ is locally compact.

Proof. If ξ ∈ C∞(Rn), supp ξ ⊂ Ω and ξ(x) = 1 on a neighbourhood of
infinity, then ξ(Q)D(H) ⊂ D(HΩ) ⊂ D(H̃), so we may use Lemma 3.1 and get

(R̃−R)ξ(Q) = (R̃−R)[ξ(Q),H]R.

Here R = (H + i)−1 and R̃ = (H̃ + i)−1. This clearly implies the assertion of the
lemma.
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In applications, it will be usually easy to check that H is locally compact
and [θ(Q),H](H + i)−1 compact. In consequence, we will be left with proving the
local compactness of H̃.

4. DIRAC OPERATORS WITH HIGHLY SINGULAR POTENTIALS

4.1. Let H0 = h(P ) be the free Dirac operator defined in (1.2). One clearly has
H2

0 = P 2 +m2, so |H0| = (H2
0 )1/2 = (P 2 +m2)1/2. In particular this shows that

the domain of H0 is the Sobolev space H1 and its form domain is H1/2. Then the
spectral projections of H0 associated with the positive and negative half axis are
given by

Π± =
1
2

[1± sign(H0)] =
1
2

[
1± H0

|H0|

]
=

1
2

[
1± α · P +mβ√

P 2 +m2

]
.

These are orthogonal projections in H satisfying Π+Π− = 0,Π+ + Π− = 1 and
H0 = |H0|(Π+ −Π−). In particular σ(H0) = (−∞,−m] ∪ [m,∞).

All these operators are functions of P . Define µm : Rn → R by µm(p) =
(p2 +m2)1/2 and π± : Rn → B(E) by

π±(p) =
1
2

[
1± h(p)

|h(p)|

]
=

1
2

[
1± α · p+mβ√

p2 +m2

]
.

Then π±(p) are orthogonal projections in E such that π+(p)π−(p) = 0, π+(p) +
π−(p) = 1, hence the identity h(p) = µm(p)(π+(p) − π−(p)) gives the spectral
decomposition of the operator h(p) on E. Clearly |H0| = µm(P ), Π± = π±(P ).

We have σ(h(p)) = {−µm(p), µm(p)}, so δ[h(p)] = 2µm(p) > 2m > 0, hence
(2.8) is satisfied. It follows that the free Dirac operator H0 is locally scalar. More
precisely, for any open set I strictly contained in (−m,∞) one must define µ :
Ω(I) → R by µ(p) = µm(p) = (p2 +m2)1/2 in order to have (2.2). It is convenient
to choose I strictly greater than [m,∞); in this case we have Ω(I) = R3. But in
any case, it is natural to define µ(p) by the formula above even for p ∈ R3 \ Ω(I)
when this set is not void. There are analogous statements for I strictly contained
in (−∞,m); just set µ = −µm. Obviously, the threshold set for the Dirac operator
is τ(H0) = {−m,m}.

We notice that in [4] the choice for the conjugate operator was Ã = Π+AΠ++
Π−AΠ−, where A is a standard operator. This is unnecessarily complicated and,
even for the more restricted class of potentials considered in [4], it leads to some
limitations (see the discussion in Subsection 1.4).

4.2. Proof of Theorem 1.6. Since we know that H0 is locally scalar and τ(H0) =
{±m}, we shall apply Theorem 2.17 with ω(p) = 〈p〉1/2. We are left only with
proving that (H+i)−1− (H0 +i)−1 is a compact operator in H. But this has been
done in a more general context in Subsection 2.10.
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4.3. Proof of Theorem 1.8. We shall use Theorem 3.6 and Lemma 3.8. Let us first
show that H satisfies Hypothesis 3.2. Since (H + i)−1 − (H0 + i)−1 is a compact
operator in H and (−m,m)∩σ(H0) = ∅, obviously H has a spectral gap. One has
[ϕ(Q),H] = [ϕ(Q),H0] = iα · (∇ϕ)(Q); the higher order commutators of H with
multiplication operators are all zero. This gives immediatly the invariance ofD(H)
under ϕ(Q) for any ϕ ∈ C∞c (R3) (recall that D(H) = {f ∈ H1/2 | (H0 + V )f ∈
H}), as well as the validity of condition (iii) in Hypothesis 3.2. Now, for some
standard operator A, we have shown that H is A-regular and A is locally conjugate
to H on R\{±m}. The compacity of (H̃+i)−1−(H+i)−1 follows from Lemma 3.8,
sinceH is obviously locally compact and [θ(Q),H](H+i)−1 = iα·(∇θ)(Q)(H+i)−1

is a compact operator for any θ ∈ C∞c (R3).

Remark 4.1. Let us place ourselves in the framework of Theorem 1.8, but
assume that the function V is more regular, namely that there exists s > 1/2 such
that V =

∑
06k<s+1/2

Vk with Vk functions satisfying (1.4). Then the boundary

values (H̃−λ∓ i0)−1 have regularity properties (as functions of λ ∈ R(H̃)) similar
to those expressed in Theorem 1.7, namely λ→ (H̃ − λ∓ i0)−1 ∈ B(Hs,∞,H−s,1)
is locally of Hölder-Zygmund class Λs−1/2. This follows from the fact that under
the hypothesis of Theorem 1.8 the operator R̃ − R is rapidly decaying at infinity
(see Remark 3.5), so that for any s > 0, R̃ ∈ Cs(A) if R ∈ Cs(A) and A is standard.

4.4. In this paragraph we shall make some considerations concerning the local
compactness of some self-adjoint realizations of H0 + U , where H0 = α · P +mβ
and U is the operator of multiplication by some singular function. We restrict
ourselves to the three-dimensional case, but generalizations to any dimension or
to more complicated “free hamiltonians” H0 are straightforward.

Let U : R3 → B(E) be a symmetric matrix valued Borel application such
that UH1

loc ⊂ Hloc. This is satisfied if U is locally in the weak Lebesgue space
L3

weak (use Theorem II.3.6 from [17]). In particular, one may take

(4.1) U(x) = U0(x) +
∑
a∈Γ

ua(x)
|x− a|

,

where U0 ∈ L3
loc(R3;B(E)), Γ ⊂ R3 is a finite set and ua ∈ L∞loc(R3;B(E)).

Due to the assumption UH1
loc ⊂ Hloc the operator H0 + U is a well-defined

map Hloc → H−1
loc in a distributional sense. We shall consider the operator H0 +U

initially defined on C∞c (R3;E) and we shall associate to it:

(1) The minimal operator Hmin = closure of H0 + U , with domain Dmin,
(2) The maximal operator Hmax = H∗

min, with domain Dmax.

SoH0+U is essentially self-adjoint on C∞c (R3,E) if and only ifHmin = Hmax.
We remark that Dmin contains H1

c (approximation by mollification). One has
Dmax = {f ∈ H | H0f +Uf ∈ H} and Hmaxf = H0f +Uf for any f ∈ Dmax. We
equip Dmax with the graph-norm (‖f‖2 + ‖(H0 + U)f‖2)1/2.

For any open subset O of R3 and any vector subspace K of H we set Kc(O) =
{f ∈ K | supp f is a compact subset of O}. We abbreviate Kc = Kc(R3).
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Definition 4.2 U is regular on the open set O ⊂ R3 if Dmax,c(O) = H1
c(O).

U is locally regular on the open set Ω ⊂ R3 if each x ∈ Ω has an open neighbour-
hood O such that U is regular on O.

More explicitly, U is regular on O if each f ∈ H, whose support is a compact
subset of O and has the property (H0 + U)f ∈ H, belongs to H1. By using a
partition of unity, one easily shows that if U is locally regular on Ω it is regular
on any open set whose closure is a compact subset of Ω. The following result can
be proved by standard methods, so we skip the details.

Lemma 4.3. For each open set Ω ⊂ R3 consider the assertions:
(i) U ∈ L3

loc(Ω;B(E));
(ii) for each x ∈ Ω, there is a neighbourhood O of x and there are numbers

0 6 a < 1, b > 0 such that for all f ∈ C∞c (O;E)

‖Uf‖ 6 a‖H0f‖+ b‖f‖;

(iii) U is locally regular on O.
Then (i) ⇒ (ii) ⇒ (ii). If Ω = R3 then (iii) ⇒ Hmin = Hmax.

Obviously, local regularity of U on R3 implies that Hmax is locally compact.
But a more refined notion is useful:

Definition 4.4. U is quasi-regular on the open set O ⊂ R3 if the unit ball
of Dmax,c(O) is a relatively compact subset of H. U is locally quasi-regular on
the open set Ω ⊂ R3 if each x ∈ Ω has an open neighbourhood O such that U is
quasi-regular on O.

Of course,“locally regular” implies “locally quasi-regular”. Once again, local
quasi-regularity on Ω implies quasi-regularity on every open, relatively compact
subset of Ω. The important, although easy, fact is:

Lemma 4.5. If U is locally quasi-regular on R3, then each self-adjoint ex-
tension of Hmin is locally compact.

Proof. Since any closed restriction of a closed, locally compact operator is
locally compact, we only need to show that Hmax is locally compact. But this is
obvious, since for any θ ∈ C∞c (R3)U is quasi-regular on an open set containing
supp θ.

Remark 4.6. We want to stress the point which makes the preceding con-
siderations useful: for each open set O ⊂ R3 the space Dmax,c(O) depends only on
the restriction of U to O. If we replace Dmax by the domain of a self-adjoint exten-
sion of Hmin defined by some kind of non-local boundary conditions, this property
might fail. In the next paragraph we shall use quasi-regularity to treat poten-
tials having several local singularities such that each singularity can be controlled
separately.

4.5. We apply now Subsection 4.4 to a potential U which has essentially the form
(4.1), with some additional conditions on the function ua. We shall use the results
of [20], from which we extract the following:
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Lemma 4.7. Let H = H0 + W (Q) + χε(Q)u(|Q|)|Q|−1, where χε is the
characteristic function of the ball of radious ε centered in the origin, u is a con-
tinuous function which has a finite limit in 0 and W is a bounded Borel function:
R3 → B(E). Then the operator H on C∞c (R3;E) has finite defect indices and for
any self-adjoint extension H1 of H, the operator (H1 + i)−1 − (H0 +W + i)−1 is
Hilbert-Schmidt.

The results of Xia are more precise, but they do not cover the multi-center
potentials. But one may exploit Lemma 4.7 and the notion of quasi-regularity to
prove

Proposition 4.8. Let Γ ⊂ R3 be a finite set and assume that for each a ∈ Γ
there exists ε > 0 such that if |x−a| < ε one has U(x) = ua(|x−a|)|x−a|−1+va(x),
where va is a bounded matrix valued function and ua : (0, ε) → R is a continuous
function such that ua(0+) = lim

r↘0
ua(r) exists. Moreover, assume that U is locally

regular on R3 \ Γ. Then any self-adjoint extension H̃ of Hmin is locally compact.

Proof. By Lemma 4.5, it will be enough to show that U is quasi-regular
on B(a; ε) = {x ∈ R3

∣∣ |x − a| < ε}. By a translation, we reduce ourselves to
the case a = 0. Since quasi-regularity on B(a; ε) depends only on U |B(a; ε) (cf.
the definition of Dmax), we only need to show that the potential considered in
Lemma 4.7 is quasi-regular on B(a; ε). But H0 +W is locally compact, hence H1

is also locally compact, by Lemma 4.7. It remains to use the fact that the defect
indices are finite.

Remark 4.9. For some special classes of matrix valued potentials one might
be able to construct self-adjoint realizations with domain contained in a local
Sobolev space Hs

loc with s > 0. In this case, the local compactness is obvious and
our method works. For example, the self-adjoint realizations constructed in [19]
are covered by our formalism.

4.6. Proof of Theorem 1.9. From conditions (i) and (ii) of Theorem 1.9 and by
using Lemma 4.3 and Proposition 4.8 we conclude that H̃ is locally compact.

Let us fix an open neighbourhood Ω of infinity in Rn whose closure does not
intersect Γ. Let θ be a C∞-function with support disjoint of Γ, equal to 1 on Ω
and set V = θU . Then H = H0 + V satisfies Hypothesis 1.2. Since the maximal
operator Hmax described in Subsection 4.4 is local and V and U coincide on Ω,
it is easy to see that if supp f ⊂ Ω then f ∈ D(H) if and only if f ∈ D(H̃) and
Hf = H̃f . Therefore one may apply Theorem 1.8 to get the result.

4.7. We shall prove here that Hmin has self-adjoint extensions if U is the sum of
an electrostatic potential, a scalar one, and an arbitrary bounded potential. For
another result of this type, see [2].
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Proposition 4.10. Let U : R3 → B(E) be a locally square integrable sym-
metric operator valued function. Denote by Hmin the closure of the symmetric
operator H0 +U with domain C∞c (R3;E). Assume that U = U1 +βU2 +U3 where
U1, U2 are real valued functions and U3 is a bounded matrix valued function. Then
Hmin has self-adjoint extensions.

Proof. Since any representation of the relations (1.1) is unitarily equivalent to
a direct sum of Majorana representations (cf. page 36 in [18]), we may assume that
E = C4 (equipped with the usual conjugation operation) and that the matrices
αk are real if 1 6 k 6 3 while α0 = β is purely imaginary: αk = αk, β = −β.
If we set γ = iα0α1α2α3 then γ = γ, γ∗ = −γ, γ2 = −1. Moreover, we have
γαk = −αkγ for 0 6 k 6 3. Now we define J : H → H by (Jf)(x) = γf(x).
Clearly, J is antilinear, J2 = −1 and 〈Jf, g〉 = −〈Jg, f〉 for all f, g. Then we have
α ·PJg = Jα ·Pg and (U1 +βU2)Jg = J(U1 +βU2)g if g ∈ C∞c . Denote by S the
symmetric operator α · P + U1 + βU2 with domain C∞c (R3;E). If f ∈ D(S∗) and
g ∈ C∞c (R3;E) we have

〈Jf, Sg〉 = −〈JSg, f〉 = −〈SJg, f〉 = −〈Jg, S∗f〉 = 〈JS∗f, g〉,

hence JS∗ ⊂ S∗J . Finally, we may use the von Neumann criterion for the equality
of the defect indices. More precisely, if S∗f = ±if , then clearly S∗Jf = ∓iJf ,
hence J is a bijective map of ker(S∗ − i) onto ker(S∗ + i). Since Hmin differs
from the closure of S by a bounded operator, the assertion of the proposition is
proved.

We mention several extensions of the preceding proposition which can be
proved by the same argument. First, it suffices that U be locally square integrable
outside a closed set of measure zeroM : it suffices to replace C∞c (R3;E) by C∞c (R3\
M ;E). Then, β can be replaced by any matrix δ which has, in the preceding
Majorana representation, the property δγ = γδ (for example δ = γ5, cf. page 37
in [18]). Finally, it suffices that the operator bound of U3 with respect to H0 +
U1 + βU2 be strictly less than 1.
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