REFLEXIVITY OF FINITE DIMENSIONAL SUBSPACES OF OPERATORS

JIANKUI LI and ZHIDONG PAN

Communicated by Norberto Salinas

Abstract

We show that any n-dimensional subspace of $B(H)$ is $[\sqrt{2 n}]$ reflexive, where $[t]$ denotes the largest integer that is less than or equal to $t \in \mathbb{R}$. As a corollary, we prove that if φ is an elementary operator on a C^{*}-algebra \mathcal{A} with minimal length l, then φ is completely positive if and only if φ is $\max \{[\sqrt{2(l-1)}], 1\}$-positive.

Keywords: Reflexivity of subspace, separating vector, complete positivity.
MSC (2000): Primary 47L30, 47L50; Secondary 47B47.

1. INTRODUCTION

Throughout this paper, let H be a complex separable Hilbert space, $B(H)$ the set of all bounded linear operators on $H, F(H)$ the set of finite rank operators on H, and $F_{n}(H)$ the set of operators with rank at most n. For $T \in B(H)$, let $R(T)$ denote the range of T. For any subspace $\mathcal{S} \subseteq B(H)$, define $\operatorname{ref}(\mathcal{S})=\{T \in$ $B(H): T x \in \operatorname{clin}(\mathcal{S} x)$, for any $x \in H\}$, where clin denotes norm closed linear span. \mathcal{S} is called reflexive if $\operatorname{ref}(\mathcal{S})=\mathcal{S}$. Define $\mathcal{S}^{(n)}=\left\{S^{(n)} \in B\left(H^{(n)}\right): S \in \mathcal{S}\right\}$, where $H^{(n)}$ is the direct sum of n copies of H and $S^{(n)}$ is the direct sum of n copies of S acting on $H^{(n)} . \mathcal{S}$ is called n-reflexive if $\mathcal{S}^{(n)}$ is reflexive in $B\left(H^{(n)}\right)$. A vector $x \in H$ is called a separating vector of \mathcal{S} if the map $E_{x}: S \rightarrow S x, S \in \mathcal{S}$ is injective. Let $\operatorname{sep}(\mathcal{S})$ denote the set of all separating vectors of \mathcal{S} in H. The local dimension of \mathcal{S}, denoted by $k(\mathcal{S})$, is defined by $k(\mathcal{S})=\max _{x \in H}\{\operatorname{dim} \operatorname{clin}(\mathcal{S} x)\}$; clearly $k(\mathcal{S}) \leqslant \operatorname{dim} \mathcal{S}$. If $\operatorname{dim} \mathcal{S}<\infty$, it is not hard to see that $\operatorname{sep}(\mathcal{S}) \neq \emptyset$ if and only if $k(\mathcal{S})=\operatorname{dim} \mathcal{S}$.

The notion of reflexivity was first introduced by Halmos ([7]) for subalgebras of algebra $B(H)$. Loginov and Shulman ([14]) extended reflexivity to subspaces of $B(H)$ which are not necessarily algebras. Reflexive subspaces have been useful in the analysis of operator algebras ([9], [10], [11]). A natural extension of the notion
of reflexivity is n-reflexivity. It has been considered, for example, in [1], [10], [15]. In [12], Larson proved that if \mathcal{S} is a finite dimensional subspace of $B(H)$, then $\operatorname{ref}\left(\mathcal{S}^{(n)}\right)=\mathcal{S}^{(n)}+\operatorname{ref}\left(\mathcal{S}^{(n)} \cap F\left(H^{(n)}\right)\right)$. It follows immediately that \mathcal{S} is n-reflexive if and only if $\mathcal{S} \cap F(H)$ is n-reflexive. Hence, we are only interested in which finite dimensional subspaces of $F(H)$ are n-reflexive.

In [15], Magajna stated the following question:
For each positive integer n, determine the smallest $k=k(n)$ such that all n-dimensional subspaces of $B(H)$ are k-reflexive.

In that paper, he proved $k(n) \leqslant n$. In [13], the first author improved the result and proved that if \mathcal{S} is an n-dimensional subspace, then \mathcal{S} is $\left(\left[\frac{n}{2}\right]+1\right)$ reflexive. Hence $k(n) \leqslant\left[\frac{n}{2}\right]+1$. In this paper, our main result is Theorem 2.14. It states that if \mathcal{S} is an n-dimensional subspace of $B(H)$, then \mathcal{S} is $[\sqrt{2 n}]$-reflexive. Example 2.15 shows that $[\sqrt{2 n}]$ is the smallest integer such that all n-dimensional subspaces of $B(H)$ are $[\sqrt{2 n}]$-reflexive. Thus Theorem 2.14 and Example 2.15 provide the answer to Magajna's question. The proof of Theorem 2.14 will be prepared by a number of auxiliary steps, and we need to consider the local dimensions of subspaces. The method used in Theorem 2.14 can also be used to improve Theorem 3.6 in [2]. As an application of our main result, we prove that if φ is an elememtary operator on a C^{*}-algebra \mathcal{A} with minimal legth l, then φ is completely positive if and only if φ is $\max \{[\sqrt{2(l-1)}], 1\}$-positive.

2. REFLEXIVITY OF FINITE DIMENSIONAL SUBSPACES

In the following, we always assume that \mathcal{S} is a subspace of $B(H), \operatorname{dim} \mathcal{S}<\infty$, and $\mathcal{S} \subseteq F(H)$ unless stated otherwise. Before we prove our main result, we need several lemmas and propositions.

Lemma 2.1. ([4]) The set $\operatorname{sep}(\mathcal{S})$ is an open subset of H.
Lemma 2.2. ([4]) The set $\operatorname{sep}(\mathcal{S})$ is either empty or dense in H.
Let M be a closed subspace of H and P be the orthogonal projection of H onto M. Define $\mathcal{S}_{M}=\{S \in \mathcal{S}: R(S) \subseteq M\}$. Let $\mathcal{S}_{M}^{\text {c }}$ be any vector space complement of \mathcal{S}_{M} in \mathcal{S}. Define $P^{\perp} \mathcal{S}_{M}^{\mathrm{C}}=\left\{P^{\perp} S: S \in \mathcal{S}_{M}^{\mathrm{C}}\right\}$.

Proposition 2.3. $k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right) \leqslant k(\mathcal{S})$.
Proof. If $P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}=0$, it is obvious that $k\left(\mathcal{S}_{M}\right) \leqslant k(\mathcal{S})$. If $\mathcal{S}_{M}=0$, it follows that $\mathcal{S}_{M}^{\mathrm{c}}=\mathcal{S}$ and

$$
k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)=\max _{x \in H}\left\{\operatorname{dim}\left[P^{\perp} S x: S \in \mathcal{S}_{M}^{\mathrm{c}}\right]\right\} \leqslant \max _{x \in H}\{\operatorname{dim} \operatorname{clin}(\mathcal{S} x)\}=k(\mathcal{S})
$$

Now suppose $k\left(\mathcal{S}_{M}\right)=m \neq 0$ and $k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)=l \neq 0$. Let $x_{0} \in H$ be a separating vector of $\operatorname{span}\left\{S_{1}, \ldots, S_{m}\right\} \subseteq \mathcal{S}_{M}$. Similarly, there exist $P^{\perp} T_{1}, \ldots, P^{\perp} T_{l} \in \mathcal{S}_{M}^{\mathrm{c}}$ such that $\operatorname{span}\left\{P^{\perp} T_{1}, \ldots, P^{\perp} T_{l}\right\}$ has a separating vector. By Lemmas 2.1 and 2.2, we can choose $y \in H$ with $\|y\|$ small enough so that $x_{0}+y$ is a separating vector for
$\operatorname{span}\left\{S_{1}, \ldots, S_{m}\right\}$ and $\operatorname{span}\left\{P^{\perp} T_{1}, \ldots, P^{\perp} T_{l}\right\}$. For any $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{l} \in \mathbb{C}$, suppose
(2.1) $\lambda_{1} S_{1}\left(x_{0}+y\right)+\cdots+\lambda_{m} S_{m}\left(x_{0}+y\right)+\mu_{1} T_{1}\left(x_{0}+y\right)+\cdots+\mu_{l} T_{l}\left(x_{0}+y\right)=0$.

Applying P^{\perp} to both sides of (2.1), it follows

$$
\begin{equation*}
\mu_{1} P^{\perp} T_{1}\left(x_{0}+y\right)+\cdots+\mu_{l} P^{\perp} T_{l}\left(x_{0}+y\right)=0 \tag{2.2}
\end{equation*}
$$

Since $x_{0}+y$ is a separating vector of $\operatorname{span}\left\{P^{\perp} T_{1}, \ldots, P^{\perp} T_{l}\right\}$, we have $\mu_{1}=\cdots=$ $\mu_{l}=0$. Now (2.1) implies $\lambda_{1}=\cdots=\lambda_{m}=0$, since $x_{0}+y$ is a separating vector of $\operatorname{span}\left\{S_{1}, \ldots, S_{m}\right\}$. Hence $k(\mathcal{S}) \geqslant k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{C}}\right)$.

Proposition 2.4. If $k\left(\mathcal{S}_{M}\right)=\operatorname{dim} M$, then $k\left(S_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)=k(\mathcal{S})$.
Proof. By Proposition 2.3, we only need to prove $k(\mathcal{S}) \leqslant k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)$.
Suppose that $k\left(\mathcal{S}_{M}\right)=m$ and $k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)=l$. If $m+l=\operatorname{dim} \mathcal{S}$, it is obvious that $k(\mathcal{S}) \leqslant k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)$. If $m+l<\operatorname{dim} \mathcal{S}$, and $m+l<n \leqslant \operatorname{dim} \mathcal{S}$, we take n linearly independent operators from \mathcal{S} in such a way that $S_{1}, \ldots, S_{m_{1}} \in \mathcal{S}_{M}$, $T_{1}, \ldots, T_{l_{1}} \in \mathcal{S}_{M}^{\mathrm{c}}$ and $m_{1}+l_{1}=n$. For any nonzero x_{0} in H, we show that there are $\lambda_{1}, \ldots, \lambda_{m_{1}}, \mu_{1}, \ldots, \mu_{l_{1}}$, not all zero, such that

$$
\begin{equation*}
\lambda_{1} S_{1} x_{0}+\cdots+\lambda_{m_{1}} S_{m_{1}} x_{0}+\mu_{1} T_{1} x_{0}+\cdots+\mu_{l_{1}} T_{l_{1}} x_{0}=0 \tag{2.3}
\end{equation*}
$$

If $l_{1} \leqslant l$, then $m_{1}>m$, and choose $\mu_{1}=\cdots=\mu_{l_{1}}=0$. Since $k\left(\mathcal{S}_{M}\right)=$ m, it follows that there are $\lambda_{1}, \ldots, \lambda_{m_{1}}$, not all zero, such that $\lambda_{1} S_{1} x_{0}+\cdots+$ $\lambda_{m_{1}} S_{m_{1}} x_{0}=0$. Suppose that $l_{1}>l$. If $\operatorname{span}\left\{P^{\perp} T_{1} x_{0}, \ldots, P^{\perp} T_{l_{1}} x_{0}\right\}=(0)$, then $\operatorname{span}\left\{T_{1} x_{0}, \ldots, T_{l_{1}} x_{0}\right\} \subseteq M$. Because $k\left(\mathcal{S}_{M}\right)=\operatorname{dim} M$, and $l_{1}+m_{1}=n>$ $m+l$, it follows that there are $\lambda_{1}, \ldots, \lambda_{m_{1}}, \mu_{1}, \ldots, \mu_{l_{1}}$, not all zero, satisfying (2.3). Without loss of generality, we may assume that $\left\{P^{\perp} T_{1} x_{0}, \ldots, P^{\perp} T_{t} x_{0}\right\}, 1 \leqslant t \leqslant l$ is linearly independent, and $P^{\perp} T_{j} x_{0} \in \operatorname{span}\left\{P^{\perp} T_{1} x_{0}, \ldots, P^{\perp} T_{t} x_{0}\right\}, t+1 \leqslant j \leqslant l_{1}$. Suppose that $P^{\perp} T_{j} x_{0}=\sum_{i=1}^{t} a_{i j} P^{\perp} T_{i} x_{0}, t+1 \leqslant j \leqslant l_{1}$. Let $B_{j}=T_{j}-\sum_{i=1}^{t} a_{i j} T_{i}$. Then $B_{j} x_{0} \in M, t+1 \leqslant j \leqslant l_{1}$. Since $S_{i} x_{0} \in M, 1 \leqslant i \leqslant m_{1}$ and $\operatorname{dim} M=m<$ $m_{1}+l_{1}-l \leqslant m_{1}+l_{1}-t$, we may choose $\lambda_{1}, \ldots, \lambda_{m_{1}}$ and $\mu_{t+1}, \ldots, \mu_{l_{1}}$, not all zero, such that

$$
\begin{equation*}
\lambda_{1} S_{1} x_{0}+\cdots+\lambda_{m_{1}} S_{m_{1}} x_{0}+\mu_{t+1} B_{t+1} x_{0}+\cdots+\mu_{l_{1}} B_{l_{1}} x_{0}=0 \tag{2.4}
\end{equation*}
$$

Hence

$$
\begin{align*}
\lambda_{1} S_{1} x_{0}+\cdots & +\lambda_{m_{1}} S_{m_{1}} x_{0}+\mu_{t+1}\left(T_{l_{1}}-\sum_{i=1}^{t} a_{i t+1} T_{i}\right) x_{0}+\cdots \tag{2.5}\\
& +\mu_{l_{1}}\left(T_{l_{1}}-\sum_{i=1}^{t} a_{i l_{1}} T_{i}\right) x_{0}=0
\end{align*}
$$

By (2.5), it follows that (2.3) is true.

Lemma 2.5. ([2]) Let V be a vector space over a field \mathbb{F} and let $L(V)$ be the set of all linear transformations on V. Suppose $\mathcal{S} \subseteq L(V)$ and $\operatorname{dim} \mathcal{S}$ is less than the cardinality of \mathbb{F}. Let x be a separating vector of \mathcal{S} and W be a linear subspace of V satisfying $\mathcal{S} x \cap W=(0)$. Then for each vector $y \in V$, there is a scalar $\lambda \in \mathbb{F}$ so that $y+\lambda x$ separates \mathcal{S} and $\mathcal{S}(y+\lambda x) \cap W=(0)$.

Lemma 2.6. If $k(\mathcal{S})=k$, then there exists an M with $\operatorname{dim} M=k$ and $\operatorname{dim} \mathcal{S}_{M}^{\mathrm{C}} \leqslant k$.

Proof. Since $k(\mathcal{S})=k$, there exist $x_{0} \in H$ and $A_{1}, \ldots, A_{k} \in \mathcal{S}$ such that $\max _{x \in H}\{\operatorname{dim} \operatorname{clin}(\mathcal{S} x)\}=\operatorname{dim} \operatorname{clin}\left(A_{1} x_{0}, \ldots, A_{k} x_{0}\right)=k$. Let $M=\operatorname{clin}\left(A_{1} x_{0}, \ldots, A_{k} x_{0}\right)$, $\widehat{\mathcal{S}}=\operatorname{span}\left\{A_{1}, \ldots, A_{k}\right\}$, and $\mathcal{S}_{M}=\{S \in \mathcal{S}: R(S) \subseteq M\}$. It is enough to prove $\mathcal{S}=\operatorname{span}\left\{\widehat{\mathcal{S}} \cup \mathcal{S}_{M}\right\}$. Since for any $S \in \mathcal{S}$, there exist $\lambda_{1}, \ldots, \lambda_{k}$ such that $S x_{0}=$ $\sum_{i=1}^{k} \lambda_{i} A_{i} x_{0}$. Let $S_{1}=S-\sum_{i=1}^{k} \lambda_{i} A_{i}$, then $S_{1} x_{0}=0$. If $S_{1}=0$, then $S \in \widehat{\mathcal{S}}$. If $S_{1} \neq 0$, we show next that $S_{1} \in \mathcal{S}_{M}$.

If $S_{1} \notin \mathcal{S}_{M}$, there exists $y \in H$ such that $S_{1} y \notin M=\widehat{\mathcal{S}} x_{0}$. Let $W=$ $\operatorname{clin}\left(S_{1} y\right)$. Then $\hat{\mathcal{S}} x_{0} \cap W=(0)$. By Lemma 2.5, there exists $\lambda \in \mathbb{C}$ such that $y+\lambda x_{0}$ separates $\widehat{\mathcal{S}}$ and $\widehat{\mathcal{S}}\left(y+\lambda x_{0}\right) \cap W=(0)$. Since $S_{1} \neq 0$ and $S_{1} x_{0}=0$, it follows $\left\{A_{1}, \ldots, A_{k}, S_{1}\right\}$ is linearly independent. Let $\widetilde{\mathcal{S}}=\operatorname{span}\left\{A_{1}, \ldots, A_{k}, S_{1}\right\}$. Next we prove that $y+\lambda x_{0}$ separates $\widetilde{\mathcal{S}}$. For any $A \in \widehat{\mathcal{S}}, t \in \mathbb{C}$, if $\left(A+t S_{1}\right)\left(y+\lambda x_{0}\right)=0$, then $A\left(y+\lambda x_{0}\right)=-t S_{1} y$. By $\widehat{\mathcal{S}}\left(y+\lambda x_{0}\right) \cap W=(0)$, it follows that $t=0$ and $A\left(y+\lambda x_{0}\right)=0$. Since $y+\lambda x_{0}$ is a separating vector of $\widehat{\mathcal{S}}$, we have $A=0$. Hence $y+\lambda x_{0}$ separates $\widetilde{\mathcal{S}}$, which implies $k(\mathcal{S}) \geqslant k+1$, a contradiction.

Definition 2.7. Suppose \mathcal{S} is a subspace of $B(H)$. We say \mathcal{S} has property A if for any subspace \mathcal{S}_{1} of \mathcal{S}, we have $k\left(\mathcal{S}_{1}\right) \geqslant\left\{\sqrt{2 \operatorname{dim} \mathcal{S}_{1}}-1 / 2\right\}$, where $\{t\}$ denotes the smallest integer that is greater than or equal to t.

We say \mathcal{S} has property B if there exists a nonzero subspace M of H such that $k\left(\mathcal{S}_{M}\right)=\operatorname{dim} M$.

Remark 2.8. Clearly if \mathcal{S} has property A , then so does any subspace of \mathcal{S}. If \mathcal{S} has property B , then so does any subspace of $B(H)$ containing \mathcal{S}.

For $x, y \in H$, let $x \otimes y$ denote the rank-one operator $u \rightarrow(u, x) y$.
Lemma 2.9. ([8]) Let $A, B \in B(H)$ and $\mathcal{S}=\operatorname{span}\{A, B\}$. Then $k(\mathcal{S})=1$ if and only if one of the following holds:
(i) $\operatorname{dim} \mathcal{S}=1$;
(ii) there exist $x_{0}, x_{1}, x_{2} \in H$ such that $A=x_{1} \otimes x_{0}, B=x_{2} \otimes x_{0}$.

Lemma 2.10. Suppose $\operatorname{dim} \mathcal{S}=n \geqslant 2$. If $k(\mathcal{S})<\{\sqrt{2 n}-1 / 2\}$, then \mathcal{S} has property B.

Proof. If $n=2$, then $k(\mathcal{S})=1$. Lemma 2.9 now implies that \mathcal{S} has property B.

Suppose the statement is true for all \mathcal{S} with $2 \leqslant \operatorname{dim} \mathcal{S} \leqslant n-1, n \geqslant 3$. For any \mathcal{S} with $\operatorname{dim} \mathcal{S}=n$, let $k(\mathcal{S})=k$. By Lemma 2.6, there exists a subspace M of H such that $\operatorname{dim} M=k$ and $\operatorname{dim} \mathcal{S}_{M}^{\mathrm{c}} \leqslant k$.

If $\mathcal{S}_{M}=\mathcal{S}$, clearly $k\left(\mathcal{S}_{M}\right)=k(\mathcal{S})=\operatorname{dim} M$.

If $\mathcal{S}_{M} \nsubseteq \mathcal{S}$, then let P be the orthogonal projection of H onto M. We have, for any $\mathcal{S}_{M}^{\mathrm{c}}, P^{\perp} \mathcal{S}_{M}^{\mathrm{c}} \neq(0)$, so $k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right) \geqslant 1$. Hence $k\left(\mathcal{S}_{M}\right) \leqslant k-1$, by Proposition 2.3. Since $k<\{\sqrt{2 n}-1 / 2\}$, we have $\{\sqrt{2 n}-1 / 2\}-1 \leqslant\{\sqrt{2(n-k)}-$ $1 / 2\}$. So $k-1<\{\sqrt{2 n}-1 / 2\}-1 \leqslant\{\sqrt{2(n-k)}-1 / 2\}$. Hence $k\left(\mathcal{S}_{M}\right)<$ $\{\sqrt{2(n-k)}-1 / 2\} \leqslant\left\{\sqrt{2 \operatorname{dim} \mathcal{S}_{M}}-1 / 2\right\}$. (Since $\operatorname{dim} \mathcal{S}_{M}+\operatorname{dim} \mathcal{S}_{M}^{c}=n$, it follows that $\operatorname{dim} \mathcal{S}_{M}=n-\operatorname{dim} \mathcal{S}_{M}^{\mathrm{c}}$. Since $\operatorname{dim} \mathcal{S}_{M}^{\mathrm{c}} \leqslant k$, it follows $\operatorname{dim} \mathcal{S}_{M} \geqslant n-k$.) By the induction hypothesis, \mathcal{S}_{M} has property B. It follows that \mathcal{S} has property B.

Lemma 2.11. If $\operatorname{dim} \mathcal{S}=n$ and \mathcal{S} has property A then \mathcal{S} is $[\sqrt{2 n}]$-reflexive, where $[t]$ denotes the largest integer that is less than or equal to t.

Proof. If $n=1$, Lemma 10 from [9] implies that \mathcal{S} is reflexive.
Suppose the statement is true for all \mathcal{S} with property A and $\operatorname{dim} \mathcal{S} \leqslant n-1$, $n \geqslant 2$. Suppose $\operatorname{dim} \mathcal{S}=n, \mathcal{S}$ has property A, and $k(\mathcal{S})=k$. Since \mathcal{S} has property $\mathrm{A}, k \geqslant\{\sqrt{2 n}-1 / 2\}$. If $k=n$, then \mathcal{S} has a separating vector, so \mathcal{S} is 2-reflexive. Hence \mathcal{S} is $[\sqrt{2 n}]$-reflexive, since $n \geqslant 2$ and $[\sqrt{2 n}] \geqslant 2$.

Suppose that $\{\sqrt{2 n}-1 / 2\} \leqslant k \leqslant n-1$. Let $m=[\sqrt{2 n}]$. Since $k(\mathcal{S})=k$, there exist $x_{1} \in H$ and $\left\{A_{1}, \ldots, A_{k}\right\} \subseteq \mathcal{S}$ such that $\left\{A_{i} x_{1}\right\}_{i=1}^{k}$ is a basis of $\mathcal{S} x_{1}$. Suppose $\mathcal{S}=\operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}$. There exists a unique $k \times n$ complex matrix $\left(a_{i j}\right)$ so that $A_{j} x_{1}=\sum_{i=1}^{k} a_{i j} A_{i} x_{1}, j=1, \ldots, n$, and if $j \leqslant k, a_{j j}=1$ and $a_{i j}=0$, $i \neq j$. Suppose $T^{(m)} \in \operatorname{ref}\left(\mathcal{S}^{(m)}\right)$; in the following we prove that $T \in \mathcal{S}$. For any $x_{2}, \ldots, x_{m} \in H$, there exist scalars t_{1}, \ldots, t_{n} such that

$$
\left(\begin{array}{c}
T x_{1} \tag{2.6}\\
\vdots \\
T x_{m}
\end{array}\right)=t_{1}\left(\begin{array}{c}
A_{1} x_{1} \\
\vdots \\
A_{1} x_{m}
\end{array}\right)+\cdots+t_{n}\left(\begin{array}{c}
A_{n} x_{1} \\
\vdots \\
A_{n} x_{m}
\end{array}\right)
$$

Since $T x_{1} \in \operatorname{span}\left\{A_{1} x_{1}, \ldots, A_{n} x_{1}\right\}$, there exist μ_{1}, \ldots, μ_{k} such that

$$
\begin{equation*}
T x_{1}=\sum_{i=1}^{k} \mu_{i} A_{i} x_{1} \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7), we have

$$
\begin{equation*}
T x_{g}=\sum_{i=1}^{k} \mu_{i} A_{i} x_{g}+\sum_{j=1}^{n} t_{j}\left(A_{j}-\sum_{i=1}^{k} a_{i j} A_{i}\right) x_{g}, \quad g=2, \ldots, m \tag{2.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
T_{1}=T-\sum_{i=1}^{k} \mu_{i} A_{i} \quad \text { and } \quad B_{j}=A_{j}-\sum_{i=1}^{k} a_{i j} A_{i} \tag{2.9}
\end{equation*}
$$

Note $B_{j}=0$ for $j=1, \ldots, k$. By (2.8) and (2.9), we have

$$
\left(\begin{array}{c}
T_{1} x_{2} \\
\vdots \\
T_{1} x_{m}
\end{array}\right)=t_{k+1}\left(\begin{array}{c}
B_{k+1} x_{2} \\
\vdots \\
B_{k+1} x_{m}
\end{array}\right)+\cdots+t_{n}\left(\begin{array}{c}
B_{n} x_{2} \\
\vdots \\
B_{n} x_{m}
\end{array}\right)
$$

By the induction hypothesis, we have that $\operatorname{span}\left\{B_{k+1}, \ldots, B_{n}\right\}$ is $[\sqrt{2(n-k)}]$ reflexive. Since $k \geqslant\{\sqrt{2 n}-1 / 2\}$, we have $[\sqrt{2 n}]-1=m-1 \geqslant[\sqrt{2(n-k)}]$. It follows that $T_{1} \in \operatorname{span}\left\{B_{k+1}, \ldots, B_{n}\right\}$. Therefore $T \in \mathcal{S}$.

Proposition 2.12. If $\operatorname{dim} \operatorname{clin}(\mathcal{S} H)=k$, then \mathcal{S} is k-reflexive.
Proof. Since $\operatorname{dim} \mathcal{S}=n, \mathcal{S} \subseteq F(H)$, and $\operatorname{dim} \operatorname{clin}(\mathcal{S} H)=k$, there exists an orthogonal projection P satisfying $\operatorname{dim} P H=m<\infty$ and $P \mathcal{S} P=\mathcal{S}$. So we may assume that \mathcal{S} is a subspace of $M_{m}(\mathbb{C})$. Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be an orthonormal basis of $\mathcal{S} \mathbb{C}^{m}$. Extend this to an orthonormal basis $\left\{e_{1}, \ldots, e_{k}, e_{k+1}, \ldots, e_{m}\right\}$ of \mathbb{C}^{m}. Clearly \mathcal{S} is a subspace of $\mathcal{R}=\left\{\left(r_{i j}\right) \in M_{m}(\mathbb{C}): r_{i j}=0\right.$, for any $\left.i>k\right\}$. It is easy to prove that \mathcal{R}^{*} is reflexive. Since $\mathcal{R}^{*(k)}$ has a separating vector, it follows that $\mathcal{R}^{*(k)}$ is elementary, by Proposition 3.2 from [1]. By Proposition 2.10 from [1], it follows that $\mathcal{S}^{*(k)}$ is reflexive. Hence $\mathcal{S}^{(k)}$ is reflexive.

Theorem 2.13. If $\operatorname{dim} \mathcal{S}=n, k(\mathcal{S})=k$, then \mathcal{S} is k-reflexive.
Proof. If \mathcal{S} has property A, by Lemma 2.11 we have that \mathcal{S} is $[\sqrt{2 n}]$-reflexive. Since $k \geqslant\{\sqrt{2 n}-1 / 2\} \geqslant[\sqrt{2 n}]$, it follows that \mathcal{S} is k-reflexive.

Step 1. Suppose \mathcal{S} does not have property A. Thus there exists a subspace \mathcal{S}_{1} of \mathcal{S} such that $k\left(\mathcal{S}_{1}\right)<\{\sqrt{2 n}-1 / 2\}$. By Lemma $2.10, \mathcal{S}_{1}$ has property B. Hence \mathcal{S} has property B.

Step 2. Let M be a maximal subspace of H such that $k\left(\mathcal{S}_{M}\right)=\operatorname{dim} M$. Let P be the orthogonal projection of H onto M.

If $\mathcal{S}_{M} \nsubseteq \mathcal{S}$, we prove next that $P^{\perp} \mathcal{S}$ has property A. If property A fails, then Step 1 implies that $P^{\perp} \mathcal{S}$ has property B. Thus there exists a subspace N of H such that

$$
\begin{equation*}
k\left(\left(P^{\perp} \mathcal{S}\right)_{N}\right)=\operatorname{dim} N \tag{2.10}
\end{equation*}
$$

By (2.10), we have $N \subseteq P^{\perp} H$. Let $\widetilde{M}=M \oplus N$. By Proposition 2.3,

$$
\begin{aligned}
k\left(\mathcal{S}_{\widetilde{M}}\right) & \geqslant k\left(\left(\mathcal{S}_{\widetilde{M}}\right)_{M}\right)+k\left(P^{\perp}\left(\mathcal{S}_{\widetilde{M}}\right)_{M}^{c}\right)=k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{\widetilde{\mathcal{M}}}\right) \\
& =k\left(P^{\perp} \mathcal{S}_{\widetilde{M}}\right)+\operatorname{dim} M=k\left(\left(P^{\perp} \mathcal{S}\right)_{\widetilde{M}}\right)+\operatorname{dim} M \\
& =k\left(\left(P^{\perp} \mathcal{S}\right)_{N}\right)+\operatorname{dim} M=\operatorname{dim} N+\operatorname{dim} M=\operatorname{dim} \widetilde{M}
\end{aligned}
$$

So $k\left(\mathcal{S}_{\widetilde{M}}\right)=\operatorname{dim} \widetilde{M}$, contradicting the maximality of M.
Suppose $\operatorname{dim} M=m$ and $\operatorname{dim}\left(P^{\perp} \mathcal{S}\right)=l$. Let $r=[\sqrt{2 l}]$. We show \mathcal{S} is $(m+r)$-reflexive by induction on l.

If $l=0$, then $\operatorname{clin}(\mathcal{S H})=M$. By Proposition 2.12, it follows \mathcal{S} is m-reflexive.
Suppose the statement is true for all $\operatorname{dim}\left(P^{\perp} \mathcal{S}\right) \leqslant l-1, l \geqslant 1$. Suppose $\operatorname{dim} P^{\perp} \mathcal{S}=l$. Since $\mathcal{S}=\mathcal{S}_{M}+\mathcal{S}_{M}^{\mathrm{c}}$, we have $P^{\perp} \mathcal{S}=P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}$. If $\left\{A_{1}, \ldots, A_{s}\right\}$ is a basis of $\mathcal{S}_{M}^{\mathrm{c}}$, we can easily prove that $\left\{P^{\perp} A_{i}\right\}_{i=1}^{s}$ is linearly independent, so $s=l$. If $k\left(P^{\perp} \mathcal{S}\right)=J$, then there exists an $x_{1} \in H$ and $\left\{A_{1}, \ldots, A_{J}\right\} \subseteq \mathcal{S}_{M}^{\mathrm{c}}$ so that $\left\{P^{\perp} A_{1} x_{1}, \ldots, P^{\perp} A_{J} x_{1}\right\}$ is linearly independent. Let $\left\{A_{l+1}, \ldots, A_{n}\right\}$ be a basis of \mathcal{S}_{M}; it follows that $\left\{A_{1}, \ldots, A_{n}\right\}$ is a basis of \mathcal{S}. Since $P^{\perp} A_{j} x_{1} \in$ $\operatorname{span}\left\{P^{\perp} A_{1} x_{1}, \ldots, P^{\perp} A_{J} x_{1}\right\}, J+1 \leqslant j \leqslant n$, we have

$$
\begin{equation*}
P^{\perp} A_{j} x_{1}=\sum_{i=1}^{J} a_{i j} P^{\perp} A_{i} x_{1}, J+1 \leqslant j \leqslant l \text { and } P^{\perp} A_{j} x_{1}=0, l+1 \leqslant j \leqslant n \tag{2.11}
\end{equation*}
$$

If $T \in B(H)$, then $T^{(m+r)} \in \operatorname{ref}\left(\mathcal{S}^{(m+r)}\right)$. For any $x_{2}, \ldots, x_{m+r} \in H$, there exist t_{1}, \ldots, t_{n} so that

$$
\left(\begin{array}{c}
T x_{1} \tag{2.12}\\
\vdots \\
T x_{m+r}
\end{array}\right)=t_{1}\left(\begin{array}{c}
A_{1} x_{1} \\
\vdots \\
A_{1} x_{m+r}
\end{array}\right)+\cdots+t_{n}\left(\begin{array}{c}
A_{n} x_{1} \\
\vdots \\
A_{n} x_{m+r}
\end{array}\right) .
$$

Since $T x_{1} \in \operatorname{span}\left\{A_{1} x_{1}, \ldots, A_{n} x_{1}\right\}$, it follows that $P^{\perp} T x_{1} \in \operatorname{span}\left\{P^{\perp} A_{1} x_{1}, \ldots\right.$, $\left.P^{\perp} A_{J} x_{1}\right\}$. Hence there exist v_{1}, \ldots, v_{J} so that

$$
\begin{equation*}
P^{\perp} T x_{1}=\sum_{i=1}^{J} v_{i} P^{\perp} A_{i} x_{1} \tag{2.13}
\end{equation*}
$$

By (2.11) to (2.13), we have

$$
\begin{equation*}
T x_{g}=\sum_{i=1}^{J}\left(v_{i}-\sum_{j=J+1}^{l} t_{j} a_{i j}\right) A_{i} x_{g}+\sum_{i=J+1}^{n} t_{i} A_{i} x_{g}, \quad g=2, \ldots, m+r \tag{2.14}
\end{equation*}
$$

Let

$$
\begin{align*}
& C=T-\sum_{i=1}^{J} v_{i} A_{i}, \quad B_{j}=A_{j}-\sum_{i=1}^{J} a_{i j} A_{i} \tag{2.15}\\
& J+1 \leqslant j \leqslant l, \quad B_{j}=A_{j}, \quad l+1 \leqslant j \leqslant n
\end{align*}
$$

By (2.14) and (2.15), we have

$$
\left(\begin{array}{c}
C x_{2} \\
\vdots \\
C x_{m+r}
\end{array}\right)=t_{J+1}\left(\begin{array}{c}
B_{J+1} x_{2} \\
\vdots \\
B_{J+1} x_{m+r}
\end{array}\right)+\cdots+t_{n}\left(\begin{array}{c}
B_{n} x_{2} \\
\vdots \\
B_{n} x_{m+r}
\end{array}\right) .
$$

Let $\widetilde{\mathcal{S}}=\operatorname{span}\left\{B_{J+1}, \ldots, B_{n}\right\}$. Then $\operatorname{dim} P^{\perp} \widetilde{\mathcal{S}} \leqslant l-J$ and $k\left(\widetilde{\mathcal{S}}_{M}\right)=k\left(\mathcal{S}_{M}\right)=$ $\operatorname{dim} M$. Since $P^{\perp} \mathcal{S}$ has property A, we have that $J \geqslant\{\sqrt{2 l}-1 / 2\}$. So $m+r-1 \geqslant$ $m+[\sqrt{2(l-J)}] \geqslant m+\left[\sqrt{2 \operatorname{dim} P^{\perp} \widetilde{\mathcal{S}}}\right]$. By the induction hypothesis, we have $C \in \operatorname{span}\left\{B_{J+1}, \ldots, B_{n}\right\}$. Hence $T \in \operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}=\mathcal{S}$. By Proposition 2.4, $k=k\left(\mathcal{S}_{M}\right)+k\left(P^{\perp} \mathcal{S}_{M}^{\mathrm{c}}\right)=m+k\left(P^{\perp} \mathcal{S}\right)$. Since $P^{\perp} \mathcal{S}$ has property A, $k\left(P^{\perp} \mathcal{S}\right) \geqslant$ $\{\sqrt{2 l}-1 / 2\}$, it follows $k \geqslant m+\{\sqrt{2 l}-1 / 2\} \geqslant m+[\sqrt{2 l}]$. Hence \mathcal{S} is k-reflexive.

If $\mathcal{S}_{M}=\mathcal{S}$, then \mathcal{S} is k-reflexive by Proposition 2.12.
Theorem 2.14. If $\operatorname{dim} \mathcal{S}=n$, then \mathcal{S} is $[\sqrt{2 n}]$-reflexive.
Proof. If $n=1,2,3$, Theorem 3 from [13] implies the result. Suppose the result holds for $\operatorname{dim} \mathcal{S} \leqslant n-1, n \geqslant 4$. Let $\operatorname{dim} \mathcal{S}=n$ and suppose $k(\mathcal{S})=k$. If $k \leqslant[\sqrt{2 n}]$, by Theorem 2.13 it follows that \mathcal{S} is $[\sqrt{2 n}]$-reflexive.

If $k>[\sqrt{2 n}]$ then $k \geqslant\{\sqrt{2 n}-1 / 2\}$. If $k=n$, then \mathcal{S} is 2-reflexive. Hence \mathcal{S} is [$\sqrt{2 n}]$-reflexive. If $[\sqrt{2 n}]<k \leqslant n-1$, using the same argument as in Lemma 2.11, we have $\operatorname{dim} \operatorname{span}\left\{B_{k+1}, \ldots, B_{n}\right\} \leqslant n-k$. By the induction hypothesis, it follows that $\operatorname{span}\left\{B_{k+1}, \ldots, B_{n}\right\}$ is $[\sqrt{2(n-k)}]$-reflexive. Since $k \geqslant\{\sqrt{2 n}-1 / 2\}$, it follows that $[\sqrt{2 n}]-1 \geqslant[\sqrt{2(n-k)}]$. Thus $\operatorname{span}\left\{B_{k+1}, \ldots, B_{n}\right\}$ is $([\sqrt{2 n}]-1)$ reflexive, so \mathcal{S} is $[\sqrt{2 n}]$-reflexive.

Example 2.15. Let \mathcal{S}_{k} be the set of all $k \times k$ upper triangular matrices with zero trace. We may show $\operatorname{dim} \mathcal{S}_{k}=\frac{k(k+1)}{2}-1$ and \mathcal{S}_{k} is not $(k-1)$-reflexive. For any positive integer l, one can easily show that there exists a positive integer k such that

$$
\begin{equation*}
\frac{k(k+1)}{2}-1 \leqslant l<\frac{(k+1)(k+2)}{2}-1 \tag{2.16}
\end{equation*}
$$

For any positive integer l, choose k such that (2.16) holds and let

$$
m=l-\left(\frac{k(k+1)}{2}-1\right)
$$

Let $\mathcal{S}=\mathcal{S}_{k} \oplus \mathcal{A}_{m}$, where $\mathcal{A}_{m}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{m}\right): a_{i} \in \mathbb{C}\right\}$. It is easy to prove that \mathcal{S} is not $([\sqrt{2 l}]-1)$-reflexive.

Remarks 2.16. (i) By Theorem 2.14 and Example 2.15, it follows that $[\sqrt{2 n}]$ is the smallest integer such that all n-dimensional subspaces of $B(H)$ are [$\sqrt{2 n}]$-reflexive. Thus we answer a question of Magajna ([15]).
(ii) By the proof of Theorem 2.14, we have that if $k(\mathcal{S}) \geqslant n-1$, then \mathcal{S} is 2reflexive and that if $k(\mathcal{S}) \geqslant n-4$, then \mathcal{S} is 3-reflexive. This improves Theorem 3.6 from [2].

In the following, so we give an application of Theorem 2.14.
ThEOREM 2.17. If $\Phi(\cdot)=\sum_{i=1}^{n} a_{i}(\cdot) b_{i},\left\{a_{i}\right\},\left\{b_{i}\right\}$ are subsets of a C^{*}-algebra \mathcal{A}, then Φ is completely positive if and only if Φ is $\max \{[\sqrt{2(n-1)}], 1\}$-positive.

The proof is similar to the proof of Theorem 6 from [13]; we leave it to the reader.

Acknowledgements. The authors wish to thank Professors Don Hadwin and R. Hibschweiler for their help.

REFERENCES

1. E. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 357(1986).
2. L. Ding, Separating vectors and reflexivity, Linear Algebra Appl. 174(1992), 37-52.
3. L. Ding, Separating vectors and reflexivity, Proc. Amer. Math. Soc. 124(1996), 31013108.
4. W. Gong, D.R. Larson, W. Wogen, The two results on separating vectors, Indiana Univ. Math. J. 43(1994), 1159-1165.
5. D. Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra (3) 14(1983), 225-233.
6. D. Hadwin, A general view of reflexivity, Trans. Amer. Math. Soc. 344(1994), 325360.
7. P.R. Halmos, Reflexive lattices of subspaces, J. London Mat. Soc. 4(1971), 257-263.
8. J. Hou, Linear interpolations and elementary operators on $B(H)$, Sci. China Ser. A 36(1993), 1025-1035.
9. J. Kraus, D.R. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13(1985), 227-236.
10. J. Kraus, D.R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53(1986), 340-356.
11. D.R. Larson, Hyperreflexivity and a dual product construction, Trans. Amer. Math. Soc. 294(1986), 79-88.
12. D.R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J Math. 110(1988), 283-299.
13. Jiankui Li, Complete positivity of elementary operators on C^{*}-algebras, Proc. Amer. Math. Soc. 127(1999), 235-239.
14. A.I. Loginov, V.S. Shulman, Hereditary and intermediate reflexivity of W^{*}-algebras, Math. USSR-Izv. 9(1975), 1189-1201.
15. B. MAGAJNA, On the relative reflexivity of finitely generated modules of operators, Trans. Amer. Math. Soc. 327(1991), 221-249.
16. M. Mathied, Elementary operators on prime C^{*}-algebras. I, Math. Ann. 284(1989), 223-244.
17. V. Paulsen, Completely Bounded Maps and Dilations, Pitman Res. Notes Math. Ser., vol. 102, Longman Sci. Tech., New York 1986.

JIANKUI LI
Department of Mathematics
University of New Hampshire Durham, NH 03824 USA
E-mail: jkli@spicerack.sr.unh.edu
Current address:
Department of Pure Mathematics
University of Waterloo
Waterloo, ON N2L 3GI
CANADA
E-mail: jli@math.uwaterloo.ca

Received February 25, 1999; revised August 26, 1999.

