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Abstract. It is shown that each contraction A on a Hilbert space H, with
A + A∗ 6 µI for some µ ∈ R, has a unitary dilation U on H⊕H satisfying
U +U∗ 6 µI. This is used to settle a conjecture of Halmos in the affirmative:
The closure of the numerical range of each contraction A is the intersection
of the closures of the numerical ranges of all unitary dilations of A. By means
of the duality theory of completely positive linear maps, some further results
concerning numerical ranges inclusions and dilations are deduced.
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1. INTRODUCTION

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H.
When H is of dimension n < ∞, B(H) can be identified with the algebra of
n × n complex matrices, denoted by Mn. We say that A ∈ B(H1) has a dilation
B ∈ B(H2) if A = V ∗BV for some isometry V : H1 → H2; equivalently, B

is unitarily similar to a 2 × 2 operator-matrix of the form
(

A ∗
∗ ∗

)
. In [10],

Halmos showed explicitly that each contraction A ∈ B(H) has a unitary dilation
U ∈ B(H⊕H) of the form

U =
(

A
√

1−AA∗√
1−A∗A −A∗

)
.

This result has generated a lot of research ([1], [11], [12], [18]), including the far
reaching Sz.-Nagy dilation theorem ([18]): Each contraction A ∈ B(H) has a power
unitary dilation; i.e., there is a unitary U satisfying

Uk =
(

Ak ∗
∗ ∗

)
, k = 1, 2, . . . .
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In this paper, we are concerned about the structure of a contraction A ∈
B(H) subject to a constraint A + A∗ 6 µI for some µ ∈ R. We prove that such a
contraction A always admits a unitary dilation U ∈ B(H⊕H) subject to the same
constraint U + U∗ 6 µI (Theorem 2.1). Obviously, the case A + A∗ 6 µI with
µ > 2 is automatic while the case A + A∗ 6 µI with µ < −1 is vacuous.

It turns out that the constrained unitary dilation is particularly useful in
the study of numerical ranges of operators. Recall that the numerical range of an
operator A ∈ B(H), defined by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1},

is a bounded convex set in C. The numerical range has been studied extensively
because of its connections and applications to many different areas (see e.g. [13],
[14]).

With the aid of constrained unitary dilations, we prove Theorem 2.4 to affirm
the conjecture of Halmos ([11]): For each contraction A on H, the closure of the
numerical range of A, denoted by W (A), satisfies

W (A) =
⋂
{W (U) : U ∈ B(H⊕H) is a unitary dilation of A}.

Of course, the closure signs can be omitted in the finite-dimensional case. But in
the infinite-dimensional case, if the closure signs are removed, then the equality
may fail even when A is a normal contraction (see [9]).

Furthermore, we use the facility of constrained unitary dilations (the finite-
dimensional case only) and the duality theory of completely positive linear maps
to deduce Theorem 4.3: If B ∈ M3 has a non-trivial reducing subspace, then each
operator A ∈ B(H) with W (A) ⊆ W (B) has a dilation that is unitarily similar to
B⊗ I = B⊕B⊕· · · . In particular, when B ∈ M3 is normal or B = B1⊕ [γ] ∈ M3

with γ ∈ W (B1), the statement is reduced to the following known results:

(I) ([15], see also [8], [16]) Let B be the diagonal matrix Diag (b1, b2, b3) ∈ M3.
Then A ∈ B(H) satisfies W (A) ⊆ W (B) if and only if A has a dilation of the form
B⊗I (equivalently, there exist positive operators P1, P2, P3 with P1+P2+P3 = IH
such that A = b1P1 + b2P2 + b3P3).

(II) ([8], see also [2] and Theorem 3.1.1 of [5]) Let B1 ∈ M2. Then A ∈ B(H)
satisfies W (A) ⊆ W (B1) if and only if A has a dilation of the form B1 ⊗ I.

By the examples in [8], we see that Theorem 4.3 need not hold for general B ∈ M3

or normal B ∈ M4. Thus, the result is best possible in a certain sense.
This paper is organized as follows. In Section 2, we present the statement

of the main theorem and its consequences, including an affirmative solution to
the conjecture of Halmos. Section 3 is devoted to the proof of the main theorem.
Section 4 concerns completely positive linear maps in connection with numerical
range inclusions and dilation properties. In Section 5, we discuss some related
problems and show that the main theorem does not admit further generalizations.
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2. MAIN THEOREM AND CONSEQUENCES

The following is the main theorem.

Theorem 2.1. Let A ∈ B(H) be a contraction such that A + A∗ 6 µI for
some µ ∈ R. Then A has a unitary dilation U ∈ B(H⊕H) satisfying U +U∗ 6 µI.
In the case when H is of dimension n, the matrix U ∈ M2n can be chosen such
that its 2n eigenvalues are e±iθ1 , . . . , e±iθn with 2 cos θj 6 µ for all j (i.e., non-real
eigenvalues occur in conjugate pairs, real eigenvalues have even multiplicities).

The proof of Theorem 2.1 will be given in the next section. Meanwhile, we
mention some related facts and immediate consequences of the constrained unitary
dilations.

First, in the finite-dimensional case, each unitary dilation U ∈ M2n of a

contraction A ∈ Mn must be of the form U =
(

A C
B D

)
with B = U1

√
I −A∗A,

C = −
√

I −AA∗U2 and D = U1A
∗U2 for some unitary U1, U2 ∈ Mn. Thus U is

unitarily similar to

(I ⊕ U∗1 )U(I ⊕ U1) =
(

A −
√

I −AA∗U0√
I −A∗A A∗U0

)
with U0 = U2U1. In order to get a “constrained” unitary dilation, we need a
judicious choice of U0 ∈ Mn. If A is normal, then we just choose U0 = I. If
A is non-normal, there is an algorithm (an account of non-commutative matrix
manipulation) to construct U0 as shown in next section.

Secondly, if A ∈ Mn is a real matrix, our construction will also yield a real
constrained orthogonal dilation U ∈ M2n.

Moreover, we can use Theorem 2.1 to get a spectral decomposition for non-
normal constrained contractions in terms of “a non-commutative resolution of the
identity”. Here we state only the finite-dimensional case:

Corollary 2.2. Suppose A ∈ Mn is a contraction satisfying A+A∗ 6 µIn

for some µ ∈ R. Then there are n real numbers θ1, . . . , θn ∈ [0, π] with 2 cos θj 6 µ
for all j, and positive semidefinite matrices Q1, . . . , Q2n ∈ Mn with rank Qj 6 1
for all j, such that

In =
n∑

j=1

(Qj + Qn+j) and A =
n∑

j=1

(
eiθj Qj + e−iθj Qn+j

)
.

Proof. Suppose A ∈ Mn is a contraction. By Theorem 2.1, there exists a

unitary dilation U =
(

A ∗
∗ ∗

)
∈ M2n with eigenvalues in conjugate pairs. By

the spectral decomposition, there exist mutually orthogonal rank 1 projections

P1, . . . , P2n ∈ M2n such that
2n∑

j=1

Pj = I2n and U =
2n∑

j=1

αjPj , where α1, . . . , α2n

are eigenvalues of U . Write Pj =
(

Qj ∗
∗ ∗

)
with Qj ∈ Mn. Then In =

2n∑
j=1

Qj

and A =
2n∑

j=1

αjQj as desired.
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The following lemma is a simple fact about numerical ranges.

Lemma 2.3. Let A ∈ B(H). Then A + A∗ 6 µI if and only if W (A) is
included in the closed half plane {z ∈ C : (z + z) 6 µ}.

Now, we are ready to settle the conjecture of Halmos.

Theorem 2.4. Let A ∈ B(H) be a contraction. Then

W (A) =
⋂
{W (U) : U ∈ B(H⊕H) is a unitary dilation of A}.

(In the finite-dimensional case, the closure signs on the numerical ranges can be
omitted.)

Proof. Let A ∈ B(H) be a contraction. It is obvious that W (A) ⊆ W (B) if
B is a dilation of A. Thus, we have

W (A) ⊆
⋂
{W (U) : U is a unitary dilation of A}.

To prove the reverse inclusion, we consider any particular ζ /∈ W (A). Since W (A)
is a compact convex set, there exists θ ∈ [0, 2π) and µ ∈ R such that eiθζ +
e−iθζ > µ, while eiθW (A) = W (eiθA) is included in the closed half plane {z ∈
C : z + z 6 µ}. By Theorem 2.1, there is a unitary dilation U of A such that
eiθU + e−iθU∗ 6 µI2n. By Lemma 2.3 again, W (eiθU) ⊆ {z ∈ C : z + z 6 µ}.
Hence eiθζ /∈ W (eiθU) and ζ /∈ W (U).

3. PROOF OF THE MAIN THEOREM

We begin with several lemmas.

Lemma 3.1. Let A ∈ B(H) be a contraction. Suppose v is a unit vector
satisfying ‖Av‖ = 1 and (A+A∗)v = (2 cos θ)v for some θ ∈ [0, π], but v is not an
eigenvector for A. Then V = span {v,Av} is a 2-dimensional reducing subspace
of A, and the restriction of A on V is a unitary operator with e±iθ as the two
eigenvalues.

Proof. Write Av = λv +
√

1− |λ|2u, where u is a unit vector orthogonal to
v and |λ| 6= 1. With respect to the orthonormal basis {v, u}, the compression

of A onto V is a 2 × 2 matrix X =
(

λ b√
1− |λ|2 c

)
for some b, c ∈ C. Since

(X + X∗)v = (2 cos θ)v, we see that λ + λ = 2 cos θ and b = −
√

1− |λ|2. From
X∗X 6 I, it follows that c = λ. Hence, X is unitary, and X is a direct summand
of the contraction A. Furthermore, from the matrix form of X, we see that the
two eigenvalues of X are e±iθ.
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Lemma 3.2. Let H ∈ Mn be the leading principal submatrix of a Hermitian
matrix H̃ ∈ Mn+1. Suppose there exists a unit vector u ∈ Cn+1 with nonzero
(n + 1)st entry such that H̃u = ξu. If H 6 ξIn, then H̃ 6 ξIn+1.

Proof. Suppose H, H̃ and u satisfy the hypotheses of the lemma. Let w ∈
Cn+1 be a unit vector orthogonal to u. Then there exist t1, t2 ∈ C such that t1 6= 0,
|t1|2 + |t2|2 = 1, and v = t1w + t2u ∈ Cn+1 is a unit vector whose (n + 1)st entry
is zero. Thus, |t1|2(H̃w, w) + |t2|2ξ = (H̃v, v) is a quadratic form of H on a unit
vector, and hence not larger than ξ. It follows that (H̃w, w) 6 ξ and H̃ 6 ξIn+1

as asserted.

Lemma 3.3. Let A ∈ Mn be a contraction such that 2 cos θ is the largest
eigenvalue for A + A∗. Then A has a contractive dilation Ã ∈ Mn+1 such that
Ã + Ã∗ 6 (2 cos θ)In+1 and e±iθ are two eigenvalues for Ã.

Proof. Suppose eiθ or e−iθ is an eigenvalue for A. Then evidently A has a
desired dilation.

Next, suppose neither eiθ nor e−iθ is an eigenvalue for A. Let v be a unit
vector such that (A + A∗)v = (2 cos θ)v. By Lemma 3.1, we have ‖Av‖ < 1. Since

v∗(AA∗−A∗A)v = v∗{A(A+A∗)−(A+A∗)A}v = v∗A(2 cos θ)v−(2 cos θ)v∗Av = 0,

we have ‖A∗v‖2 = ‖Av‖2. Let d =
√

1− ‖Av‖2 =
√

1− ‖A∗v‖2. Then x =√
In −A∗Av/d and y =

√
In −AA∗v/d are unit vectors in Cn. Write

X =
(

In 0
0 x

)
, Y =

(
In 0
0 y

)
, Z =

(
A −

√
In −AA∗√

In −A∗A A∗

)
,

and

Ã = X∗ZY =
(

A −(In −AA∗)v/d
v∗(In −A∗A)/d x∗A∗y

)
∈ Mn+1.

Then X∗X = In+1 = Y ∗Y , Z∗Z = I2n and hence Ã is a contractive dilation of A.

Write ṽ =
(

v
0

)
∈ Cn+1. Then

Ãṽ =
(

Av
v∗(In −A∗A)v/d

)
=
(

Av
d

)
is a unit vector because d =

√
1− ‖Av‖2, and

(Ã + Ã∗)ṽ =
(

(A + A∗)v
v∗(AA∗ −A∗A)v/d

)
=
(

(2 cos θ)v
0

)
= (2 cos θ)ṽ

because ‖Av‖ = ‖A∗v‖. It follows from Lemma 3.1 that V = span {ṽ, Ãṽ} is a
reducing subspace of Ã and the restriction of Ã on V has e±iθ as the two eigenval-

ues. So, Ãṽ =
(

Av
d

)
is also an eigenvector of Ã + Ã∗ corresponding to the eigen-

value 2 cos θ. Note that the last entry of Ãṽ is d 6= 0. Applying Lemma 3.2 with
H = A+A∗, H̃ = Ã+Ã∗ and ξ = 2 cos θ, we conclude that Ã+Ã∗ 6 (2 cos θ)In+1.
Thus, Ã is a desired dilation.
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Proof of Theorem 2.1 for the finite-dimensional case. Let A ∈ Mn be a
contraction with A + A∗ 6 µIn. We prove by induction that A has a unitary
dilation U ∈ M2n such that U + U∗ 6 µI2n and the eigenvalues of U occur in
conjugate pairs.

If n = 1 and A = [λ], then the matrix
(

λ −
√

1− |λ|2√
1− |λ|2 λ

)
is a

desired dilation.
Now suppose n > 1, and the result is true for the cases up to n− 1. Assume

the largest eigenvalue of A+A∗ is 2 cos θ 6 µ. By Lemma 3.3, A has a contractive
dilation that is unitarily similar to [eiθ] ⊕ [e−iθ] ⊕ T ∈ Mn+1, where T ∈ Mn−1

is a contraction satisfying T + T ∗ 6 (2 cos θ)In−1 6 µIn−1. By the induction
assumption, T has a unitary dilation U1 ∈ M2n−2 with all required properties.
Therefore, A has a dilation that is unitarily similar to [eiθ]⊕ [e−iθ]⊕U1 ∈ M2n as
desired.

To prove Theorem 2.1 for the infinite-dimensional case, we need one propo-
sition.

Proposition 3.4. Suppose A and B in B(H) satisfy A∗A + B∗B 6 IH and
A + A∗ 6 µIH for some µ ∈ R. Then there exist C and D in B(H) so that

Z =
(

A C
B D

)
∈ B(H⊕H)

is a contraction with Z + Z∗ 6 µIH⊕H.

Proof. First, we consider the case when dimH = n. By the finite-dimensional
case of Theorem 2.1, there exists a unitary dilation U ∈ M2n of A in the form

U =
(

A ∗√
I −A∗A ∗

)
with U + U∗ 6 µI2n. Since A∗A + B∗B 6 In, we see that B = J

√
I −A∗A for

some contraction J ∈ Mn. Let

V =

(
In 0n

0n J∗

0n −
√

In − JJ∗

)
and Ũ = U ⊕ (−In).

Then V ∗V = I2n and Z = V ∗ŨV is a desired matrix.
Next, suppose A,B ∈ B(H), where H is of infinite dimension, such that

A∗A + B∗B 6 IH and A + A∗ 6 µIH. Without loss of generality, we may assume
that A = (apq) and B = (bpq) are infinite matrices with respect to a countable
orthonormal basis so that indices p and q run through all positive integers. For
each positive integer n, let An = (apq)16p,q6n and Bn = (bpq)16p,q6n be the finite
sections of A and B. Then A∗nAn + B∗nBn 6 In and An + A∗n 6 µIn. By the
finite-dimensional result, there exists a contraction

Tn =
(

An Cn

Bn Dn

)
∈ M2n
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with Tn + T ∗n 6 µI2n. Let

T̃n =


An 0

... Cn 0

0 0
... 0 0

· · · · · · · · · · · ·
Bn 0

... Dn 0

0 0
... 0 0


∈ B(H⊕H).

Then T̃n is a contraction with T̃n + T̃ ∗n 6 µIH⊕H. Taking the weak-operator limit
of a convergent subsequence of the bounded sequence {T̃n}, we get a contraction

Z =
(

A C
B D

)
∈ B(H⊕H)

satisfying Z + Z∗ 6 µIH⊕H.

Proof of Theorem 2.1 for the infinite-dimensional case. Suppose A is a con-
traction acting on an infinite-dimensional Hilbert space H such that A+A∗ 6 µI.
Applying Proposition 3.4 with B =

√
I −A∗A, we see that there is a contraction

Z1 =
(

A C√
I −A∗A D

)
∈ B(H⊕H)

satisfying Z1 + Z∗1 6 µI and ‖Z1v‖ = ‖v‖ for all vectors v ∈ H ⊕ O, where O is
the zero subspace in H.

Repeating the argument on Z1, we get a contractive dilation of Z1 of the
form

Z2 =
(

Z1 C̃√
I − Z∗1Z1 D̃

)
∈ B(H⊕H⊕H⊕H)

such that Z2 + Z∗2 6 µI and ‖Z2v‖ = ‖v‖ for all vectors v ∈ H ⊕ H ⊕ O ⊕ O.
Continuing this process for further dilations, we obtain eventually a contraction
Z∞, denoted by U , acting on H⊕H⊕ · · · so that U + U∗ 6 µI and ‖Uv‖ = 1 for
all unit vectors v. Identifying O ⊕H with O ⊕H⊕H⊕ · · ·, we may regard U as
an isometry acting on H⊕H while A still acts on H⊕O.

Next, we show that U is invertible. To this end, we presume µ < 2 (otherwise,
the constraint is automatic); hence U + U∗ 6 µI < 2I implies that 1 /∈ W (U).
Since σ(U) ⊆ W (U), we deduce that I − U is invertible. By a similar argument,
or by the fact that I −U∗ = (I −U)∗, we see that I −U∗ is also invertible. Thus,
U − I = U − U∗U = (I − U∗)U implies that U = (I − U∗)−1(U − I) is invertible.
Therefore, U is unitary and U is a desired dilation.
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4. NUMERICAL RANGE INCLUSION AND DILATION

In this section, we establish relations between the conditions (i) W (A) ⊆ W (B),
and (ii) A has a dilation of the form B⊗I = B⊕B⊕· · ·. The tool is the facility of
constrained unitary dilations in conjunction with the theory of completely positive
linear maps (see e.g. [4], [5], [7], [17] for general background). Let S be a subspace
of Mn satisfying In ∈ S, and A∗ ∈ S whenever A ∈ S. A linear map ϕ : S → B(H)
is said to be positive if it maps positive elements to positive elements; ϕ is said to
be completely positive if ϕk : Mk(S) → Mk(B(H)), defined by

(Aij)16i,j6k 7→ (ϕ(Aij))16i,j6k,

is positive for k = 1, 2, . . . . We begin with a lemma of some standard results (cf.
[3], Section 1.4, [4] and [5]).

Lemma 4.1. Let A ∈ B(H) and B ∈ Mn. Define a linear map

ϕ : span {I,B, B∗} → span {I,A, A∗}

by
ϕ(aI3 + bB + cB∗) = aIH + bA + cA∗, for any a, b, c ∈ C.

We have (i) ⇔ (ii) ⇐ (iii) ⇔ (iv) for the following conditions.
(i) ϕ is a positive linear map.
(ii) The inclusion relation W (A) ⊆ W (B) holds.
(iii) The operator A has a dilation that is unitarily similar to B ⊗ I.
(A finite number of copies of B is enough for the dilation if H is of finite

dimension.)
(iv) ϕ is a completely positive linear map.

Proof. The implication (iv) ⇒ (i) and the implication (iii) ⇒ (ii) are clear.
(i) ⇔ (ii): Note that W (A) ⊆ W (B) if and only if every closed half plane

including W (B) also includes W (A). Since W (T ) is included in the closed half
plane

{z ∈ C : a + bz + cz > 0}

if and only if T satisfies aI + bT + cT ∗ > 0, the result follows.
(iv) ⇔ (iii): Suppose (iv) holds. By Arveson’s extension theorem (Theorem

1.2.3 of [4]), ϕ can be extended to a completely positive linear map Φ from Mn to
B(H). Then there is an isometry V such that Φ(X) = V ∗(X⊗I)V for all X ∈ Mn;
thus A = ϕ(B) = Φ(B) = V ∗(B ⊗ I)V and Condition (iii) holds. As shown in [7],
if H is of finite dimension, the number of copies of B needed is finite.

Conversely, suppose (iii) holds, i.e., A = V ∗(B ⊗ I)V for some isometry V .
Then ϕ is just the completely positive linear map X 7→ V ∗(X ⊗ I)V .

Usually, a general positive linear map is “far away” from being completely
positive (see [6]). Nevertheless, we show below that there is a special instance
for a whole class of positive maps to be completely positive. Conceivably, the
hypothesis of Proposition 4.2 may be the only situation in the non-commutative
case that the two classes of linear maps coincide.
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Proposition 4.2. Suppose B ∈ M3 has a reducing subspace. Then each
unital positive linear map from span {I,B,B∗} to B(H) is completely positive.

Proof. Let ϕ be a unital positive linear map from S = span {I,B,B∗} to
B(H). Suppose B is normal; we may write B in a diagonal form. If S is of
dimension one, i.e., B is scalar, then the result is trivial. If S is of dimension two,
then S is spanned by I and a hermitian matrix H = Diag (0, r, 1) with 0 6 r 6 1.
Let {e1, e2, e3} be the standard basis for C3. Write

V = e1 ⊗
√

IH − ϕ(H) + e3 ⊗
√

ϕ(H).

Then V is an isometry and ϕ(X) = V ∗(X ⊗ IH)V is complete positive. If S is of
dimension three, then S is just the set of all diagonal matrices in M3. Write

V = e1 ⊗
√

ϕ(Diag (1, 0, 0)) + e2 ⊗
√

ϕ(Diag (0, 1, 0)) + e3 ⊗
√

ϕ(Diag (0, 0, 1)).

Then V is an isometry and ϕ(X) = V ∗(X ⊗ IH)V is completely positive.

Suppose B is not normal; we may write B =
(

a b
c a

)
⊕ [d] with |b| 6= |c|.

Then

{b(B − aI)− c(B − aI)∗}/(|b|2 − |c|2) =
(

0 1
0 0

)
⊕ [reiθ]

for some r > 0. Multiplying the last matrix by e−iθ and using the fact that(
0 e−iθ

0 0

)
is unitarily similar to

(
0 1
0 0

)
, we may assume

B0 =
(

0 1
0 0

)
⊕ [r] ∈ S.

Hence S = span {I,B0, B
∗
0} because the latter is evidently of dimension 3. For

simplicity, we assume that B0 = B from now on. To prove that ϕ is completely
positive, we need to show that for any R,S, T ∈ Mn satisfying

(4.1) R⊗ I3 + (S ⊗B + T ⊗B∗) > 03n,

we have

(4.2) R⊗ IH + (S ⊗ ϕ(B) + T ⊗ ϕ(B)∗) > 0n ⊗ IH

(cf. Section 1.4 of [3]). It is clear that (4.1) is just the same as

(4.3)
(

R S
T R

)
> 02n and R + r(S + T ) > 0n.

Thus T = S∗ and R > 0; we may further assume that R > 0. (Otherwise, replace
R by R + δIn for some δ > 0 to get the result, and then take the limit for δ → 0.)
Write J = R−1/2SR−1/2. Then (4.3) is equivalent to(

In J
J∗ In

)
> 02n and In + r(J + J∗) > 0n;

i.e., J is a contraction with −(J + J∗) 6 In/r. (If r = 0, then all constraints
concerning r are automatically valid.) By Theorem 2.1, J has a unitary dilation
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U ∈ M2n with −(U + U∗) 6 I2n/r. Hence for each eigenvalue of eiθ of U , we have
−(eiθ + e−iθ) 6 1/r; i.e., 1 + 2r cos θ > 0. Thus

I3 +
(
eiθB + e−iθB∗

)
=
(

1 eiθ

e−iθ 1

)
⊕ [1 + 2r cos θ] > 03.

Since ϕ is positive, it follows that

IH + (eiθϕ(B) + e−iθϕ(B)∗) > 0H;

so

I2n ⊗ IH + (U ⊗ ϕ(B) + U∗ ⊗ ϕ(B)∗) > 02n ⊗ 0H;

thus, for the compression on Cn ⊗H,

In ⊗ IH + (J ⊗ ϕ(B) + J∗ ⊗ ϕ(B)∗) > 0n ⊗ IH.

Finally, (4.2) follows form the fact S = R1/2JR1/2 and T = S∗.

We are now ready to state the major result of this section.

Theorem 4.3. Suppose B ∈ M3 has a non-trivial reducing subspace, and let

A ∈ B(H). Then W (A) ⊆ W (B) if and only if A has a dilation that is unitarily

similar to B ⊗ I.

Proof. By Lemma 4.1, we need only to show that Condition (i) implies Con-

dition (iv). This follows immediately from Proposition 4.2.

Note that if B ∈ M3 is normal or if B = B1 ⊕ [γ] ∈ M3 with γ ∈ W (B1),

then Theorem 4.3 reduces to known results mentioned in the Introduction. Here

we are dealing with the more difficult case where B = B1 ⊕ [γ] ∈ M3 such that

B1 need not be normal; so W (B) is the convex hull of an elliptical region and one

point. Consequently, Theorem 4.3 can be restated as follows.

Suppose K ⊆ C is the the convex hull of an ellipse and a point. Then there

exists B = B1⊕ [γ] ∈ M3 such that W (B) = K. Moreover, we have that A ∈ B(H)

satisfies W (A) ⊆ K if and only if A has a dilation of the form B ⊗ I.

As mentioned in [5], Section 2.5, and [8], it is pertinent to study other geometrically

significant regions K in C (or appropriate model matrices B) so that each operator

A ∈ B(H) with W (A) ⊆ K (or W (A) ⊆ W (B) ) has a dilation of the form B ⊗ I.
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5. REMARKS AND EXAMPLES

In this section, we discuss some related problems and show that Theorem 2.1 does
not admit further generalizations.

Notably, the fact “each contraction A ∈ Mn has a unitary dilation U ∈ M2n”
can be deduced directly from the following simple and yet stronger result.

Proposition 5.1. Let A ∈ Mn be a contraction. Then A = (U1 + U2)/2
for some unitary matrices U1, U2 ∈ Mn; consequently, A = V ∗(U1 ⊕ U2)V where

V =
1√
2

(
In

In

)
.

Proof. By the polar decomposition, A = UP where U is unitary and P is
positive semidefinite. Since A is a contraction, so is P . Let U1 = U(P +i

√
I − P 2)

and U2 = U(P− i
√

I − P 2). Then A = (U1+U2)/2, and the proposition follows.

It may be plausible to conjecture that each contraction A ∈ Mn, with A +
A∗ 6 µIn for some µ ∈ R, can be written as a convex combination of unitary
U ∈ Mn satisfying U + U∗ 6 µI. This is not true as shown in the following.

Example 5.2. Consider A =
(

0 1
0 0

)
. Then A + A∗ 6 I, but A is not a

convex combination of 2× 2 unitary matrices Uj with Uj + U∗j 6 I.

Proof. Suppose A is a convex combination of unitary matrices U1, . . . , Uk ∈
M2 with Uj +U∗j 6 I for each j. Then the (1, 2) entry of Uj must be one, and thus

Uj =
(

0 1
µj 0

)
with |µj | = 1. The condition Uj + U∗j 6 I forces µj + µj 6 −1,

in contradiction to the fact that the (2, 1) entry of A is a convex combination of
µj ’s.

As mentioned in the Introduction, each contraction A ∈ B(H) has a unitary
power dilation U . This leads to important consequences such as the von Neumann
inequality. However, the analogous statement for the constrained unitary power
dilation is not valid as shown in the following simple example.

Example 5.3. Let A be the zero matrix in Mn. Then obviously A+A∗ 6 0
and A is contractive. However, there is no unitary dilation U of A such that
U + U∗ 6 0 and

Uk =
(

Ak ∗
∗ ∗

)
, k = 1 and 2.

Proof. Suppose A = 0 has a unitary dilation U =
(

0 C
B D

)
with

U + U∗ =
(

0 B∗ + C
B + C∗ D + D∗

)
6 0.

It follows that C = −B∗ 6= 0 and thus U2 =
(
−B∗B ∗
∗ ∗

)
cannot have the zero

matrix at the upper left corner.
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Theorem 2.1 shows that if A ∈ Mn is a contraction subject to a single affine
constraint, then A has a unitary dilation subject to the same constraint. It is
natural to ask whether more constraints can be added to the statement above.
The following example shows that in general it is not possible to find a normal
dilation subject to two constraints.

Example 5.4. Let A =
(

0 1
0 0

)
. Then A is a contraction satisfying −I 6

A + A∗ 6 I. However, A has no normal dilation N satisfying −I 6 N + N∗ 6 I.

Proof. Suppose N =
(

A C
B D

)
is a normal dilation of A such that −I 6

N + N∗ 6 I. Since the leading 2× 2 submatrix of N + N∗ is unitary, we deduce
that N + N∗ = (A + A∗)⊕H. Thus, B = −C∗ 6= 0. It follows that NN∗ 6= N∗N
by comparing the leading 2× 2 submatrices on both sides.
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