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Abstract. Problems of Nehari type are studied for matrix valued k-variable
almost periodic Wiener functions: Find contractive k-variable almost peri-
odic Wiener functions having prespecified Fourier coefficients with indices in
a given halfspace of R

k. We characterize the existence of a solution, give a
construction of the solution set, and exhibit a particular solution that has a
certain maximizing property. These results are used to obtain various dis-
tance formulas and multivariable almost periodic extensions of Sarason’s the-
orem. In the periodic case, a generalization of Sarason’s theorem is proved
using a variation of the commutant lifting theorem. The main results are
further applied to a model-matching problem for multivariable linear filters.
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1. INTRODUCTION

In this paper we study problems of Nehari type for matrices whose entries belong
to various subalgebras of the class (APk) of almost periodic complex function of

k real variables. As is well known, (APk) may be characterized as the closed
subalgebra of L∞(Rk) generated by the functions eλ(t) = ei〈λ,t〉. Here R is the set
of reals, λ = (λ1, . . . , λk) ∈ Rk, t = (t1, . . . , tk) ∈ Rk, and

〈λ, t〉 =

k∑

j=1

λj tj
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is the standard inner product of λ and t. For f ∈ (APk) the Fourier series is
defined by the formal sum

(1.1)
∑

λ

fλei〈λ,t〉,

where

(1.2) fλ = lim
T→∞

1

(2T )k

∫

[−T,T ]k

e−i〈λ,t〉f(t) dt, λ ∈ R
k,

and the sum in (1.1) is taken over the spectrum σ(f) = {λ ∈ R
k : fλ 6= 0} of f . The

mean M{f} of f ∈ (APk) is defined by M{f} = f0 = lim
T→∞

1
(2T )k

∫
[−T,T ]k

f(t) dt.

The spectrum of every f ∈ (APk) is at most a countable set. The Wiener algebra

(APWk) is defined as the set of all f ∈ (APk) such that the Fourier series of f
converges absolutely. The Wiener algebra is a Banach algebra with respect to
the Wiener norm ‖f‖W =

∑
λ∈Rk

|fλ|. For a non-empty subset ∆ of Rk we denote

by (APk)∆ and (APWk)∆ the subspace of (APk) and (APWk), respectively, of
functions whose spectrum is contained in ∆. For the general theory of almost
periodic functions of one and several variables we refer the reader to the books
[6], [21], [22] and to Chapter 1 in [26]. If (X) is a set (typically a Banach space or
an algebra), we denote by (X)m×n the set of m × n matrices with entries in (X).

The norm on (APk)m×n is given by ‖f‖∞ = sup
t∈Rk

‖f(t)‖, where ‖A‖ denotes the

largest singular value of the matrix A. When ‖f‖∞ < 1 we say that f is strictly
contractive.

Analogously to [19], we introduce the notion of a halfspace. A subset S of
Rk is called a halfspace of Rk if S satisfies the following properties:

(i) Rk = S ∪ (−S);

(ii) S ∩ (−S) = {0};
(iii) if x, y ∈ S then x + y ∈ S;

(iv) if x ∈ S and α is a nonnegative real number, then αx ∈ S.

A standard example of a halfspace is given by

(1.3)
Ek = {(x1, . . . , xk)T ∈ R

k \ {0} :

x1 = x2 = · · · = xj−1 = 0, xj 6= 0 ⇒ xj > 0} ∪ {0}.

(The vectors in Rk are understood as column vectors; the superscript T denotes
the transpose.) It is known that any halfspace S of Rk may be retrieved as the
image of Ek under an invertible linear map A : Rk → Rk, i.e.,

(1.4) S = AEk
def
= {Ax : x ∈ Ek};

see Section 2 of [29], for example. A halfspace of Λ, where Λ is a subgroup of R
k,

is the intersection of a halfspace in Rk with Λ.



Contractive extension problems 5

We are now ready to state the contractive extension problem that we con-
sider. Fix a halfspace S ⊂ Rk and additive subgroups Λ ⊆ Λ′ of Rk, and let
f ∈ (APWk)m×n

(−S)∩Λ be given. We say that h is a strictly contractive extension in

(APWk)m×n
Λ′ of f , if h belongs to (APWk)m×n

Λ′ , and

(1) h is strictly contractive;

(2) hλ = fλ, λ ∈ (−S) ∩ Λ′.

The problem we are considering asks when strictly contractive extensions of a

function exist, and in that case how to construct one and how to describe the set of

all solutions. This problem has been studied in [28] for the case k = 1, where back-

ground on the problem may be found. We shall provide a solution to this problem

using the abstract band method (see [15], [16], [17], also Chapter XXXIV of [14]

for the development of the method), which is an algebraic scheme dealing with

positive and contractive extension problems. One of the main hurdles in applying

the band method concerns the question whether a solution to a linear equation has

an inverse that lies in a certain subspace. In the classical Carathéodory-Toeplitz

problem this hurdle is overcome by applying Szegö’s theorem on the location of

zeros of orthogonal polynomials (see Theorem 6.1 in [9] for more details). After

succesfully overcoming this obstacle using different techniques in our multivariable

almost periodic setting, we obtain characterization of existence in terms of strict

contractiveness of an associated Hankel operator on a Besikovitch Hilbert space.

In addition, a construction of a specific solution characterized by a maximizing

property and a linear fractional description for the set of all solutions are ob-

tained. We shall also consider the case of non-strict contractive extensions, which
leads us in a natural way to a solution in a Besikovitch space that extends (APk).

These main results will be presented in Sections 2–5. We shall also consider various

consequences of these results. In Section 6 we shall extract distance formulas from

the main results and use them to prove multivariable and almost periodic gener-

alizations of Sarason’s theorem. In addition, a commutant lifting approach to the
periodic (Λ = Z

k) case will be explored in this section. In Section 7 a joint norm

bound result is given, and in Section 8 we apply the results to a model-matching
problem for filters indexed by a subgroup of Rk, which includes 2D systems as in

[12].

Standard notation will be used throughout: Z, Z+, T, R, C, and D stand for

the sets of integers, of non-negative integers, of unimodular complex numbers, of

real numbers, of complex numbers, and for the open unit disc, respectively.
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2. THE MAIN RESULTS

Before we can state the main results we need to introduce the Besikovitch Hilbert
space. Define an inner product on (APk) by the formula

(2.1) 〈f, g〉 = M{fg∗}, f, g ∈ (APk).

The completion of (APk) with respect to this inner product is called the Besikovitch
space and is denoted by (Bk). Thus (Bk) is a Hilbert space. For a nonempty set
Λ ⊆ Rk, define the projection

ΠΛ

( ∑

λ∈σ(f)

fλei〈λ,t〉

)
=

∑

λ∈σ(f)∩Λ

fλei〈λ,t〉,

where f ∈ (APWk). The projection ΠΛ extends by continuity to the orthogonal
projection (also denoted ΠΛ) on (Bk). We denote by (Bk)Λ the range of ΠΛ, or,

equivalently, the completion of (APk)Λ with respect to the inner product (2.1).
The vector valued Besikovitch space (Bk)n×1 consists of n× 1 columns with com-
ponents in (Bk), with the standard Hilbert space structure. Similarly, (Bk)n×1

Λ

is the Hilbert space of n × 1 columns with components in (Bk)Λ. The matrix

Besikovitch space (Bk)m×p
∆ will be considered as a Hilbert space with the inner

product

(2.2) 〈g, h〉 =

i=m, j=p∑

i=1, j=1

〈gij , hij〉 = lim
T→∞

1

(2T )k

∫

[−T,T ]k

trace (g(t)(h(t))∗) dt,

where gij and hij are the (i, j) entries of g and h, respectively, and the inner
products in the middle of (2.2) are taken in (Bk)∆.

Fix a halfspace S ⊂ Rk and an additive subgroup Λ of Rk. Let f ∈
(APWk)m×n

Λ be given. For any additive group Λ′ ⊇ Λ and integer p > 1, de-
fine the following generalized Hankel operator

H(f)Λ′ : (Bk)n×p
S∩Λ′ → (Bk)m×p

(−S)∩Λ′

by

(2.3) H(f)Λ′g = Π−S(fg), g ∈ (Bk)n×p
S∩Λ′ .

We suppress the dependence of H(f)Λ′ on S in our notation, although different
choices of S yield totally different Hankels. It is not hard to see that the norm
of H(f)Λ′ is independent of the choice of the positive integer p. It is convenient,
however, to allow H(f)Λ′ to act on matrix valued functions with different number
of columns.

Theorem 2.1. Let f ∈ (APWk)m×n
(−S)∩Λ be given, and let Λ′ be a supergroup

of Λ. The following statements are equivalent:
(i) f has a strictly contractive extension in (APWk)m×n

Λ′ ;

(ii) f has a strictly contractive extension in (APWk)m×n
Λ ;

(iii) the generalized Hankel operator H(f)Λ′ is a strict contraction;
(iv) the generalized Hankel operator H(f)Λ is a strict contraction.
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When one (and thus all) of (i)–(iv) is satisfied, then put

α̂(t) = [I −H(f)Λ(H(f)Λ)∗]
−1

(Im),

β̂(t) = H(f)Λ [I − (H(f)Λ)∗H(f)Λ]
−1

(In),

γ̂(t) = (H(f)Λ)∗ [I − (H(f)Λ(H(f)Λ)∗]
−1

(Im),

δ̂(t) = [I − (H(f)Λ)∗H(f)Λ)]
−1

(In),

where Ir stands for the constant matrix function on Rk with value Ir for all t ∈ Rk.
Further, let

α(t) = α̂(t)M{α̂}− 1
2 , β(t) = β̂(t)M{δ̂}− 1

2 ;(2.4)

γ(t) = γ̂(t)M{α̂}− 1
2 , δ(t) = δ̂(t)M{δ̂}− 1

2 .(2.5)

Then the function

(2.6) g0(t) = β(t)δ(t)−1 = [α(t)∗]−1γ(t)∗, t ∈ R
k,

is a strictly contractive extension in (APWk)m×n
Λ (⊂ (APWk)m×n

Λ′ ) of f .

It will be shown in the course of the proof of Theorem 2.1 that α̂ is invertible

in (APWk)m×m
Λ and M{α̂} is positive definite. Similarly, it will be shown that δ̂

is invertible in (APWk)n×n
Λ and M{δ̂} > 0. Thus, the formulas (2.4)–(2.6) make

sense. In fact, we shall show that α̂−1 ∈ (APWk)m×m
(−S)∩Λ and δ̂−1 ∈ (APWk)n×n

S∩Λ.

It should be noted that

(2.7) g0(t) = β̂(t)δ̂(t)−1 = [α̂(t)∗]−1γ̂(t)∗, t ∈ R
k,

so that the introduction of the functions α, β, γ and δ was not strictly necessary
in the above theorem. However, the normalization performed in (2.4) and (2.5) is
important in the following theorem.

Next, a parameterization of the set of all strictly contractive extensions in
(APWk)m×n

Λ′ of a function f ∈ (APWk)m×n
(−S)∩Λ will be given. Introduce the pa-

rameter set

(CAPWk)m×n
(S\{0})∩Λ′ =

{
g ∈ (APWk)m×n

(S\{0})∩Λ′ : sup
t∈Rk

‖g(t)‖ < 1
}
.

Theorem 2.2. Let f ∈ (APWk)m×n
(−S)∩Λ be given, and let Λ′ be a supergroup

of Λ. Suppose that ‖H(f)Λ‖ < 1. Define α(t), β(t), γ(t), and δ(t), as in Theo-

rem 2.1. Then each strictly contractive extension in (APWk)m×n
Λ′ of f is of the

form

(2.8) T (g) = (αg + β)(γg + δ)−1,

where g ∈ (CAPWk)m×n
(S\{0})∩Λ′ . Moreover, this correspondence between the set

(CAPWk)m×n
(S\{0})∩Λ′ and the set of strictly contractive extensions in (APWk)m×n

Λ′

of f is one-to-one.

Aside from the crucial role that g0 plays in finding the linear fractional de-
scription, the extension g0 has also some other outstanding properties. Before we
describe them we have to introduce some additional notions.
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Recall from [29] definitions of canonical factorizations with respect to a half-

space S. Let G ∈ (APk)n×n. A representation

(2.9) G(t) = G+(t)G−(t), t ∈ R
k,

where

(2.10) G±1
+ ∈ (APk)n×n

S , G±1
− ∈ (APk)n×n

−S

is called a (left) APS canonical factorization of G. We say that (2.9) is an
APWS canonical factorization of G if G± satisfy stronger than (2.10) condi-

tions G±1
+ ∈ (APWk)n×n

S , G±1
− ∈ (APWk)n×n

−S . If Λ is an additive subgroup

of Rk, then a representation (2.9) is called a canonical (APS)Λ factorization if

G±1
+ ∈ (APk)n×n

S∩Λ, G±1
− ∈ (APk)n×n

(−S)∩Λ, and a canonical (APWS)Λ factorization

if G±1
+ ∈ (APWk)n×n

S∩Λ, G±1
− ∈ (APWk)n×n

(−S)∩Λ. Of course, G must belong to

(APWk)n×n (respectively, (APk)n×n
Λ , (APWk)n×n

Λ ) in order to potentially admit
a canonical APWS (respectively, (APS)Λ, (APWS)Λ) factorization.

A n × n matrix valued function G defined on Rk is called strictly positive
if there is an ε > 0 such that G(t) > εI for all t ∈ Rk. By Corollary 5.2 in [29]

we know that any strictly positive G ∈ (APWk)n×n
S∩Λ has a left APWS canonical

factorization. For a strictly positive G ∈ (APWk)n×n
S∩Λ we define

D(G) = M{G+}M{G−},
where G = G+G− is an APWS canonical factorization. It is straightforward to
check that D(G) is well-defined (i.e., does not depend on the choice of the APWS

canonical factorization) and is in addition positive definite.
We now characterize the strictly contractive extension g0 given by (2.6) via

a maximizing property. For hermitian matrices we shall use the Loewner partial
ordering >, i.e., A > B if and only if A − B is positive semidefinite.

Theorem 2.3. Let f ∈ (APWk)m×n
(−S)∩Λ be given, and let Λ′ be a supergroup

of Λ. Suppose that ‖H(f)Λ‖ < 1. Let g0 be given by (2.6). Then g0 is the unique

strictly contractive extension in (APWk)m×n
Λ′ of f such that

g0(t) (In − g0(t)
∗g0(t))

−1 ∈ (APWk)m×n
(−S)∩Λ′ ,

or, equivalently,

(Im − g0(t)g0(t)
∗)

−1
g0(t) ∈ (APWk)m×n

(−S)∩Λ′ .

Moreover, if g is a strictly contractive extension in (APWk)m×n
Λ′ of f , then

(2.11) D (In − g0(t)
∗g0(t)) > D (In − g(t)∗g(t))

with equality if and only if g(t) = g0(t), t ∈ Rk. In particular, if g is a strictly

contractive extension in (APWk)m×n
Λ′ of f , then

(2.12) M{log det(In − g0(t)
∗g0(t))} > M{log det(In − g(t)∗g(t))}

with equality if and only if g(t) = g0(t), t ∈ R.

The proofs of Theorems 2.1–2.3 will be given in the next section.
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3. PROOFS OF THE MAIN RESULTS

We start this section with some basic results on almost periodic functions.

Proposition 3.1. Let ∆ be a subset of Rk such that λ, µ ∈ ∆ ⇒ λ + µ ∈ ∆
and ∆ ∩ (−∆) = {0}. Then (APk)∆ and (APWk)∆ are closed subalgebras of

(APk) and of (APWk), respectively, and the mean is an additive and multiplicative

continuous functional on (APk)∆ and on (APWk)∆:

M{f + g} = M{f}+ M{g}, M{f · g} = M{f} · M{g},

where f, g ∈ (APk)∆ or f, g ∈ (APWk)∆.

Proof. The algebraic closedness properties follow from the observations that
σ(f + g) ⊆ σ(f) ∪ σ(g) ⊆ ∆ and σ(fg) ⊆ σ(f) + σ(g) ⊆ ∆ + ∆ ⊆ ∆. The
statement M{f + g} = M{f} + M{g} follows directly from the definition of the
mean, while M{f ·g} = M{f}·M{g} follows from the observation that δ1+δ2 = 0
and δ1, δ2 ∈ ∆ imply δ1 = δ2 = 0.

Proposition 3.1 will be applied to the case when ∆ is the intersection of a
halfspace and of an additive subgroup.

Proposition 3.2. Let ∆ ⊆ Rk be closed under addition, and assume that ∆
contains zero and is a subset of a halfspace S in Rk. Let be given F ∈ (APk)n×n

∆

(respectively F ∈ (APWk)n×n
∆ ) such that inf

t∈Rk
| det F (t)| > 0 and M{F} = I.

Assume, in addition, that

(3.1) F−1 ∈ (APk)n×n
∆ .

Then there is a continuous branch f of log(det F ). Every such branch f belongs to

(APk)∆ (respectively (APWk)∆), and one of them has the property that M{f}=0.

Proof. We will prove the proposition for the case when F ∈ (APWk)n×n
∆

(the proof for the case when F ∈ (APk)n×n
∆ is analogous).

Let ∆′ = ∆−∆ be the additive subgroup generated by ∆. First, we observe
that (det(F ))−1 ∈ (APWk)∆′ . This follows from the condition inf

t∈Rk
| det F (t)| > 0

and the inverse closedness of (APWk)∆′ in (APk)∆′ ; see, e.g., Proposition 2.2

in [29]. Therefore, F−1 ∈ (APWk)n×n
∆′ . In view of ∆′ ∩ ∆ = ∆, the condition

(3.1) now guarantees that F−1 ∈ (APWk)n×n
∆ . Since (APWk)∆ is a subalgebra

of (APWk), we now have (det(F ))−1 = det(F−1) ∈ (APWk)∆. Moreover, by the
additive and multiplicative properties of the mean (Proposition 3.1) M{det F} =
det M{F} = 1. Therefore, it suffices to consider the case of a scalar function F .

Denote by Θ the set of all scalar functions F for which the statement of
Proposition 3.2 holds. In other words, Θ = {F = eg : g ∈ (APWk)∆, M{g} = 0}.
As in the proof of Proposition 2.9 in [28], we verify that Θ is open and closed in
the set

X =
{

F ∈ (APWk)∆ : F−1 ∈ (APWk)∆; M{F} = 1
}

.
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We now prove that the set X is connected. Using small (in the norm of

(APWk)) perturbations, we may restrict ourselves to proving that every (APk)-
polynomial, i.e., almost periodic function with finite spectrum, in X is connected
within X to the constant 1. Let S be a halfspace that contains ∆. Without loss
of generality, we may assume that S = Ek, given by (1.3) (otherwise, consider the

topologically equivalent set X̃ = {F ◦ (AT)−1 : F ∈ X}, where S = AEk). If

F ∈ X is an (APk)-polynomial, then

Fα(t) = F

(
t1 + i

α

1 − α
, t2, . . . , tk

)
, α ∈ [0, 1]

is a continuous path (in the APWk norm) connecting F0 = F with F1 = M1{F}.

Here Mi{f} = lim
T→∞

1
2T

T∫
−T

f(t1, . . . , tk) dti corresponds to taking the mean with

respect to the ith variable. In fact, Fα(t) ∈ X for every α ∈ [0, 1]. To verify this,
write

F (t) =
∑

λ∈∆

fλei〈λ,t〉; F (t)−1 =
∑

λ∈∆

gλei〈λ,t〉.

Then, denoting ` = (1, 0, . . . , 0)T ∈ Rk, we have

Fα(t) =
∑

λ∈∆

fλe−
α

1−α
〈λ,`〉ei〈λ,t〉.

Since 〈λ, `〉 > 0 for every λ ∈ ∆, the function

Gα(t) :=
∑

λ∈∆

gλe−
α

1−α
〈λ,`〉ei〈λ,t〉

belongs to (APWk) for every α ∈ [0, 1], and one easily verifies that Gα = F−1
α .

Thus, Fα ∈ X . Repeating this argument, we connect M1{F} with M2{M1{F}},
M2{M1{F}} with M3{M2{M1{F}}}, etc., all within X . Ultimately, we have
connected F with

Mk{· · · {M2{M1{F}} · · ·} = M{F} = 1,

proving the connectedness of X .
Being an open, closed, and non-empty subset of X , Θ coincides with X .

Note that the hypothesis (3.1) is essential in Proposition 3.2. If ∆ = S ∩ Λ,
where S is a halfspace and Λ is an additive subgroup of Rk, then (3.1) follows from

a formally weaker requirement that F−1 ∈ (APk)n×n
S (given that F ∈ (APk)n×n

∆ ).

Proof of Theorem 2.1. The directions (ii) ⇒ (i) and (iii) ⇒ (iv) (use H(f)Λ =

Π(−S)∩ΛH(f)Λ′ΠS∩Λ) are trivial. For (i) ⇒ (iii) observe that if h∈ (APWk)m×n
Λ

is a strictly contractive extension of f , we have that the multiplication operator
Mh : (Bk)n×p

Λ′ → (Bk)m×p
Λ′ defined by Mh(g) = hg is a strict contraction. But

then H(f)Λ′ = Π−SMhΠS is also a strict contraction.
It remains to show (iv) ⇒ (ii). For this we shall use the Abstract Band

Method (see Chapter XXXIV of [14]). Assume that ‖H(f)Λ‖ < 1. Let

(3.2) M = (APWk)
(m+n)×(m+n)
Λ = M1 +̇M0

2 +̇Md +̇M0
3 +̇M4,
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where

M1 =

[
0 (APWk)m×n

(S\{0})∩Λ

0 0

]
,

M0
2 =

[
(APWk)m×m

(S\{0})∩Λ (APWk)m×n
(−S)∩Λ

0 (APWk)n×n
(S\{0})∩Λ

]
,

Md =

[
(APWk)m×m

{0} 0

0 (APWk)n×n
{0}

]
, M0

3 = (M0
2)

∗, M4 = (M1)
∗.

Then M is an algebra with band structure (3.2) as defined in Chapter XXXIV,
Section 1 in [14]. By the existence of canonical factorizations for positive elements
of M one sees that the definition of positivity used here (f(t) > εI > 0 for all t)
and the definition of positivity used in Chapter XXXIV, Section 1 in [14] coincide.
We let

M2 = M0
2+̇Md, M3 = M0

3+̇Md, Mc = M0
2+̇Md+̇M0

3.

Let P2 be the projection on M2 along M0
3+̇M1+̇M4. Projections P3, P 0

2 , P4 etc.
are defined analogously. Let

kε =

[
I εf

εf∗ I

]
∈ Mc, ε ∈ [0, 1].

We solve for xε ∈ M2 the equation

(3.3) P2(kεxε) = I.

We seek for xε in the form xε =

[
I −βε

0 δε

]
. Then

(3.4)

kεxε =

[
I −βε + εfδε

εf∗ −εf∗βε + δε

]

∈
[

I + (APWk)m×m
((−S)∩Λ)\{0} (APWk)m×n

(S∩Λ)\{0}

(APWk)n×m
Λ I + (APWk)n×n

((−S)∩Λ)\{0}

]
.

Apply Π(−S)∩Λ to the (1, 2) block position in (3.4) and ΠS∩Λ to the (2, 2) block
position in (3.4). This yields:

−βε + εH(f)Λ(δε) = 0, −ε(H(f)Λ)∗(βε) + δε = I.

Take
δε = (I − ε2(H(f)Λ)∗H(f)Λ)−1(I), βε = εH(f)Λ(δε).

Then the equation (3.3) is satisfied. We shall see later that indeed xε ∈ M2.

Next, we show that δε is an (APWk)n×n
S∩Λ-valued function of ε that depends

analytically on the parameter ε ∈ D, where D = {z : |z| 6 1} is the closed unit
disk.

As in Section 3 of [2] we introduce the following notation. Denote by FB the
Fourier-Bohr transform, that is, the isometric isomorphism of (Bk)n×1

Λ onto the
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space ln×1
2 (Λ) defined by the formula (FBf)(λ) = fλ, λ ∈ Λ. Let B

(
(Bk)n×1

Λ

)

be the C∗-algebra of all linear and bounded operators acting on the Hilbert space
(Bk)n×1

Λ , and let R(Λ) be its C∗-subalgebra generated by all operators of the

form Ψ(a) = F−1
B MaFB, a ∈ ln×n

∞ (Λ). Here Ma is the multiplication operator
with symbol a. In addition, introduce the Banach algebra BW(Λ) consisting of
operators

(3.5) T =
∑

λ∈Λ

AλMeλI ,

where Aλ ∈ R(Λ) and

‖T‖BW(Λ)
def
=

∑

λ∈Λ

‖Aλ‖ < ∞.

The operator H(f)∗ΛH(f)Λ = ΠS∩Λf∗Π(−S)∩ΛfΠS∩Λ belongs to BW(Λ), be-

cause Π(±S)∩Λ ∈ R(Λ) and f ∈ (APWk)m×n
Λ (so that f∗ ∈ (APWk)n×m

Λ ). Hence,

I − ε2H(f)∗ΛH(f)Λ ∈ BW(Λ). The condition ‖H(f)Λ‖ < 1 implies that the op-
erator I − ε2H(f)∗ΛH(f)Λ is invertible for all ε ∈ [0, 1]. Lemma 3.2 in [2] then
implies:

(3.6) (I − ε2H(f)∗ΛH(f)Λ)−1 =
∑

λ∈Λ

AλMeλI ,

where Aλ ∈ R(Λ) and
∑

λ∈Λ

‖Aλ‖ < ∞.

Let ϕj,µ = (I − ε2H(f)∗ΛH(f)Λ)−1(eµEj), where Ej is the jth column of

the identity matrix I (j = 1, . . . , n; µ ∈ Λ). Then, of course, ϕj,µ ∈ (Bk)n×1
Λ .

However, more can be said: due to (3.6),

ϕj,µ =
∑

λ∈Λ

AλMeλ+µIEj .

By the definition of R(λ), each Aλ has the form Aλ = F−1
B Maλ

FB, where aλ ∈
ln×n
∞ (Λ). Hence, AλMe(λ+µ)

Ej = F−1
B Maλ

FBMeλ+µ
Ej = aλ(λ + µ)Ejeλ, which of

course lies in (APWk)n×1
Λ . Since ‖aλ(λ + µ)‖ 6 ‖Aλ‖, ϕj,µ is represented as an

absolutely convergent series with terms in (APWk)n×1
Λ , and therefore itself belongs

to (APWk)n×1
Λ .

An arbitrary vector g ∈ (APWk)n×1
S∩Λ can be represented as an absolutely

convergent series
n∑

j=1

∑
µjs∈Λ

cjseµjs
Ej . Hence, the (unique) solution ξ of the equa-

tion (I−ε2H(f)∗ΛH(f)Λ)ξ = g in (Bk)n×1
S∩Λ equals

n∑
j=1

∑
µjs∈Λ

cjsϕj,µjs
, and therefore

automatically lies in (APWk)n×1
Λ ∩ (Bk)n×1

S∩Λ = (APWk)n×1
S∩Λ.

In other words, for all ε ∈ D, the operators I − ε2H(f)∗ΛH(f)Λ are in-

vertible on (APWk)n×1
S∩Λ. Then (I − ε2H(f)∗ΛH(f)Λ)−1 is analytic in a neigh-

borhood of D as an operator valued function on (APWk)n×1
S∩Λ. In particular,
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(I − ε2H(f)∗ΛH(f)Λ)−1g is analytic as a function from D into (APWk)n×1
S∩Λ for

any fixed g ∈ (APWk)n×1
S∩Λ. Since

δε =
[
(I − ε2H(f)∗ΛH(f)Λ)−1E1, . . . , (I − ε2H(f)∗ΛH(f)Λ)−1En

]
,

it is a matrix function in (APWk)n×n
S∩Λ, depending analytically on ε ∈ D.

It follows that βε = εH(f)Λ(δε) is a matrix function in (APWk)n×n
(−S)∩Λ,

depending analytically on ε ∈ D. Note that we have established that xε ∈ M2.
Similarly, the solution

yε =

[
αε 0
−γε I

]
∈ M3

of the equation P3(yεkε) = I exists for all ε ∈ D, where αε ∈ (APWk)n×n
(−S)∩Λ and

γε ∈ (APWk)n×n
S∩Λ depend analytically on the parameter ε.

Observe that (δε)0 is a compression of (I − ε2(H(f)Λ)∗H(f)Λ)−1 onto Cn×n

(considered as a subspace of constant matrix functions in (Bk)n×n
S∩Λ)). For all

ε ∈ [0, 1], the operator (I − ε2(H(f)Λ)∗H(f)Λ)−1 is positive definite. Hence, (δε)0
(∈ Cn×n) also is positive definite for these values of ε. Similarly, (αε)0 is positive
definite for ε ∈ [0, 1].

If ε = 0, then I − ε2(H(f)Λ)∗H(f)Λ turns into the identity operator and
therefore δ0 = α0 = I . From the continuity of δε, αε as functions of ε it follows
that δε, αε are invertible in (APWk)n×n

S∩Λ and (APWk)n×n
(−S)∩Λ, respectively, for

ε ∈ [0, σ) and a sufficiently small σ > 0.
For such ε we get by Theorems 1.1, 1.2 and 1.3 in Chapter XXXIV of [14]

that

(3.7)

[
I −βε

0 δε

]∗−1 [
I 0
0 (δε)0

][
I −βε

0 δε

]−1

=

[
αε 0
−γε I

]∗−1 [
(αε)0 0

0 I

][
αε 0
−γε I

]−1

is the band extension of kε. Taking the inverses of both sides of (3.7) and com-
puting the (1, 1) and (2, 2) block entries we get

(3.8)
αε ((αε)0)

−1
(αε)

∗ = I + βε ((δε)0)
−1

(βε)
∗,

δε ((δε)0)
−1

(δε)
∗ = I + γε ((αε)0)

−1
(γε)

∗, ε ∈ [0, σ).

Since ε in the equalities (3.8) is real, we can rewrite them as

(3.9)
αε ((αε)0)

−1
(αε)

∗ = I + βε ((δε)0)
−1

(βε)
∗,

δε ((δε)0)
−1 (δε)

∗ = I + γε ((αε)0)
−1 (γε)

∗.

Both sides of the equalities (3.9) are analytic matrix valued functions of ε on
{ε ∈ D : (δε)0, (αε)0 are invertible}. Since the latter set contains [0, 1], all the
expressions in (3.9) are analytic on some neighborhood U of [0, 1] in C. Due to
(3.8), the equalities (3.9) actually hold on [0, σ), that is, a non-isolated subset of
U . Hence, the equalities (3.9) hold on U ; in particular, they hold for all ε ∈ [0, 1].
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In other words, the equalities (3.8) can be extended from [0, σ) onto [0, 1]. The
right hand sides of these equalities are positive definite, and therefore invertible in
(APWk)n×n

Λ . This implies the invertibility of αε and δε in (APWk)n×n
Λ for all ε ∈

[0, 1]. The reasoning above in this paragraph followed the proof of Theorem II.1.1
of [15].

We now use Theorem 7.1 of [28]. By this theorem, the invertibility of αε

and δε in (APWk)n×n
Λ for all ε ∈ [0, 1], when combined with the invertibility of

αε in (APWk)n×n
(−S)∩Λ and δε in (APWk)n×n

S∩Λ for ε ∈ [0, σ), imply that actually

(αε)
−1 ∈ (APWk)n×n

(−S)∩Λ and (δε)
−1 ∈ (APWk)n×n

S∩Λ for all ε ∈ [0, 1].

Conclusion: We have found a solution xε ∈ M2 of (3.3) and a solution
yε ∈ M3 of P3(yεkε) = I such that x−1

ε ∈ M+ and y−1
ε ∈ M−, for every ε ∈ [0, 1].

Now we may apply Theorems 1.1, 1.2 and 1.3 in [14] again to show that for all
ε ∈ [0, 1] we have that (3.7) is the positive extension of kε.

Note that α̂ = α1, β̂ = β1, γ̂ = γ1 and δ̂ = δ1. This finishes the proof.

Proof of Theorem 2.3. Note that from the proof of Theorem 2.1 we get that
[

I g0

g∗0 I

]−1

=

[
∗ g0(I − g∗0g0)

−1

∗ ∗

]−1

∈ M0
2 +̇Md +̇M0

3.

Thus g0(I − g∗0g0)
−1 ∈ (APWk)m×n

(−S)∩Λ. Moreover, by Theorem 1.3 in Chapter

XXXIV of [14], we get that for any strictly contractive extension g of f with

[
I g
g∗ I

]−1

∈ M0
2 +̇Md +̇M0

3,

we have g = g0. But then the first statement follows.

For the second statement, let R = (APk)
(n+m)×(n+m)
Λ . Then M is “an

algebra with band structure (3.2) in the unital C∗-algebraR”, as defined in Section
XXXIV.1 in [14]. It is straightforward to check that the decomposition (3.2)
satisfies Axioms (C1) and (C2) in Chapter XXXIV, Section 4 of [14]. Applying
now Theorem 4.2 in Chapter XXXIV in [14] we obtain the result stating that
inequality (2.11) holds, and equality occurs if and only if g0 = g.

For the last statement use that M{log det(f)} = log det D(f) (Proposi-
tion 3.1), and the fact that log det is strictly concave on the cone of positive
definite matrices (see, e.g., Section 16.F in [23]).

Proof of Theorem 2.2. We take the same setup as in the proof of Theorem 2.3.
Note that Axiom A in Chapter XXXIV of [14] is satisfied: in other words if
F ∈ M+ is such that sup

t∈Rk

‖F (t)‖ < 1, then (I−F )−1 ∈ M+ (use that (I−F )−1 =

I + F + F 2 + · · · converges in (APk)
(n+m)×(n+m)
S∩Λ , and that (APWk)

(n+m)×(n+m)
Λ

is inverse closed in (APk)
(n+m)×(n+m)
Λ ). By Theorem 2.1 of Chapter XXXIV in

[14], we get that all positive extensions of

(3.10)

[
I f
f∗ I

]
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are given (in a one-to-one correspondence) by

(3.11)

T̂

([
0 −g
0 0

])
:=

([
I −β
0 δ

]
+

[
α 0
−γ I

] [
0 −g
0 0

])∗−1

·
[

I 0
0 I − g∗g

]([
I −β
0 δ

]
+

[
α 0
−γ I

][
0 −g
0 0

])−1

=

[
I T (g)

T (g)∗ I

]
,

where g ∈ (CAPWk)m×n
(S\{0})∩Λ. It should be noted that the (2, 2) entry of the

product indeed has to equal I since this product is a positive extension of (3.10).

This proves the result.

4. A POINT EXCLUDING VARIATION

In this section we give a solution to the following variation of the contractive

extension problem.
Fix a halfspace S ⊂ Rk and an additive subgroup Λ of Rk. Given is an

f ∈ (APWk)m×n
(−S\{0})∩Λ. When does there exist a strictly contractive extension

h ∈ (APWk)m×n
Λ′ of f , where Λ′ ⊇ Λ is an additive subgroup or Rk, i.e., an h such

that

(1) h is strictly contractive;
(2) hλ = fλ, λ ∈ (−S \ {0}) ∩ Λ′.

If such h exists, how do we construct one/all?

This problem has been studied in [28] for the case k = 1.

To give an answer to this question we need to introduce the following gener-

alized Hankel operators:

H̃(f)Λ′ : (Bk)n×p
S∩Λ′ → (Bk)m×p

(−S\{0})∩Λ′ , g 7→ Π(−S\{0})(fg),(4.1)

˜̃
H(f)Λ′ : (Bk)n×p

(S\{0})∩Λ′ → (Bk)m×p
−S∩Λ′ , g 7→ Π−S(fg).(4.2)

Theorem 4.1. Let f ∈ (APWk)m×n
(−S\{0})∩Λ and let Λ′ be a supergroup of Λ.

The following statements are equivalent:

(i) f has a strictly contractive extension in (APWk)m×n
Λ′ ;

(ii) f has a strictly contractive extension in (APWk)m×n
Λ ;

(iii) the generalized Hankel operator H̃(f)Λ′ is a strict contraction;

(iv) the generalized Hankel operator
˜̃
H(f)Λ′ is a strict contraction;

(v) the generalized Hankel operator H̃(f)Λ is a strict contraction;

(iv) the generalized Hankel operator
˜̃
H(f)Λ is a strict contraction.
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When one (and thus all) of (i)–(vi) is satisfied, then put

α̂(t) =
[
I − ˜̃

H(f)Λ(
˜̃
H(f)Λ)∗

]−1
(Im),

β̂(t) = H̃(f)Λ
[
I − (H̃(f)Λ)∗H̃(f)Λ

]−1
(In),

γ̂(t) = (
˜̃
H(f)Λ)∗

[
I − (

˜̃
H(f)Λ(

˜̃
H(f)Λ)∗

]−1
(Im),

δ̂(t) =
[
I − (H̃(f)Λ)∗H̃(f)Λ)

]−1
(In),

where Ir stands for the constant matrix function on Rk with value Ir for all t ∈ Rk.
Further, let

α(t) = α̂(t)M{α̂}− 1
2 , β(t) = β̂(t)M{δ̂}− 1

2 ;

γ(t) = γ̂(t)M{α̂}− 1
2 , δ(t) = δ̂(t)M{δ̂}− 1

2 .

Then the function

g0(t) = β(t)δ(t)−1 = [α(t)∗]−1γ(t)∗, t ∈ R
k

is a strictly contractive extension in (APWk)m×n
Λ of f .

Proof. Let

(4.3) M = (APWk)
(m+n)×(m+n)
Λ = M1 +̇M0

2 +̇Md +̇M0
3 +̇M4,

where

M1 =

[
0 (APWk)m×n

S∩Λ
0 0

]
,

M0
2 =

[
(APWk)m×m

(S\{0})∩Λ (APWk)m×n
(−S\{0})∩Λ

0 (APWk)n×n
(S\{0})∩Λ

]
,

Md =

[
(APWk)m×m

{0} 0

0 (APWk)n×n
{0}

]
, M0

3 = (M0
2)

∗, M4 = (M1)
∗.

Then M is an algebra with band structure (4.3) as defined in Chapter XXXIV,
Section 1 in [14]. One may now proceed as in the proof of Theorem 2.1 with
straightforward modifications. These include using in the formulas for δ and β the

operator H̃(f)Λ instead of H(f)Λ, and in the formulas for α and γ the operator
˜̃
H(f)Λ instead of H(f)Λ. The arguments remain exactly the same.

To obtain valid analogues of Theorems 2.2 and 2.3 for the point excluding
version of the strictly contractive extension problem considered in this section the
following changes need to be made.

(1) Replace (APWk)(−S)∩Λ by (APWk)(−S\{0})∩Λ.
(2) Replace the reference to Theorem 2.1 by a reference to Theorem 4.1.

(3) Replace H(f)Λ by H̃(f)Λ.

(4) Replace in Theorem 2.2 (CAPWk)m×n
(S\{0})∩Λ by (CAPWk)m×n

S∩Λ .

In the proofs one uses decomposition (4.3) of the proof of Theorem 4.1.
The remaining arguments are exactly analogous as in the proofs of Theorems 2.2
and 2.3.
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5. NON-STRICTLY CONTRACTIVE EXTENSIONS

The existence part of the main results in Section 2 can be extended also to the case
of contractive extensions that are not necessarily strict. However, such extensions
may belong to a space larger than (APWk)m×n

Λ .
To set up the appropriate framework, we recall several basic facts concerning

Bohr compactifications and Besikovitch spaces (see, e.g., Chapter 1 in [26]). The
discrete abelian group Rk has a Bohr compactification Rk

B, i.e., Rk
B is a compact

abelian group which contains an isomorphic image of R
k as a dense subgroup. The

space (APk) is characterized as the set of those bounded, continuous (in the stan-
dard topology) functions on Rk which extend continuously to Rk

B (see Theorem 1.2
of Chapter 1 in [26]). As is the case for any compact, abelian group, Rk

B has a
unique invariant measure µ satisfying the normalization condition µ(Rk

B) = 1, i.e.,
µ is a unique normalized Borel measure on Rk

B such that µ(s+E) = µ(E) for each
s ∈ Rk

B and each µ-measurable set E. Moreover, it turns out that the mean M{f}
of an f ∈ (APk) can alternatively be computed as

M{f} =

∫

R
k
B

f̃(x) dµ(x)

where f̃ is the unique continuous extension of f to Rk
B. The Besikovitch space

(Bk) then can be viewed alternatively as the L2-space (Bk) = L2(Rk
B, µ). For

∆ ⊆ Rk, the set (Bk)∆ is defined as the closed subspace of (Bk) consisting of
those f in L2(Rk

B, µ) for which
∫

R
k
B

f(t)e−i〈λ,t〉 dµ(t) = 0 for all λ ∈ Rk \ ∆. If ∆ is

a subgroup, then (Bk)∆ can be alternatively viewed as L2(∆B, µ∆), where ∆B is
the Bohr compactification of the discrete Abelian group ∆, with the corresponding
normalized invariant measure µ∆. E.g., when ∆ = Zk then ∆B = Tk and (Bk)Zk

may be identified with L2(Tk), the Lebesgue space of square integrable functions
on the k-torus.

We shall also need the L∞ and L1 versions of the Besikovitch space:

(Bk
∞) = {f : RB → C : f is µ-measurable, ‖f‖(Bk

∞
) = ess sup

t∈RB

|f(t)| < ∞},

and
(Bk

1 ) = L1(Rk
B, µ).

For ∆ a (non-empty) subset of Rk, the closed subspace (Bk
∞)∆ of (Bk

∞) consists
of those functions f ∈ (Bk

∞) for which M{fe−i〈λ,·〉} = 0 for all λ ∈ Rk \ ∆.
Analogously the closed subspace (Bk

1 )∆ of (Bk
1 ) is defined. Note that (Bk

∞)Zk may
be identified with L∞(Tk), the Lebesgue space of essentially bounded functions
on the k-torus.

Theorem 5.1. Let f ∈ (APk)m×n
(−S)∩Λ be given, and let Λ′ be a supergroup of

Λ. The following statements are equivalent:
(i) f has a contractive extension in (Bk

∞)m×n
Λ′ , that is, there exists h ∈

(Bk
∞)m×n

(S\{0})∩Λ′ such that ‖f + h‖(Bk
∞

)m×n

Λ′

6 1;
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(ii) f has a contractive extension in (Bk
∞)m×n

Λ ;
(iii) the generalized Hankel operator H(f)Λ′ given by (2.3) is a contraction,

i.e., ‖H(f)Λ′‖ 6 1;
(iv) the generalized Hankel operator H(f)Λ is a contraction.

Proof. We start with the easier parts of the proof. The implication (ii) ⇒
(i) is trivial. To prove (i) ⇒ (iii), let h ∈ (Bk

∞)m×n
(S\{0})∩Λ′ be such that f + h is

contractive (in the (Bk
∞)m×n

Λ′ norm). From the definition of the Hankel operators
it follows that H(f)Λ′ = H(f + h)Λ′ . Now

‖H(f)Λ′‖ = ‖H(f + h)Λ′‖ 6 ‖f + h‖(Bk
∞

)m×n

Λ′

6 1,

where the first inequality holds because H(f+h)Λ′ is a compression of the operator
of multiplication by f + h whose norm is equal to ‖f + h‖(Bk

∞
)m×n

Λ′

. This proves

(iii). Analogously, (ii) ⇒ (iv) is proved.
For the rest of the proof, we follow the approach used in the proof of The-

orem 4.9 of [2]. An appropriate weak-∗ topology on (Bk
∞)m×n

Λ′ is introduced with

respect to which the unit ball of (Bk
∞)m×n

Λ′ is compact. In general, it is known
that if X is a Banach space with the dual space X∗, and Y is a closed subspace
of X , then

Y ⊥ = {x∗ ∈ X∗ : 〈y, x∗〉 = 0 for all y ∈ Y }
(the annihilator of Y ) is a closed subspace of X∗, and is itself the Banach space
dual of the quotient Banach space X/Y :

(5.1) Y ⊥ = (X/Y )∗

(see e.g. p. 133 of [13], or Section 5.2 of [5]). We apply these facts with X =
(Bk

1 )n×m, X∗ = (Bk
∞)m×n, the pairing

(5.2) 〈y, x∗〉 =

∫

R
k
B

trace{y(t)x∗(t)} dµ(t),

and Y = (Bk
1 )n×m

Λ′ . Then Y ⊥, under the pairing given by (5.2), can be easily seen

to be Y ⊥ = (Bk
∞)m×n

Λ′ , and hence, by the general principle (5.1) we have

(Bk
∞)m×n

Λ′ =
(
(Bk

1 )n×m/(Bk
1 )n×m

Λ′

)∗
.

As is the case for any dual Banach space, the unit ball of (Bk
∞)m×n

Λ′ is compact in
the weak-∗ topology.

We now prove (iii) ⇒ (i). Let {f (q)}∞q=1 be a sequence of functions f (q) ∈
(APWk)m×n

(−S)∩Λ′ such that f (q) → f as q → ∞ in the (APk)m×n norm. (We

mention in passing that for g ∈ (APk)m×n the (APk)m×n and (Bk
∞)m×n norms of

g coincide.) Then

‖H(f (q))Λ′‖ → ‖H(f)Λ′‖ 6 1,

and by scaling f (q), if necessary, we can assume that ‖H(f (q))Λ′‖ < 1 for all

q. By Theorem 2.1, there exist h(q) ∈ (APWk)m×n
(S\{0})∩Λ′ such that ‖f (q) +
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h(q)‖(Bk
∞

)m×n < 1. By the compactness (see the preceding paragraph), some sub-

net {Fα = fα +hα} of the sequence {Fq = f (q) +h(q)}∞q=1 converges in the weak-∗
topology to an element F of (Bk

∞)m×n
Λ′ . Since fα converges (in the (Bk

∞)m×n
Λ′ norm,

and hence also in the weak-∗ topology) to f , we have that hα converges to an el-
ement h ∈ (Bk

∞)m×n
Λ′ . Note that (Bk

∞)m×n
(S\{0})∩Λ′ is closed in the weak-∗ topology

(this follows from the condition M{ye−i〈λ,·〉} = 0 for every λ 6∈ (S \ {0}) ∩ Λ′,
which describes the inclusion y ∈ (Bk

∞)(S\{0})∩Λ′ , and taking into account that

e−i〈λ,·〉 ∈ L1(Rk
B, µ)). Consequently, h ∈ (Bk

∞)m×n
(S\{0})∩Λ′ . Finally, we use the

(easily proved) semicontinuity of norm in weak-∗ topology: If a net {xα} in a
dual Banach space X∗ weakly-∗ converges to x ∈ X∗, then lim inf

α
‖xα‖ > ‖x‖.

Applying this fact with xα = fα + hα and X∗ = (Bk
∞)m×n, we conclude that

‖f + h‖(Bk
∞

)m×n 6 1. This proves (i).

The implication (iv) ⇒ (ii) is proved similarly.

Analogously the existence part of the point excluding variation (Theorem 4.1)
can be extended to non-strictly contractive extensions. We state only the result,
omitting a proof.

Theorem 5.2. Let f ∈ (APk)m×n
(−S\{0})∩Λ be given, and let Λ′ be a supergroup

of Λ. The following statements are equivalent:
(i) f has a contractive extension in (Bk

∞)m×n
Λ′ ;

(ii) f has a contractive extension in (Bk
∞)m×n

Λ ;

(iii) the generalized Hankel operator H̃(f)Λ′ given by (4.1) is a contraction;

(iv) the generalized Hankel operator H̃(f)Λ is a contraction;

(v) the generalized Hankel operator
˜̃
H(f)Λ′ given by (4.2) is a contraction;

(vi) the generalized Hankel operator
˜̃
H(f)Λ is a contraction.

6. DISTANCE FORMULAS, SARASON’S THEOREM AND

COMMUTANT LIFTING: THE MULTIVARIABLE CASE

We interpret some of the results in the previous section as distance formulas. For

f ∈ (Bk
∞)m×n

Λ we define H(f), H̃(f) and
˜̃
H(f) by the same formulas as in the

beginning of Sections 2 and 4. If X is a Banach space with a closed subspace Ω, we
denote by dist(f, Ω) the distance from f ∈ X to Ω. Note that in general Banach
space context the distance is not always attained, i.e., there need not exist ω ∈ Ω
such that dist(f, Ω) = ‖f − ω‖. However, if X is a dual Banach space and Ω is
closed in the weak-∗ topology, then dist(f, Ω) is always attained. This fact can be
easily verified using compactness of the unit ball in X in the weak-∗ topology.

Theorem 6.1. Let f ∈ (APk)m×n
Λ . Then

(6.1) dist(f, (APk)m×n
(S\{0})∩Λ) = dist(f, (Bk

∞)m×n
(S\{0})∩Λ) = ‖H(f)‖,

and

(6.2) dist(f, (APk)m×n
S∩Λ ) = dist(f, (Bk

∞)m×n
S∩Λ ) = ‖H̃(f)‖ = ‖ ˜̃

H(f)‖.
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The distances dist(f, (Bk
∞)m×n

(S\{0})∩Λ) and dist(f, (Bk
∞)m×n

S∩Λ ) are attained.

Proof. We shall prove (6.1). The equalities (6.2) follow in an analogous

manner. Let f ∈ (APWk)m×n
Λ and ε > 0. Theorem 2.1 shows that there exists a

g ∈ (APWk)m×n
(S\{0})∩Λ so that ‖f − g‖∞ < ‖H(f)‖+ ε. This shows that

dist(f, (APWk)m×n
(S\{0})∩Λ) 6 ‖H(f)‖.

Next, suppose that h ∈ (Bk
∞)m×n

(S\{0})∩Λ. Then

‖f − h‖Bk
∞

= ‖Mf−h‖ > ‖H(f − h)‖ = ‖H(f)‖,
where Mf−h : (Bk)n

Λ → (Bk)m
Λ is the multiplication operator with the symbol

f − h. But then it follows that dist(f, (Bk
∞)m×n

(S\{0})∩Λ) > ‖H(f)‖. Thus

‖H(f)‖ 6 dist(f, (Bk
∞)m×n

(S\{0})∩Λ) 6 dist(f, (APk)m×n
(S\{0})∩Λ)

6 dist(f, (APWk)m×n
(S\{0})∩Λ) 6 ‖H(f)‖,

yielding (6.1) when f ∈ (APWk)m×n
Λ . Since elements of (APk)m×n

Λ may be ap-

proximated in the ‖ · ‖∞ norm by elements in (APWk)m×n
Λ , the result also follows

for f ∈ (APk)m×n
Λ .

Finally, observe that (Bk
∞)m×n is a dual Banach space, and its subspaces

(Bk
∞)m×n

(S\{0})∩Λ and (Bk
∞)m×n

S∩Λ are closed in the weak-∗ topology (see the proof of

Theorem 5.1). In view of the observation made before Theorem 6.1, the distances
to (Bk

∞)m×n
(S\{0})∩Λ and to (Bk

∞)m×n
S∩Λ are attained.

Using the above distance results we obtain the following generalization of the
well-known Sarason’s theorem ([31]).

Theorem 6.2. (i) (APk)m×n
Λ + (Bk

∞)m×n
(S\{0})∩Λ is closed in (Bk

∞)m×n
Λ .

(ii) (APk)m×n
Λ + (Bk

∞)m×n
S∩Λ is closed in (Bk

∞)m×n
Λ .

Proof. We use a familiar type of argument (see [32]). Consider the map

i : (APk)m×n
Λ /(APk)m×n

(S\{0})∩Λ → (Bk
∞)m×n

Λ /(Bk
∞)m×n

(S\{0})∩Λ,

defined by
i(f + (APk)m×n

(S\{0})∩Λ) = f + (Bk
∞)m×n

(S\{0})∩Λ.

It follows from Theorem 6.1 that this is an isometry, and thus its range is closed.
Letting

π : (Bk
∞)m×n

Λ → (Bk
∞)m×n

Λ /(Bk
∞)m×n

(S\{0})∩Λ

denote the canonical projection, we get that

π−1(i((APk)m×n
Λ /(APk)m×n

(S\{0})∩Λ))

is closed (using the continuity of π). Since this preimage equals (APk)m×n
Λ +

(Bk
∞)m×n

(S\{0})∩Λ the first part of the theorem is proven.

The second part follows analogously. Alternatively, use the fact that the
spaces in (i) and (ii) differ by a finite dimensional subspace, and hence they are
closed only simultaneously.
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When we specify the above theorem for the case Λ = Zk, we get the following.
We let (L∞(Tk))m×n

∆ denote the Lebesgue space of essentially bounded m × n

matrix valued functions on the k-torus that have Fourier spectrum in ∆. The
space (C(Tk))m×n consists of continuous m × n matrix valued functions on the

k-torus.

Corollary 6.3. The space (L∞(Tk))m×n
S + (C(Tk))m×n is closed in

(L∞(Tk))m×n, where S is a halfspace in Zk.

The original Sarason’s theorem ([31]) asserts that H∞(T) + C(T) is closed

in L∞(T). Since then, it has been extended in many ways. We mention here

[27] and [18], where versions of almost periodic Sarason’s theorem in one variable

(different from Theorem 6.2) are given. The paper [30] contains a general result on

closedness of the sum of two closed subspaces in a Banach space; it has been used

to reprove the original Sarason’s theorem and obtain several of its generalizations.

It is instructive to explore the Commutant Lifting approach in our context.
When Λ = Zk and S = Ek one may use an adjusted commutant lifting approach

as follows. We start off with a commutant lifting theorem where the lifting is

required to commute with additional unitary operators. This result will be used to

establish a distance result in a multivariable setting. We shall use the terminology

and notation of [11]. For a Hilbert space K with a subspace H (all subspaces

are assumed closed), we denote the orthogonal projection onto H by PH . An
operator B : K → K ′ is called a lifting of A : H → H ′ if H ⊆ K, H ′ ⊆ K ′,

and APH = PH′B; in other words, with respect to the orthogonal decompositions

H ⊕ (K 	H), H ′ ⊕ (K ′ 	H ′), the operator B has the form B =

[
A 0
∗ ∗

]
. Recall

that an invariant subspace H1 for an operator A is called reducing, if H1 is invariant

for A∗ as well.

Theorem 6.4. Let A : H → H ′, T : H → H and T ′ : H ′ → H ′ be

contractive Hilbert space operators that satisfy the intertwining relation AT = T ′A.

Let U : K → K and U ′ : K ′ → K ′ be minimal isometric dilations of T and T ′,

respectively (i.e., U and U ′ are isometries, T n = PHUn|H, K =
∞∨
0

Un[H ], and

T ′n = PH′U ′n|H ′, K ′ =
∞∨
0

U ′n[H ′] for all n = 0, 1, . . .). Further, let Wi : K →
K and W ′

i : K ′ → K ′, i ∈ J , be unitary operators that satisfy WiU = UWi,
W ′

i U
′ = U ′W ′

i , i ∈ J , and that have H and H ′ as a reducing invariant subspace,
respectively. Moreover, assume that V ′

i A = AVi, ViT = TVi and V ′
i T ′ = T ′V ′

i for
all i ∈ J , where Vi and V ′

i are the restrictions Vi = PHWi|H, V ′
i = PH′W ′

i |H ′.
Then there exists a contractive lifting B : K → K ′ of A that satisfies U ′B = BU

and W ′
i B = BWi for all i ∈ J .

Proof. We shall follow the proof of the classical commutant lifting theorem

as it is presented in Section VII.3 in [11], and show that the lifting may be chosen
so that the additional intertwining relations W ′

i B = BWi, i ∈ J , are satisfied.
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Figure 1. Spaces and operators in Theorem 6.4.

First observe that since minimal isometric dilations are unique up to an

isomorphism, we may assume that U and U ′ are the standard minimal isometric

dilations of T and T ′ as defined in (3.4) of Section VI.3 in [11]. Thus, for example,

U =




T 0 0 0 0 · · ·
DT 0 0 0 0 · · ·
0 I 0 0 0 · · ·
0 0 I 0 0 · · ·
...

...
...

...
...




: H ⊕ `2(Im DT ) → H ⊕ `2(Im DT ),

where DT = (I − T ∗T )1/2 and `2(M) is the Hilbert space consisting of sequences

(mi)
∞
i=0, mi ∈ M , that are square summable in norm. Analogous formula holds

for U ′. Consequently, K = H ⊕ `2(Im DT ) and K ′ = H ′ ⊕ `2(Im DT ′). We shall
first show that H⊕(Im DT )p, p = 0, 1, . . ., is a reducing invariant subspace for Wi.
Here H ⊕ (Im DT )p stands for the orthogonal sum of H and p copies of Im DT ,

considered as a subspace of K.

Indeed, for p = 0, H is a reducing subspace for Wi by assumption. Thus

Wi =

[
Vi 0

0 (W
(i)
k` )∞k,`=1

]
: H ⊕ `2(Im DT ) → H ⊕ `2(Im DT ).

Writing out the equation UWi = WiU , one sees directly that W
(i)
k` = 0 for k 6= `,

DT Vi = W
(i)
11 , and, for a fixed i,

(6.3) W
(i)
kk = W

(i)
`` , k, ` = 1, 2, . . . .
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Moreover, it also follows immediately from the equation UWi = WiU that the

restriction W
(p)
i := Wi|H ⊕ (Im DT )p commutes with

T (p) :=




T 0 0 · · · 0 0
DT 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · I 0




: H ⊕ (Im DT )p → H ⊕ (Im DT )p.

Similarly, the restriction

W ′
i
(p)

:= W ′
i |H ′ ⊕ (Im DT ′)p

satisfies T ′(p)
W ′

i
(p)

= W ′
i
(p)

T ′(p)
, i ∈ J , where

T ′(p)
=




T ′ 0 0 · · · 0 0
DT ′ 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · I 0




: H ′ ⊕ (Im DT ′)p → H ⊕ (Im DT ′)p.

Next we will show by induction on p that we may choose contractive p-step

intertwining liftings Ap of A that satisfy in addition W ′
i
(p)

Ap = ApW
(p)
i , i ∈ J .

Recall from Section VII.3 in [11] that Ap is a contractive p-step intertwining lifting

of A if T ′(p)
Ap = ApT

(p) and Ap is a contractive lifting of A. For p = 0 we have

A0 = A. Suppose that Ap : H⊕(Im DT )p → H ′⊕(Im DT ′)p is a contractive p-step

intertwining lifting of A that satisfies in addition W ′
i
(p)

Ap = ApW
(p)
i , i ∈ J . We

follow the construction of a contractive p + 1 step intertwining lifting of A as is
explained in Section V.1 in [11].

Let
Fp = {DAp

T (p)h ⊕ DT (p)h : h ∈ H ⊕ (Im DT )p}
⊆

(
H ⊕ (Im DT )p

)
⊕

(
H ⊕ (Im DT )p

)
,

and define Γp : Fp → Im DT ′ via

Γp(DAp
T (p)h ⊕ DT (p)h) =

[
0 0 · · · 0 IIm DT ′

]
DT ′(p)Aph, h ∈ H ⊕ (Im DT )p.

A standard argument (see, e.g., Section V.1 of [11]) shows that Γp is a well-defined
contraction.

Next, we introduce the operators Qp : Im DT → H ⊕ (Im DT )p by

Qpy = 0H ⊕ 0ImDT
⊕ · · · ⊕ 0Im DT

⊕ y, y ∈ Im DT

if p > 0, and Q0y = y for p = 0. Introduce also Ep : H ⊕ (Im DT )p+1 →
H ⊕ (Im DT )p defined by Ep(x ⊕ y) = x, where x ∈ H ⊕ (Im DT )p, y ∈ Im DT .
Finally, put

Ap+1 :=

[
ApEp

ΓpPFp
(DAp

⊕ Qp)

]
: H ⊕ (Im DT )p+1 → H ′ ⊕ (Im DT ′)p+1,
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where PFp
is the orthogonal projection on Fp. Since Ap is a lifting of A, so is Ap+1.

We have to prove that Ap+1 is a contraction, that T ′(p+1)
Ap+1 = Ap+1T

(p+1),
and that

(6.4) W ′
i
(p+1)

Ap+1 = Ap+1W
(p+1)
i , i ∈ J.

Consider the contraction property of Ap+1 first. If p = 0, a standard result
(see, e.g., Theorem V.1.2 in [11]) shows that A1 is contractive. We give details for
the case p > 0. For (x, y) ∈

(
H ⊕ (Im DT )p

)
⊕ Im DT we have that

(6.5)

〈Ap+1(x, y), Ap+1(x, y)〉
= 〈Apx, Apx〉 + 〈ΓpPFp

(DAp
⊕ Qp)(x, y), ΓpPFp

(DAp
⊕ Qp)(x, y)〉

= 〈Apx, Apx〉 + 〈ΓpPFp
(DAp

x ⊕ y0), ΓpPFp
(DAp

x ⊕ y0)〉,
where we denote y0 = 0 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ y. Fix a positive ε 6 ‖DAp

x ⊕ y0‖
(if ‖DAp

x ⊕ y0‖ = 0, everything is trivial, and we leave this case aside), and let

h ∈ H⊕(Im DT )p be such that ‖PFp
(DAp

x⊕y0)−(DAp
T (p)h⊕DT (p)h)‖ < ε. Then

(6.5) can be rewritten as (we use the contractiveness of Γp in the first inequality)

(6.6)

〈Ap+1(x, y), Ap+1(x, y)〉
6 〈Apx, Apx〉 + 〈Γp(DAp

h ⊕ DT (p)h), Γp(DAp
h ⊕ DT (p)h)〉

+ 2ε‖DAp
x ⊕ y0‖ + ε2

= 〈Apx, Apx〉 + 〈[0 · · · 0 I ]DT ′(p)Aph, [0 · · · 0 I ]DT ′(p)Aph〉
+ 2ε‖DAp

x ⊕ y0‖ + ε2.

On the other hand, since PFp
is an orthogonal projection, we have

‖DAp
T (p)h ⊕ DT (p)h‖2

6 ε2 + 2ε‖DAp
x ⊕ y0‖ + ‖PFp

(DAp
x ⊕ y0)‖2

6 ε2 + 2ε‖DAp
x ⊕ y0‖ + ‖DAp

x ⊕ y0)‖2,

or, letting δ = ε2 + 2ε‖DAp
x ⊕ y0‖,

〈DAp
T (p)h, DAp

T (p)h〉 + 〈DT (p)h, DT (p)h〉 6 δ + 〈DAp
x, DAp

x〉 + 〈y0, y0〉.

This inequality can be rewritten in the form (using ApT
(p) = T ′(p)

Ap)

〈h, h〉 − 〈T ′(p)∗
T ′(p)

Aph, Aph〉 6 δ + 〈DAp
x, DAp

x〉 + 〈y0, y0〉.
Combining with (6.6), we obtain:

〈Ap+1(x, y), Ap+1(x, y)〉 6 δ + 〈Apx, Apx〉 + 〈DT ′(p)Aph, DT ′(p)Aph〉
= δ + 〈Apx, Apx〉 + 〈Aph, Aph〉 − 〈T ′(p)∗

T ′(p)
Aph, Aph〉

6 δ + 〈Apx, Apx〉 + 〈h, h〉 − 〈T ′(p)∗
T ′(p)

Aph, Aph〉
6 〈Apx, Apx〉 + 2δ + 〈DAp

x, DAp
x〉 + 〈y0, y0〉

= 2δ + 〈x, x〉 + 〈y0, y0〉.
Since ε can be chosen arbitrarily close to zero, it follows that

〈Ap+1(x, y), Ap+1(x, y)〉 6 〈(x, y), (x, y)〉,
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i.e., Ap+1 is a contraction.
Next, we verify

(6.7) T ′(p+1)
Ap+1 = Ap+1T

(p+1),

assuming p > 0 (if p = 0, it is standard: Theorem V.1.2 in [11]). Partition (in a
self-explanatory notation)

T (p+1) =

[
T (p) 0

0 · · · 0 I 0

]
, T ′(p+1)

=

[
T ′(p)

0
0 · · · 0 I 0

]
.

Writing out the equality (6.7) using this partition, we note that the definition of

Ep implies T ′(p)
ApEp = ApEp

[
T (p) 0

0 · · · 0 I 0

]
, so it remains to verify

(6.8) [ 0 · · · 0 I ] ApEp = ΓpPFp
(DAp

⊕ Qp)

[
T (p) 0

0 · · · 0 I 0

]
.

Since Ep = [I 0], (6.8) boils down to

(6.9) [ 0 · · · 0 I ] Ap = ΓpPFp

(
DAp

T (p) ⊕ Qp [ 0 · · · 0 I ]
)
.

But for every x ∈ H ⊕ (Im DT )p we have Qp [ 0 · · · 0 I ] x = DT (p)x, and
therefore (by definitions of Fp and of Γp)

ΓpPFp

(
DAp

T (p)x ⊕ Qp [ 0 · · · 0 I ] x
)

= DT ′(p)Apx.

It remains to observe that [ 0 · · · 0 I ] DT ′(p) = [ 0 · · · 0 I ] , and (6.7)
follows.

Finally, we verify the equalities (6.4). Details will be given for the case p = 0
(if p > 0, the verification is analogous); i.e., we verify

(6.10) W ′
i
(1)

A1 = A1W
(1)
i , i ∈ J.

To this end, it suffices to check that

(6.11) Γ0PF0(DA ⊕ Q0)W
(1)
i = W ′(i)

1,1Γ0PF0(DA ⊕ Q0).

First observe that, since A∗AVi = A∗V ′
i A = ViA

∗A, we have that

(6.12) (DA ⊕ Q0)W
(1)
i = (IH ⊕ Q0)W

(1)
i (DA ⊕ IIm DT

).

Next we show that

(6.13) PF0(IH ⊕ Q0)W
(1)
i = W

(1)
i PF0(IH ⊕ Q0).

For this purpose, suppose that h0, h1 and h ∈ H are such that PF0(DAh0⊕Q0h1) =
DATh⊕DTh. (In the general case, one has to approximate PF0(DAh0⊕Q0h1) by
DATh⊕ DT h, as in the above proof of contractive property of Ap+1 when p > 0;
we omit the details.) Then we claim that

PF0(ViDAh0 ⊕ Q0W
(i)
11 Q0h1) = ViDATh ⊕ Q0W

(i)
11 DT h.

Indeed, for any g ∈ H , we have

〈ViDAh0 ⊕ Q0W
(i)
11 Q0h1 − ViDATh⊕ Q0W

(i)
11 DT h, DATg ⊕ DT g〉

= 〈DAh0 ⊕ Q0h1 − DATh⊕ DT h, DATV ∗
i g ⊕ DT V ∗

i g〉 = 0,
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where we used that W
(i)
11 DT = DT Vi. This shows that (6.13) holds. Lastly, we get

that

(6.14) Γ0W
(1)
i = W ′(i)

1,1Γ0.

Indeed, if we let q = DATh⊕ DT h, then

Γ0W
(1)
i q = Γ0W

(1)
i (DATh ⊕ DT h) = Γ0(DATVih ⊕ DT Vih)

= DT ′A(Vih) = DT ′(1)V ′
i Ah = W ′(i)

1,1DT ′Ah = W ′(i)
1,1Γ0q.

Combining now (6.12), (6.13) and (6.14) gives (6.11). This proves (6.10).

Let now

B = strong lim
p→∞

ApPH⊕(Im DT )p .

Then, by Section VII.3 in [11], we have that B is a contractive lifting of A that
satisfies BU = U ′B. By (6.4) it now follows that in addition we have that BWi =
W ′

i B, i ∈ J .

Analogously to (1.3), we define Fk ⊆ Zk by

Fk = {(x1, . . . , xk)T ∈ Z
k \ {0} :

x1 = x2 = · · · = xj−1 = 0, xj 6= 0 ⇒ xj > 0} ∪ {0}.

Theorem 6.5. Let f ∈ (L∞(Tk))m×n. Then

dist(f, (L∞(Tk))m×n
Fk

) = ‖Γf‖,

where Γf : (L2(T
k))n

Fk
→ (L2(T

k))m
Zk\Fk

is defined by

(Γfg)(z) = ΠZk\Fk
(f(z)g(z)), g ∈ (L2(T

k))n
Fk

.

In fact, the distance is attained.

While this paper was in preparation, we have learned about the paper [8], in
which the result of Theorem 6.5 is proved (using theory of group characters) for
compact abelian groups.

Proof. In case Γf = 0, we have that f ∈ (L∞(Tk))m×n
Fk

and the theorem
follows trivially. Therefore, we assume that Γf 6= 0. By downward induction we
prove that there exist operators

Hj : (L2(T
k))n

Fj×Zk−j → (L2(T
k))m

(Zj\Fj )×Zk−j , j = k, k − 1, . . . , 0,

so that

HjMzp
= Mzp

Hj , p > j + 1;(6.15)

ΠFj×Zk−j Mzj
Hj = HjMzj

;(6.16)

Π(Zj+1\Fj+1)×Zk−j−1HjΠFj+1×Zk−j−1 = Hj+1;(6.17)

‖Hj‖ = ‖Hj+1‖, 0 6 j 6 k − 1, Hk = Γf .(6.18)
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By convention Z0 \ F0 = Z0 = {0}, and Mzj
is the multiplication operator with

the jth variable. Clearly Hk = Γf satisfies the requirements. Suppose now that
Hk, Hk−1, . . . , Hj have been constructed. We apply Theorem 6.4 with

A =
1

‖Hj‖
Hj , T = Mzj

, T ′ = ΠFj×Zk−j Mzj
, Wp = Mzp

, W ′
p = Mzp

,

where p = j + 1, . . . , k. Note that U = T and U ′ = Mzj
. This yields an operator

B : (L2(T
k))n

Fj×Zk−j → (L2(T
k))m

(Zj−1\Fj−1)×Zk−j+1 satisfying

BMzp
= Mzp

B, p > j, Π(Zj\Fj)×Zk−j B =
1

‖Hj‖
Hj , ‖B‖ = 1.

Observe that Mzj
on (L2(T

k))n
Fj−1×Zk−j+1 is the minimal unitary extension of Mzj

on (L2(T
k))n

Fj×Zk−j (for the definition see Section VI.2 in [11]). Let

B̃ : (L2(T
k))n

Fj−1×Zk−j+1 → (L2(T
k))m

(Zj−1\Fj−1)×Zk−j+1

be defined by

(6.19) B̃ = strong lim
p→∞

M∗p
zj

BMp
zj

ΠFj×Zk−j−pej
,

where ej is the jth unit vector in Z
k. Formula (6.19) and Corollary VI.2.4 in [11]

show that

B̃Mzp
= Mzp

B̃, p > j, ‖B̃‖ = 1, B̃|(L2(T
k))n

Fj×Zk−j = B.

Put Hj−1 = ‖Hj‖B̃. We need to show that

(6.20) ΠFj−1×Zk−j+1Mzj−1Hj−1 = Hj−1Mzj−1 ,

since the other required properties are easily checked. To prove the equality in
(6.20) let (p1, . . . , pk) ∈ Fj−1 ×Zk−j+1 and (q1, . . . , qk) ∈ (Zj−1 \Fj−1)×Zk−j+1.
Then (p1, . . . , pj−1 + 1, . . . , pk) ∈ Fk ⊂ Fj × Zk−j , so

〈Hj−1Mzj−1(z
p1

1 · · · zpk

k ), zq1

1 · · · zqk

k 〉
= 〈‖Hj‖B((zp1

1 · · · zpj−1+1
j−1 · · · zpk

k ), zq1

1 · · · zqk

k 〉
= 〈z−qj−1

j ‖Hj‖B((zp1

1 · · · zpj−1+1
j−1 · · · zpk

k ), zq1

1 · · · z−1
j · · · zqk

k 〉
= 〈‖Hj‖B(zp1

1 · · · zpj−1+1
j−1 z

pj−qj−1
j · · · zpk

k ), zq1

1 · · · z−1
j · · · zqk

k 〉
= 〈Hj(z

p1

1 · · · zpj−1+1
j−1 z

pj−qj−1
j · · · zpk

k ), zq1

1 · · · z−1
j · · · zqk

k 〉
= f̂(q1 − p1, . . . , qj−1 − pj−1 − 1, . . . , qk − pk),

where we used that (q1, . . . , qj−1,−1, qj+1, . . . , qk) ∈ Zk \ Fk ⊆ (Zj \ Fj) × Zk−j .
On the other hand,

〈Mzj−1Hj−1(z
p1

1 · · · zpk

k ), zq1

1 · · · zqk

k 〉
= 〈Hj−1(z

p1

1 · · · z1
j · · · zpk

k , zq1

1 · · · zqj−1−1
j−1 z

qj−pj−1
j · · · zqk

k 〉
= 〈Hj(z

p1

1 · · · z1
j · · · zpk

k , zq1

1 · · · zqj−1−1
j−1 z

qj−pj−1
j · · · zqk

k 〉
= f̂(q1 − p1, . . . , qj−1 − pj−1 − 1, . . . , qk − pk),
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where we used that (p1, . . . , pj−1, 1, pj+1, . . . , pk) ∈ Fk and (q1, . . . , qj−1 − 1, qj −
pj − 1, . . . , qk) ∈ Z

k \ Fk. Thus (6.20) has been established, and therefore the

existence of the operators Hk, . . . , H0 has been proven.

Since H0 : (L2(T
k))n → (L2(T

k))m commutes with all multiplication opera-

tors Mz1 , . . . , Mzk
, there is (see Theorem IX.1.1 in [11] for the case when k = 1;

the proof for general k is analogous) a function h ∈ (L∞(Tk))m×n so that H0 is

the multiplication operator with symbol h. In fact, in the scalar case m = n = 1,

h is given by h = H01, where 1 stands for the constant function 1. In particular,

‖h‖∞ = ‖H0‖. Moreover, since ΠZk\Fk
H0ΠFk

= Γf we get that Γh = Γf , and

thus f − h ∈ (L∞(Tk))m×n
Fk

. This shows that

dist(f, (L∞(Tk))m×n
Fk

6 ‖h‖∞ = ‖H0‖ = ‖Γf‖.

The other inequality,

dist(f, (L∞(Tk))m×n
Fk

> ‖Γf‖,

follows directly from the observation that for g ∈ (L∞(Tk))m×n
Fk

we have that

‖f − g‖∞ > ‖Γf−g‖ = ‖Γf‖.

By a useful trick (see Section 5.3 in [4], or p. 478 in [3] for the case k = 2)
one may replace Fk in Theorem 6.5 by Zk ∩ A[Ek] (and Zk \ Fk by Zk \ A[Ek])

where A is an invertible k × k matrix with rational entries. It is an interesting
open problem whether the general halfspace case (and the general Bk

∞ case) may

be covered by some type of commutant lifting approach as well.

Note that in [10] other distance formulas are considered, e.g., the distance
dist(f, (H∞(Tk))m×n) to the space (H∞(Tk))m×n of m×n matrix valued bounded
analytic functions on Dk = {z : |z| < 1}k. This distance does not equal the norm

of the related Hankel operator. It is important in this regard to note that in our
case both (L∞(Tk))Fk

and (L∞(Tk))Zk\Fk
are closed under multiplication. The

space (L∞(Tk))
Zk\Z

k
+
, which is the one that appears naturally when one considers

dist(f, (H∞(Tk))m×n), is not closed under multiplication (when k > 1). The case
of dist(f, (L∞(Tk))Z+×Zk−1) may be reduced to an operator valued one-variable
case, and the results in [25] then yield the formula

dist(f, (L∞(Tk))Z+×Zk−1) = ‖Π(Z\Z+)×Zk−1MfΠZ+×Zk−1‖.

See also [7] and [10].
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7. A JOINT NORM BOUND RESULT

For f ∈ (Bk)m×n let ‖f‖Bk = [trace(M{f∗f})]1/2
be the Besikovitch norm.

Theorem 7.1. Let f ∈ (APWk)m×n
(−S)∩Λ be given, where Λ is a subgroup

of Rk. Denote d̂2 = ‖f‖Bk , d̂∞ = ‖H(f)Λ‖. For each ε > 1 there exists an

f̃ ∈ (APWk)m×n
(S\{0})∩Λ such that

‖f + f̃‖∞ 6 εd̂∞ and ‖f + f̃‖Bk 6
εd̂2√
ε2 − 1

.

Theorem 7.1 is a generalization of a result proved in [20], where the case
k = 1, Λ = Z was considered. Sharper bounds on ‖ · ‖∞ and ‖ · ‖Bk involving the
entropy have been obtained in [1] (again, for the case k = 1, Λ = Z).

Proof. The proof is analogous to the proof of Theorem 11.1 in [28]. Without

loss of generality we may assume that εd̂∞ = 1 (excluding the trivial case f ≡ 0),

since we may divide f by εd̂∞. But then ‖H(f)Λ‖ = 1
ε < 1. Let now f̃(t) =

β(t)δ(t)−1 − f(t), where β and δ are as in Theorem 2.1.
Using the easily derived inequality

traceM∗M 6 − log det(I − M∗M),

which holds for every M ∈ Cm×n with ‖M‖ < 1, we have:

‖f + f̃‖2
Bk = lim

T→∞

1

(2T )k

∫

[−T,T ]k

trace
[
((f + f̃)(t))∗(f + f̃)(t)

]
dt

6 − lim
T→∞

1

(2T )k

∫

[−T,T ]k

log det
(
I − ((f + f̃)(t))∗(f + f̃)(t)

)
dt

= − lim
T→∞

1

(2T )k

∫

[−T,T ]k

log det(I − (β(t)δ(t)−1)∗β(t)δ(t)−1) dt.

By (3.11) with g = 0 it follows that

I−(β(t)δ(t)−1)∗β(t)δ(t)−1 = δ(t)−1∗(δ(t)∗δ(t)−β(t)∗β(t))δ(t)−1 = δ(t)−1∗δ(t)−1.

Since
(
δ(t)M{δ}−1

)±1 ∈ I + (APWk)n×n
S\{0}, we get from Proposition 3.2 that

M
{
log

(
δ(t)M{δ}−1

)}
= 0.

So then we obtain

(7.1) ‖f + f̃‖2
Bk 6 M {log det (δ(t)δ(t)∗)} = log det(M{δ̂}) = trace log M{δ̂},

where δ̂ is as in Theorem 2.1. Note that

M{δ̂} = M
{
(I − (H(f))∗ΛH(f)Λ)−1 (In)

}

= M
{(

I + (H(f)Λ)∗(I −H(f)Λ(H(f)Λ)∗)−1HΛ(f)
)
(In)

}
.
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From the inequality log(1 + r) 6 r valid for r > 0 we get that

log M{δ̂} 6 M
{(

H(f)∗Λ(I −H(f)ΛH(f)∗Λ)−1H(f)Λ
)
(In)

}
.

Since ‖H(f)‖ 6 d̂∞ = 1
ε , from here and from (7.1) it follows that:

‖f + f̃‖2
Bk 6

1

1 − d̂2
∞

traceM {(H(f)∗ΛH(f)Λ) (In)} =
ε2

ε2 − 1
‖f‖2

Bk =
ε2d̂2

2

ε2 − 1
.

By using Theorem 4.1 instead of Theorem 2.1 one can prove a point excluding
variation of Theorem 7.1, where

f ∈ (APWk)m×n
(−S\{0})∩Λ, f̃ ∈ (APWk)m×n

S∩Λ , and d̃∞ = ‖H̃(f)Λ‖.

We omit a statement of this variation.

8. THE MODEL MATCHING PROBLEM FOR A

CLASS OF MULTIVARIABLE LINEAR FILTERS

In this section we consider filters acting on square summable sequences indexed
by an additive group in Rk. The case of the group Z in R is the familiar case,
treated extensively in the literature (see, e.g., [24]).

Let Λ be an additive subgroup of R
k. For ∆ ⊆ Λ we let `n

2 (∆) denote the
Hilbert space of sequences (vλ)λ∈∆ where at most countably many vλ ∈ C

n are
nonzero and which are square summable in norm, i.e.,

∑
λ∈∆

‖vλ‖2 < ∞. By `n×n
1 (∆)

we denote the Banach space of sequences (fλ)λ∈∆ where at most countably many
fλ ∈ C

n×n are nonzero and which are summable in norm, i.e.,
∑

λ∈∆

‖fλ‖ < ∞.

Fix a halfspace S of Rk. With S we associate an ordering 6S on Λ by
q 6S p if and only if p − q ∈ S. We shall use the interval notation with the usual
conventions. So, for instance, S ∩ Λ = [0,∞). With an element f ∈ `n×n

1 ([0,∞)),
we associate a filter Σf : `n

2 ([0,∞)) → `n
2 ([0,∞)), defined by

Σf ((uλ)λ∈[0,∞)) = (yλ)λ∈[0,∞), yλ =
∑

α∈[0,λ]

fαuλ−α.

We shall depict the filter as

(uλ)λ−→ Σf
(yλ)λ−→

,

and call (uλ)λ the input and (yλ)λ the output of the filter. The concatenation of
two filters

u−→ Σf
w−→ Σh

v−→

results in the product filter ΣhΣf . The difference filter Σf − Σh may be depicted
as in Figure 2.
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Figure 2.

With an element f = (fλ)λ∈[0,∞) ∈ `n×n
1 ([0,∞)) we may associate a member

of (APWk)n×n
Λ∩S , which with a slight abuse of notation we shall also denote by f ,

and which is defined via f(t) =
∑

λ∈[0,∞)

fλei〈λ,t〉, t ∈ Rk. Note that ΣhΣf = Σhf

and Σh − Σf = Σh−f . For a filter Σf we define its norm by

‖Σf‖ = sup
u6=0

‖Σf (u)‖
‖u‖ .

It is not hard to see that ‖Σf‖ = ‖f‖∞ := sup
t∈Rk

‖f(t)‖.

In this section we consider the model matching problem for linear filters,
i.e., given filters Σf1 , Σf2 , Σf3 , find a filter Σh so that the filter Σf1 − Σf2ΣhΣf3

depicted in Figure 3 has minimal possible norm.

�

� � �

� �

��	

��
��

� 
� � 
��

Figure 3.

Equivalently, given f1, f2 and f3 in (APWk)n×n
Λ∩S , find h ∈ (APWk)n×n

Λ∩S so
that ‖f1 − f2hf3‖∞ is as small as possible. In the case that

(8.1) inf
t∈Rk

| det f2(t)| > 0, inf
t∈Rk

| det f3(t)| > 0,
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we shall provide a solution to the suboptimal problem: Let

ν > inf
h

‖f1 − f2hf3‖∞,

construct one/all h ∈ (APWk)n×n
Λ∩S such that

(8.2) ‖f1 − f2hf3‖∞ < ν.

Proposition 8.1. Let f1, f2 and f3 be given elements of (APWk)n×n
Λ∩S so

that (8.1) is satisfied. Let f2,+(t)∗f2,+(t) and f3,+(t)f3,+(t)∗ be a right and left
canonical factorization of f2(t)

∗f2(t) and f3(t)f3(t)
∗, respectively, i.e.,

f2,+(t)∗f2,+(t) = f2(t)
∗f2(t), f3,+(t)f3,+(t)∗ = f3(t)f3(t)

∗,

where f±1
2,+, f±1

3,+ ∈ (APWk)n×n
Λ∩S . Let f2,i = f2f

−1
2,+ and f3,i = f−1

3,+f3. Then

inf
h

‖f1 − f2hf3‖∞ = ‖H̃(f∗
2,if1f

∗
3,i)Λ‖.

Here H̃ is defined by (4.1).

Proof. Since f2,if
∗
2,i = f2f

−1
2,+f∗−1

2,+ f∗
2 = f2(f

∗
2,+f2,+)−1f∗

2 = I , it follows that

f2,i(t) is unitary for all t. Similarly, f3,i(t) is unitary for all t. Therefore,

‖f1 − f2hf3‖∞ = ‖f1 − f2,if2,+hf3,+f3,i‖∞ = ‖f∗
2,if1f

∗
3,i − f2,+hf3,+‖∞.

Apply Theorem 4.1 to obtain that for ε > 0 there exists a gε ∈ (APWk)n×n
Λ∩S so

that
‖f∗

2,if1f
∗
3,i − gε‖ < ‖H̃(f∗

2,if1f
∗
3,i)‖ + ε.

Put hε = f−1
2,+gεf

−1
3,+ ∈ (APWk)n×n

Λ∩S . Then ‖f1 − f2hεf3‖ < ‖H̃(f∗
2,if1f

∗
3,i)‖ + ε.

This proves the inequality 6. The opposite inequality is trivial.

Recall the definition of the parameter set

(CAPWk)n×n
S∩Λ =

{
g ∈ (APWk)n×n

S∩Λ : sup
t∈Rk

‖g(t)‖ < 1
}
.

Theorem 8.2. Let f1, f2 and f3 be given elements of (APWk)n×n
Λ∩S so that

(8.1) is satisfied. Introduce f2,+, f3,+, f2,i and f3,i as in Proposition 8.1. Let

ν > ‖H̃(f∗
2,if1f

∗
3,i)Λ‖. Let f = ΠΛ∩(−S\{0})(f

∗
2,if1f

∗
3,i), and put

α̂(t) =
[
ν2I − ˜̃

H(f)Λ(
˜̃
H(f)Λ)∗

]−1
(Im),

β̂(t) = H̃(f)Λ
[
ν2I − (H̃(f)Λ)∗H̃(f)Λ

]−1
(In),

γ̂(t) = (
˜̃
H(f)Λ)∗

[
ν2I − (

˜̃
H(f)Λ(

˜̃
H(f)Λ)∗

]−1
(Im),

δ̂(t) =
[
ν2I − (H̃(f)Λ)∗H̃(f)Λ)

]−1
(In),

where Ir stands for the constant matrix function on R
k with value Ir for all t ∈ R

k.
Further, let

α(t) = α̂(t)M{α̂}− 1
2 , β(t) = β̂(t)M{δ̂}− 1

2 ,

γ(t) = γ̂(t)M{α̂}− 1
2 , δ(t) = δ̂(t)M{δ̂}− 1

2 .
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Then each solution h to the suboptimal model matching problem (8.2) is of the
form

(8.3) h = f−1
2 f1f

−1
3 − νf−1

2,+(αg + β)(γg + δ)−1f−1
3,+,

where g ∈ ν(CAPWk)n×n
S∩Λ. Moreover, this correspondence between the set

ν(CAPWk)n×n
S∩Λ and the set of solutions h is one-to-one.

Proof. As the proof of Proposition 8.1 shows, we have that h is a solution to
the model matching problem (8.2) if and only if

(8.4)
1

ν
(−f2,+hf3,+ + f∗

2,if1f
∗
3,i)

is a strictly contractive extension of 1
ν ΠΛ∩(−S\{0})(f

∗
2,if1f

∗
3,i). By the point exclud-

ing variation (see Section 4) of Theorem 2.2 these are parametrized by

(8.5) (ανg̃ + β)(γνg̃ + δ)−1,

where g̃ ∈ (CAPWk)n×n
Λ∩S . Equating (8.4) and (8.5) and solving for h yields (8.3)

with g = νg̃.

A version of Theorem 8.2 in which S (respectively −S \ {0}) is replaced by
S \ {0} (respectively −S) can be stated and proved analogously.

In the paper [12] systems of the form

x(h + 1, k + 1) = A1x(h, k + 1) + A2x(h + 1, k) + B1u(h, k + 1) + B2u(h + 1, k),

y(h, k) = Cx(h, k),

appear, where the initial conditions on the state are given on the diagonal {(i,−i) :
i ∈ Z}. When the joint spectral radius of A1 and A2 is smaller than one, this
system generates (with a minor modification of the location of the initial condi-
tions) the type of filter that we are considering in this section (take Λ = Z2 and
S = {(m, n) : m + n > 0 or (m + n = 0 and m > 0)}).
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