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Abstract. A contractive tuple is a tuple (T1, . . . , Td) of operators on a
common Hilbert space such that

(0.1) T1T
∗
1 + · · · + TdT ∗

d 6 1l.

It is said to be q-commuting if TjTi = qijTiTj for all 1 6 i < j 6 d, where
qij , 1 6 i < j 6 d are complex numbers. These are higher-dimensional
and non-commutative generalizations of a contraction. A particular example
of this is the q-commuting shift. In this note, we investigate model theory
for q-commuting contractive tuples using representations of the q-commuting
shift.
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1. INTRODUCTION

Suppose we have a linear contraction T on a separable Hilbert space. (All our
Hilbert spaces will be separable.) Consider the usual Toeplitz algebra T (see [5]),
i.e., the unital C∗-algebra generated by the unilateral shift S. Then there is a
unique unital completely positive map ϕ on T which maps S to T and moreover
any “sesqui-polynomial”

∑
ak,lS

k(S∗)l to
∑

ak,lT
k(T ∗)l. (Keeping powers of S∗,

T ∗ only on the right is important.) Actually this is a way of looking at Sz.-Nagy
dilation of contractions. Indeed if we consider the minimal Stinespring represen-
tation π of ϕ, we see that π(S) is nothing but the minimal isometric dilation of T .
Usual model theory including von Neumann’s inequality fail miserably when one
has to deal with tuples of operators. However this modified approach has been
quite successfully used by Agler ([1]), and Athavale ([6], [7]) to deal with opera-
tors as well as tuples of operators satisfying certain conditions coming from the
theory of reproducing kernels. The basic steps of this model theory are as follows.
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In the given class of operators (or operator tuples) identify a distinguished one,
sort of “standard shift”, the C∗-algebra generated by that will play the role of
Toeplitz algebra. Then obtain a unital completely positive map as above. Apply
Stinespring’s representation theorem to obtain dilation of any operator (or oper-
ator tuple) of our class. Some standard facts of C∗-algebra representation theory
come in handy to study all possible representations of new “Toeplitz algebra”.
Typically every representation breaks up as a direct sum of identity representa-
tion with some multiplicity and a “spherical part” (recall Wold decomposition).
Recently Arveson has demonstrated as to how beautifully the very same method
applies to any commutative contractive (satisfying condition (0.1)) tuple. As a
corollary he also obtains a von Neumann’s inequality. Our program here is to
extend this model theory to q-commuting contractive tuples. Such tuples have
received a lot of attention in recent years; q-commuting pairs seem to appear in
abundance in quantum theory. We refer to [9], [13] and [16] for many examples
with such properties.

A much more general approach applicable to general non-commuting con-
tractive tuples of operators can be found in the papers of Popescu ([14], [15]) and
his co-author Arias ([2], [3]). It is possible to obtain most of the results one has
for special cases like commuting or q-commuting tuples using their theory of Pois-
son transforms and dilations on full Fock space through a quotienting procedure.
However we closely follow Arveson’s methods deviating only at a few places. As
it turns out, many essential features for commuting contractive tuples carry over
to q-commuting contractive tuples. A standard shift S can be defined without
difficulty. The existence of a required completely positive map, von Neumann’s
inequality etc. can be established. The notion of energy sequence remains essen-
tially the same and the operator space generated by the tuple S is maximal in
the sense that the value of its energy sequence is greater than that of any other
d-dimensional operator space generated by a q-commuting contractive tuple.

Any ordered d-tuple of non-negative integers k = (k1, . . . , kd) will be called
a multi-index. We shall write k1 + · · · + kd as |k|. The special multi-index which
has 0 in all positions except the ith one, where it has 1, is denoted by ei.

Throughout this note, d > 1 is a positive integer. Let z1, . . . , zd be d variables
satisfying zjzi = qijzizj for 1 6 i < j 6 d, where qij are complex numbers. We
shall call these variables to be q-commuting. (We will not need qij for i > j.)

For any d variables z1, . . . , zd as above and any non-zero multi-index k, the
monomial zk1

1 · · · zkd

d will be denoted by zk. Note that since zi are q-commuting,
the order in the monomial is important. So our multi-indices are ordered. For
the multi-index k = (0, . . . , 0), we let zk to be the complex number 1. The linear
combinations of the monomials give rise to the vector space of polynomials to be
denoted by P. A polynomial f of degree n is determined by some set of constants
{bk : |k| 6 n}, i.e., f(z1, . . . , zd) =

∑
bkzk.

From now on, unless explicitely stated otherwise, the symbols z1, . . . , zd will
always mean these q-commuting variables, which will be called the co-ordinate
functions. Examples of such variables can be found in quantum theory where in
many cases |qij | = 1. Throughout we will denote |qij |2 by pij . With the variables
z1, . . . , zd, we shall associate a new set of variables w1, . . . , wd satisfying the relation
wjwi = pijwiwj for 1 6 i < j 6 d.
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Definition 1.1. Let P be the vector space of all polynomials in z1, . . . , zd.
Endow it with the following inner product. First declare zk and zl orthogonal if k
is not the same as l as ordered multi-indices. Then let ‖zk‖2 to be the reciprocal
of the coefficient of wk in the multinomial expansion of (w1 + · · · + wd)n where
|k| = n. Now define H to be the closure of P with respect to this inner product.

In the commutative case, i.e., if qij ≡ 1, the Hilbert space H is the space H2

discussed by Arveson in [5].
For any integer n > 1 let Pn be the finite-dimensional subspace of P spanned

by the monomials of the form zk where |k| = n, while P0 is defined to be C. Note
then that

H =
∞⊕

n=0

Pn.

Given any multi-index k and any permutation π of {1, . . . , d}, let the multi-index
l be defined by li = kπ(i). Then zl1

π(1) · · · z
ln
π(n) is a multiple of zk. So dimension of

Pn is the same as the dimension of the nth symmetric tensor power of Cd. So

dimPn =
(

n + d− 1
n

)
.

We do not really treat H as any functional Hilbert space. But we call the
one-dimensional space spanned by zk where k is the zero multi-index as the space
of constant functions. This is the space P0 mentioned above.

When qij = q for all i < j, the norm ‖zk‖ is as follows. To begin with, we
get rid of a few long expressions by fixing notations for them. For any complex
number q and positive integer n, let

[n, q] = 1 + q + · · ·+ qn−1, [0, q] = 0

and
[n, q]! = [n, q][n− 1, q] · · · [1, q], [0, q]! = 1.

The multinomial expansion of (w1 + · · ·+ wd)n in this case is of the form

(w1 + · · ·+ wd)n =
∑

a(k, p)wk1
1 · · ·wkd

d ,

where the sum is over all multi-indices k such that n = k1 + · · ·+ kd and

a(k, p) =
[|k|, p]!

[k1, p]! · · · [kd, p]!
.

The set {(a(k, p))1/2zk : |k| > 0} thus forms an orthonormal basis for H.
The organisation of the paper is as follows. In Section 2, we prove a min-

imality property of the space H. Section 3 is about the special q-commuting
contractive tuple S which is a generalization of the one-dimensional shift on the
Hardy space of the unit disk and also of the d-shift of Arveson. So that will be
referred to in this paper as the q-commuting shift or simply the shift. Section 3
describes the basic properties of the shift. Section 4 investigates a suitable model
for a general q-commuting contractive tuple. It turns out that the shift plays a
big role. The model theory is investigated in detail where we show that every
q-commuting contractive tuple is, up to unitary equivalence, a compression of a
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certain special q-commuting contractive tuple to a suitable subspace. Section 5
is about the d-dimensional operator space spanned by the shift and its energy
sequence.

Methods of this paper are also applicable to general non-commutative con-
tractive operator tuples. Indeed consider the vector space of polynomials in non-
commuting variables z1, . . . , zd (no commutation relations between zi’s assumed).
Taking distinct monomials {1, zi1zi2 · · · zir : 1 6 ij 6 d, 1 6 j 6 r, r > 1}, as
orthonormal and completing the space we have a Hilbert space which is naturally
isomorphic (in the obvious way) to the full Fock space over Cd. The operator
multiplication by zi from the left (denote it by Si) corresponds to the left creation
operator of the standard basis vector {ei} for 1 6 i 6 d. Note that Si’s don’t
commute but they are isometries with orthogonal ranges. Taking (S1, . . . , Sd)
as “standard shift” we can build a model theory for arbitrary contractive tuples
(T1, . . . , Td) very much along the lines of Sections 2 and 4. However we do not
elaborate much on this as these ideas (though not necessarily with same terminol-
ogy) has been explored by many authors. See for example Frazho ([11]), Bunce
([8]) and Popescu ([14]). We also would like to remark that much of the theory
can be extended to infinite tuples (T1, T2, . . .), satisfying

∑
TiT

∗
i 6 I, by simply

considering polynomials in infinite number of variables.

2. AN INCLUSION PRINCIPLE

Let us begin with a couple of characterizations of the condition (0.1) of a q-
commuting contractive tuple T = (T1, . . . , Td) acting on a Hilbert space K. First
note that this condition is equivalent to demanding that

(2.1) ‖T1ξ1 + · · ·+ Tdξd‖2 6 ‖ξ1‖2 + · · ·+ ‖ξd‖2

for any ξ1, . . . , ξd in K. Notice too that if we define a completely positive map on
B(K) by PT (X) = T1XT ∗1 + · · · + TdXT ∗d then the condition (0.1) on T holds if
and only if PT is a contraction.

Given a q-commuting contractive tuple T on a Hilbert space K and a multi-
index k we employ the notation T k in exactly the same way as zk. So T k will
mean the operator T k1

1 · · ·T kd

d . Note that if Ti’s q-commute, completely positive
maps Pi(X) := TiXT ∗i , X ∈ B(K), p-commute, where pij = |qij |2, in the sense:

Pj(Pi(X)) = pijPi(Pj(X)), for 1 6 i < j 6 d.

Now as PT =
∑
i

Pi, by multinomial theorem for any n > 0,

(2.2) Pn
T (X) =

∑
|k|=n

1
‖zk‖2

T kX(T k)∗.

Theorem 2.1. Let T be a q-commuting contractive tuple on a Hilbert space
K. Suppose there is a unit vector v ∈ K such that for any non-zero multi-index k,
the element T kv is orthogonal to v. Then there is a contraction C : H → K such
that

(2.3) Czk = T kv
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for any multi-index k.

Proof. We define C on the monomials by (2.3) and then extend, by linearity
to the polynomials. If we can prove that C is a contraction from P to K then,
because P is dense, C will extend uniquely to H as a contraction. Let n be any
positive integer and

∑
bkzk be any polynomial in H where the sum is over all k

with |k| 6 n. By definition, C
(∑

bkzk
)

=
∑

bkT kv and hence what we need to
show is

(2.4)
∥∥∥∑ bkT kv

∥∥∥2

K
6
∑

k

|bk|2‖zk‖2

for any set of constants {bk : |k| 6 n}. Note that by replacing bk by bk(‖zk‖)−1,
(2.4) is equivalent to

(2.5)
∥∥∥∥∑ bk

‖zk‖
T kv

∥∥∥∥2

K
6
∑

k

|bk|2

for any set of constants {bk : |k| 6 n}. Let E0 be the projection onto v. It is now
obvious from the discussion at the beginning of this section that showing (2.5) for
any set of constants {bk} is equivalent to showing that the tuple{

1
‖zk‖

T kE0 : |k| 6 n

}
is a contractive tuple. This can be best organised in the following way:

On B(K), define the completely positive map PT (X) =
∑

TiXT ∗i . It follows
that ‖PT ‖ = ‖PT (1lK)‖ =

∥∥∑TiT
∗
i

∥∥ 6 1. Then PT (E0) is a positive contraction.
Also 〈TiE0T

∗
i v, v〉K = 0 because E0T

∗
i v is a multiple of v. Thus 〈PT (E0)v, v〉K = 0.

This implies that PT (E0) 6 1lK − E0. Since 0 6 E0 + PT (E0) 6 1lK we have
0 6 PT (E0)+(PT )2(E0) 6 PT (1lK) 6 1lK. Again 〈(PT (E0)+(PT )2(E0))v, v〉K = 0
forcing E0+PT (E0)+(PT )2(E0) 6 1lK. This way after applying a simple induction,

E0 + PT (E0) + · · ·+ Pn
T (E0) 6 1lK.

Now define

QT (X) = E0XE0 + PT (E0XE0) + · · ·+ Pn
T (E0XE0).

Then QT is a completely positive map and the inequality just proved shows that
it is a contraction. Now from (2.2)

QT (X) =
∑ 1

‖zk‖2
T kE0XE0(T k)∗

where now the sum is over all multi-indices k such that |k| 6 n. By the discussion
before the theorem, we are done.
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This theorem compares with the maximality of H2 norm proved by Arveson
([5]). Also note that the following non-commutative generalization holds. Essen-
tially the same proof with necessary modifications works. Let T be a contractive
(
∑

TiT
∗
i 6 1l) tuple of operators on a Hilbert space K. No commutation relations

between Ti’s are assumed. Suppose there is a unit vector v in K such that for
any 1 6 i1, . . . , ir 6 d, the vector Ti1 · · ·Tir

v is orthogonal to v. Then there is a
contraction C from the full Fock space over Cd into K such that C(1) = v, and
C(ei1⊗· · ·⊗eir ) = Ti1 · · ·Tirv, where 1 is the vacuum vector in the full Fock space
and e1, . . . , ed are the standard basis vectors of Cd.

3. BASIC PROPERTIES OF A SPECIAL TUPLE S

The q-commuting structure of the co-ordinate functions gives rise to the follow-
ing special tuple of operators which is a q-commuting contractive tuple in the
sense of (0.1). The following definition defines the operator tuple S only on the
polynomials. Our first lemma extends these operators to the whole of H.

Definition 3.1. The q-commuting shift is the tuple S = (S1, . . . , Sd) where
each Si is defined for f ∈ P by

Sif(z1, . . . , zd) = zif(z1, . . . , zd).

Lemma 3.2. For each i = 1, . . . , d, the operator Si is bounded on the dense
subspace P of polynomials and hence extends to H uniquely. Denote the extension
also by Si. Then

SjSi = qijSiSj for 1 6 i < j 6 d.

Proof. Here and in many other occassions the following simple observation
will be useful. Let k be any multi-index and let l be the multi-index k + ei. Then
note that by writing (w1 + · · ·+ wd)|l| as (w1 + · · ·+ wd)(w1 + · · ·+ wd)|k| and by
computing the coeffiecients, we get

(3.1)
1

‖zl‖2
=
∑

pl1
1j · · · p

lj−1

(j−1)j

1
‖zk+ei−ej‖2

where the sum is over all j for which kj are non-zero.
Thus

1
‖zl‖2

> pk1
1i · · · p

ki−1

(i−1)i

1
‖zk‖2

.

Or,
pk1
1i · · · p

ki−1

(i−1)i‖z
k+e

i‖2 6 ‖zk‖2.

Note the action of Si on the monomials:

Siz
k = ziz

k = qk1
1i · · · q

ki−1

(i−1)iz
k+e

i .

So
‖Siz

k‖2 = pk1
1i · · · p

ki−1

(i−1)i‖z
k+ei‖2 6 ‖zk‖2.
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If two multi-indices k and l are different, then zk and zl are orthogonal
and consequently Siz

k and Siz
l are orthogonal too. For any family of constants

{bk : |k| 6 n},∥∥∥∥Si

( ∑
|k|6n

bkzk

)∥∥∥∥2

=
∑
|k|6n

|bk|2‖Siz
k‖2 6

∑
|k|6n

|bk|2‖zk‖2 =
∥∥∥∥( ∑

|k|6n

bkzk

)∥∥∥∥2

.

Thus Si is contractive on P and hence extends uniquely as a bounded operator to
the whole of H. The action of Si on monomials immediately shows that for i < j,

SjSiz
k = qijSiSjz

k.

By linearity, this remains true for polynomials and hence extends to the whole of
H by density.

The lemma above proves that Si is a contraction for each 1 6 i 6 d and the
equation (3.1) is crucial to that. Actually much more can be said.

Lemma 3.3. Let k and l be any two multi-indices. Then∥∥Skzl
∥∥2 =

∥∥zkzl
∥∥2 =

∏
i<j

likj 6=0

p
likj

ij

∥∥zk+l
∥∥2

,

and
‖Sk‖ = ‖zk‖.

Proof. The first part is obvious. Now as in the proof of the lemma above,
writing (w1 + · · ·+wd)|k|+|l| as (w1 + · · ·+wd)|k|(w1 + · · ·+wd)|l|, and comparing
coefficients of wk+l, we get

1
‖zl+k‖2

>
1

‖zk‖2
1

‖zl‖2
∏
i<j

likj 6=0

p
likj

ij .

Or, ∏
i<j

likj 6=0

p
likj

ij ‖zk+l‖ 6 ‖zk‖2‖zl‖2.

Thus,
‖Skzl‖ 6 ‖zk‖ ‖zl‖, for all k and l.

This norm inequality on monomials can easily be extended to P by not-
ing that orthogonal monomials are taken by Sk to orthogonal monomials. Thus
‖Sk‖ 6 ‖zk‖. Since Sk takes the constant function 1 to zk, this norm is actually
attained.

We propose to prove that S is a q-commuting contractive tuple and the next
two lemmas facilitate that.
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Lemma 3.4. The action of the operator S∗i on the basis elements zk is as
follows:

S∗i zk = 0 if ki = 0 and S∗i zk = qk1
1i · · · q

ki−1

(i−1)i

∥∥zk
∥∥2∥∥zk−e
i

∥∥2 zk−e
i if ki 6= 0.

Proof. Let l be any multi-index. Then〈
S∗i zk, zl

〉
=
〈
zk, Siz

l
〉

= ql1
1i · · · q

li−1

(i−1)i

〈
zk, zl+ei

〉
.

This last quantity is non-zero if and only if l + ei = k. Thus first of all S∗i zk = 0
if ki = 0. But if ki 6= 0, then S∗i zk is a constant multiple of zk−ei . The constant
is, qk1

1i · · · q
ki−1

(i−1)i

∥∥zk
∥∥2

/
∥∥zk−ei

∥∥2
.

Given a q-commuting contractive tuple T acting on a Hilbert space K, one
naturally associates the defect operator with the tuple which is defined by

(3.2) DT =
[
1l−

(
T1T

∗
1 + · · ·+ TdT

∗
d

)] 1
2 .

One of the important preliminary fact of the commutative case which remains true
in the new situation is that the projection E0 onto the one-dimensional space of
constant functions is the defect operator for the q-commuting shift.

Lemma 3.5. Let S be the q-commuting shift and 1l be the identity on H.
Then

d∑
i=1

SiS
∗
i = 1l− E0.

Proof. First note that if k = 0, then from Lemma 3.4, S∗i zk = 0 for all
i = 1, . . . , d. So then

∑
SiS

∗
i is identically zero on the range of E0. If k is a

non-zero multi-index with ki 6= 0, then applying Lemma 3.4 again, we have

S∗i zk = qk1
1i · · · q

ki−1

(i−1)i

∥∥zk
∥∥2∥∥zk−ei

∥∥2 zk−ei ,

SiS
∗
i zk = pk1

1i · · · p
ki−1

(i−1)i

∥∥zk
∥∥2∥∥zk−e
i

∥∥2 zk.(3.3)

If ki = 0, then SiS
∗
i zk = 0. So for all non-zero k,

d∑
i=1
ki 6=0

SiS
∗
i zk =

∥∥zk
∥∥2

d∑
i=1

ki 6=0

pk1
1i · · · p

ki−1

(i−1)i∥∥zk−ei

∥∥2 zk.

Now from (3.1),
d∑

i=1
ki 6=0

pk1
1i · · · p

ki−1

(i−1)i∥∥zk−ei

∥∥2 =
1∥∥zk
∥∥2 .
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Hence
d∑

i=1

SiS
∗
i zk = zk.

Thus the operator
∑

SiS
∗
i acts like identity on the orthogonal complement of the

range of E0. Hence the result.

So, as a result of these lemmas, S is a q-commuting contractive tuple. More-
over, whatever be qij , the operator 1l−

∑
SiS

∗
i is a one-dimensional projection. In

contrast to this, the sum
∑

S∗i Si−1l, which is also a diagonal operator by the next
lemma, is not even compact if pij 6= 1 for some i < j. If all pij = 1, the diagonal
co-efficients tend to zero as |k| → ∞. That means it can be approximated by finite
rank operators.

Lemma 3.6. Let S be the q-commuting shift. Then each monomial zk is an
eigenvector for

∑
S∗i Si−1l, so that it is a diagonal operator on the standard basis.

In fact,
d∑

i=1

S∗i Siz
k =

(
d∑

i=1

∥∥zk+e
i

∥∥2∥∥zk
∥∥2 pk1

1i · · · p
ki−1

(i−1)i

)
zk.

∑
S∗i Si − 1l is compact if and only if pij = 1 for all i < j.

Proof. For any multi-index k,

(3.4) S∗i Siz
k = qk1

1i · · · q
ki−1

(i−1)iS
∗
i zk+ei = pk1

1i · · · p
ki−1

(i−1)i

∥∥zk+e
i

∥∥2∥∥zk
∥∥2 zk.

Hence the first part of the lemma. Now if pij = 1 for all i < j, then w1, . . . , wd are
commutative. It then follows from the multinomial expansion of (w1 + · · ·+wd)|k|

that

1∥∥zk
∥∥2 =

|k|!
k1! · · · kd!

and
1∥∥zk+ei

∥∥2 =
(|k|+ 1)!

k1! · · · ki−1!(ki + 1)!ki+1! · · · kd!
.

Now on simplification, it can easily be seen from (3.4) that
(∑

S∗i Si − 1l
)
zk =

(d − 1)/(|k| + 1)zk and hence compactness is clear. It remains to see that for
each value of pij 6= 1 for some i < j, there is a subsequence of k along which the
quantity

d∑
i=1

∥∥zk+e
i

∥∥2∥∥zk
∥∥2 pk1

1i · · · p
ki−1

(i−1)i − 1

does not go to 0. If pi0j < 1 for some i0 < j, take the subsequence {(0, . . . , 0, n,
0, . . . , 0) : n = 1, 2, . . .} where n is at the jth. place. Then

zk+e
i =


ziz

n
j if i < j,

zn+1
j if i = j,

zn
j zi if i > j.
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It is easy to see that 1/‖ziz
n
j ‖2 = 1 + pij + · · ·+ pn

ij for i < j, 1/‖zn+1
j ‖2 = 1 and

1/‖zn
j zi‖2 = 1 + pji + · · ·+ pn

ji for i > j. Moreover, with this choice of k, we have
1/‖zk‖2 = 1. So

d∑
i=1

∥∥zk+ei

∥∥2∥∥zk
∥∥2 pk1

1i · · · p
ki−1

(i−1)i >
∑

i=i0,j

∥∥zk+ei
∥∥2∥∥zk
∥∥2 pk1

1i · · · p
ki−1

(i−1)i =
1

1 + pi0j + · · ·+ pn
i0j

+1.

Now note that since pi0j < 1, we have 1+pi0j + · · ·+pn
i0j → (1−pi0j)−1 as n →∞.

So this particular subsequence suffices to show that
∑

S∗i Si − 1 is not compact.
For pi0j > 1 for some i0 < j, take the subsequence {(0, 0, . . . , 0, n, 0, . . . , 0) : n =
1, 2, . . .} where now n is in the i0 place. We observe that

d∑
i=1

∥∥zk+ei

∥∥2∥∥zk‖2
pk1
1i · · · p

ki−1

(i−1)i >
∑

i=i0,j

∥∥zk+ei

∥∥2∥∥zk
∥∥2 pk1

1i · · · p
ki−1

(i−1)i =1+
pn

i0j

1 + pi0j + · · ·+ pn
i0j

and the proof can be completed as before.

The next result shows how the commutators [S∗i , Si] act. The vector S∗i Siz
k

is never 0 for any multi-index k. However, SiS
∗
i zk is 0 whenever ki = 0.

Lemma 3.7. The commutator of S∗i and Si is as follows:

[S∗i , Si]zk = pk1
1i · · · p

ki−1

(i−1)i

(∥∥zk+ei

∥∥2∥∥zk
∥∥2 −

∥∥zk
∥∥2∥∥zk−e
i

∥∥2

)
zk, when ki 6= 0.

If ki = 0, then [S∗i , Si]zk = S∗i Siz
k = pk1

1i · · · p
ki−1

(i−1)i

∥∥zk+e
i

∥∥2∥∥zk
∥∥2 zk.

Proof. This lemma is straightforward from (3.3) and (3.4) above.

We shall leave at that the computations and reap an interesting corollary.
For the first time the inherent asymmetry in the definition of the shift becomes
apparent.

Corollary 3.8. For 1 6 i 6 d, if the commutator [S∗i , Si] is compact then
pji 6 1 for 1 6 j < i and pij > 1 for i < j 6 d. All the commutators [S∗i , Si] are
compact if and only if pij = 1 for all 1 6 i < j 6 d.

Proof. The first claim follows from computations as in the proof of Lemma 3.6
by considering subsequence nej . This also gives us the “only if” part of the second
claim. Now if pij = 1 for all i < j, the formula for the commutator tells us that
[S∗i , Si]zk = (|k| − ki)/((|k|+ 1)|k|)zk, and these eigenvalues certainly converge to
zero as |k| → ∞. So then each [S∗i , Si] is compact.

It is indeed possible that only some [S∗i , Si] are compact, for example if
qij ≡ q, with |q| > 1, then [S∗1 , S1] is compact and the rest are not. A similar
result holds for |q| < 1, when [S∗d , Sd] is compact and the others are not.

For any complex number z, the z-commutator of two operators A,B is defined
as:

[A,B]z = AB − zBA.
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Lemma 3.9. If pij ≡ 1, then [S∗i , Sj ]qij
is compact for all 1 6 i < j 6 d.

Proof. We observe that when pij ≡ 1, for any multi-index k,
∥∥zk
∥∥2 is equal to

k1!k2! · · · kd!
|k|!

(reciprocal of the multinomial coefficient). Direct computation yields

[S∗i , Sj ]qij
zk = qij

(
|k|2

(|k|+ 1)|k|
− 1
)

SjS
∗
i zk

and then it is easy to complete the proof.

The main use of this corollary is for pij ≡ 1, as for i > j, [S∗i , Sj ]qji
is just the

adjoint of [S∗j , Si]qji
, every S∗i Sj can be written as a linear combination of SjS

∗
i

and a compact operator for all i and j. This has some interesting consequences.
See Remark 4.6. We shall end this section with a description of basic properties
of S in the special case when qij ≡ 0.

Lemma 3.10. If the variables z1, z2, . . . , zd are such that

zjzi = 0 for i < j,

(i.e., qij ≡ 0), then given a multi-index k,

Siz
k =

{
zk+e

i if k1 + · · ·+ ki−1 = 0,
0 otherwise;

S∗i zk =
{

zk−ei if k1 + · · ·+ ki−1 = 0 and ki 6= 0,
0 otherwise.

The operators Si are bounded and they satisfy SjSi = 0 for all i < j. Moreover,
S∗i Si is the projection onto the subspace spanned by {zk : k1 + · · · + ki−1 = 0}
and SiS

∗
i is the projection onto the subspace spanned by {zk : k1 + · · · + ki−1 =

0 and ki 6= 0}. Consequently,

S∗i Si = 1l−
i−1∑
j=1

SjS
∗
j for 1 6 i 6 d.

For i 6= j, S∗i Sj = 0. Thus all the operators S∗i Sj can be written as linear combi-
nations of 1l and SrS

∗
r , r = 1, . . . , d.

Proof. Here monomials {zk} are orthonormal in H. If the zi’s satisfy the
assumption of the lemma, then S1z

k = zk+e1 but for any i > 1, Siz
k is clearly 0

unless k1 + · · ·+ ki−1 = 0 holds in which case Siz
k = zk+e

i . The boundedness of
Si and the q-commutativity are now clear.

Note that S∗i zk is 0 if ki = 0. If ki 6= 0, then it is a multiple of zk−ei .
The multiplying factor is

〈
zk, Siz

k−ei

〉
/
∥∥zk−ei

∥∥. This ratio is 1 or 0 depending on
whether k1 + · · ·+ ki−1 is equal to zero or not. Thus we have the stated formula
for S∗i .

It is now clear that SiS
∗
i is the projection onto the subspace spanned by

{zk : k1 + · · · + ki−1 = 0 and ki 6= 0}. Thus S1S
∗
1 , . . . , Si−1S

∗
i−1 is a family of
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orthogonal projections for any 1 < i 6 d. Hence their sum will be the projection
onto the direct sum of the ranges which is the subspace spanned by all zk with at
least one of kj being non-zero for 1 6 j 6 i−1 or in other words k1+· · ·+ki−1 6= 0.

On the other hand, S∗i Siz
k is zk or 0 depending on whether k1 + · · ·+ki−1 =

0 or not. Thus this is the projection which is the orthogonal complement of
S1S

∗
1 + · · ·+ Si−1S

∗
i−1. So we have

S∗i Si = 1l−
i−1∑
j=1

SjS
∗
j .

Also note that S1S
∗
1 + · · ·+SdS

∗
d is the projection onto the subspace spanned

by all zk such that k1+· · ·+kd 6= 0 and hence as before 1l−(S1S
∗
1+· · ·+SdS

∗
d) = E0.

That S∗i Sj is 0 for i 6= j is again a straightforward computation on the
monomials.

4. MODEL THEORY: VON NEUMANN’S INEQUALITY AND DILATION

By an operator space we shall mean a vector subspace of B(L) where L is a Hilbert
space. Given an operator space E and an algebra A ⊆ E , a completely positive
map ϕ from E to B(K) for some Hilbert space K is called an A-morphism if

ϕ(AX) = ϕ(A)ϕ(X), for any A ∈ A and X, AX ∈ E .

The C∗-subalgebra of B(H) generated by S1, . . . , Sd and 1l will be denoted by
T q

d . If all the qij are same as q for some fixed complex number q, then we do
not have to, a priori, include 1l in the C∗-algebra T q

d because then it is easy to
see that the operator

∑
S∗i Si is invertible in B(H). Since C∗-algebras are inverse

closed,
(∑

S∗i Si

)−1 is in the C∗-algebra generated by S1, . . . , Sd and hence T q
d is

unital. It is not clear to us whether this is the situation in the general case. The
subalgebra of T q

d consisting of polynomials in S1, . . . , Sd and 1l will be denoted
by A. The operator space spanAA∗ will be denoted by E . This is a subspace of
T q

d . Of course, A and E also depend upon qij ’s and d, but we suppress it in our
notation.

Lemma 4.1. All compact operators are in E.

Proof. We see from Lemma 3.5 that the one-dimensional projection E0 onto
the space of constant functions is in spanAA∗. Now given any two polynomials f
and g, the operator f(S)E0(g(S))∗ is in spanAA∗. But note that this operator is
nothing but the rank-one operator

ξ → 〈ξ, g〉f.

As polynomials are dense in H, all compact operators are in E .

Note that given any unitalA-morphism ϕ from E to B(K), where K is another
Hilbert space, the tuple (ϕ(S1), . . . , ϕ(Sd)) is a q-commuting contractive tuple on
K. We also have a converse of this statement.
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Theorem 4.2. If T = (T1, . . . , Td) is a q-commuting contractive tuple acting
on a Hilbert space K, then there is a unique unital A-morphism ϕ : E → B(K)
such that ϕ(Sj) = Tj.

Proof. This result follows by standard methods. We may follow the approach
of Arias and Popescu ([2], Example 3.3). This just involves observing that for q-
commuting tuples the Poisson transform of Popescu lands in a subspace naturally
isomorphic to H⊗K, so that we can apply a quotienting procedure to the minimal
isometric dilation in the full Fock space (see Section 8 of [15]). An alternative
approach is to follow Arveson’s methods ([5]) verbatim. (Actually the two methods
are essentially same.)

Theorem 4.3. If T = (T1, . . . , Td) is a q-commuting contractive tuple acting
on a Hilbert space K, then there is a unital A-morphism ϕ : T q

d → B(K) such that
ϕ(Sj) = Tj.

Proof. The existence of a completely positive map ϕ : T q
d → B(K) is got by

applying Arveson’s extension theorem ([4]) to the ϕ obtained in Theorem 4.2. Of
course, the extended map may not be unique. To see that any such extension is
an A-morphism, we consider a Stinespring dilation of ϕ. Thus we get a Hilbert
space K̂ containing K and a representation π of T q

d on K̂ such that

ϕ(X) = PKπ(X)PK for X ∈ T q
d ,

where PK is the projection onto K. (We are identifying any operator Z ∈ B(K)
with PKZPK ∈ B(K̂).) Now the A-morphism property follows in the following
way:

ϕ(Si)ϕ(S∗i ) = ϕ(SiS
∗
i ) = PKπ(SiS

∗
i )PK = PKπ(Si)π(S∗i )PK

= PKπ(Si)(PK + P⊥K )(PK + P⊥K )π(S∗i )PK
= (PKπ(Si)PK + PKπ(Si)P⊥K )(PKπ(S∗i )PK + P⊥K π(S∗i )PK)

= ϕ(Si)ϕ(S∗i ) + (PKπ(Si)P⊥K )(PKπ(Si)P⊥K )∗.

Thus

(4.1) PKπ(Si)P⊥K = 0.

Let f(z1, . . . , zd) be any given polynomial. Then it follows immediately from (4.1)
that

PKπ(f(S))P⊥K = 0.

Hence for any X ∈ T q
d ,

ϕ(f(S)X) = PKπ(f(S)X)PK = PKπ(f(S))π(X)PK
= PKπ(f(S))(PK + P⊥K )(PK + P⊥K )π(X)PK
= (PKπ(f(S))PK + PKπ(f(S))P⊥K )(PKπ(X)PK + P⊥K π(X)PK
= ϕ(f(S))ϕ(X).

Thus ϕ has the A-morphism property.
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Corollary 4.4. (von Neumann’s inequality) Let T = (T1, . . . , Td) be any
q-commuting contractive tuple acting on a Hilbert space K and S = (S1, . . . , Sd)
be the q-commuting shift. Then for any polynomial f in d-variables,

‖f(T1, . . . , Td)‖ 6 ‖f(S1, . . . , Sd)‖.
Proof. Making use of the unital completely positive map ϕ of last theorem

which maps f(S1, . . . , Sd) to f(T1, . . . , Td), we have

‖f(T1, . . . Td)‖ = ‖ϕ(f(S1, . . . , Sd))‖ 6 ‖ϕ‖ ‖f(S1, . . . , Sd)‖ = ‖f(S1, . . . , Sd)‖.

The above theorems lead us to the following dilation theorem for any q-
commuting contractive tuple T acting on some Hilbert space K. We need some
notation. If n is a positive integer or ∞ and M is a Hilbert space of dimension n,
we shall mean by n·S, the operator tuple (S1⊗1lM, . . . , Sd⊗1lM) acting on H⊗M.
In the next theorem, we are going to express T as a compression of a direct sum
one of whose components might be absent. To assimilate this in a single notation,
we make the convention that n · S is absent if n = 0. Given a Hilbert space N ,
and a representation β of T q

d on N , the operator tuple

A
def= n · S ⊕ β(S)

is clearly a q-commuting contractive tuple on K̂ def= (H ⊗M) ⊕ N . Let K be a
subspace of K̂ such that A∗iK ⊆ K for all i = 1, . . . , d. Such subspaces are called
co-invariant with respect to the tuple A. Consider the compression T of A to K
as follows:

Ti
def= PKAi|K.

This T is clearly a q-commuting contractive tuple on K and moreover, for any
polynomial f(z1, . . . , zd), f(T ) is the compression of f(A) due to the co-invariance
of K with respect to A. We prove that every q-commuting contractive tuple has
such a realization with β sending all compact operators to zero.

Theorem 4.5. (Dilation) Let T be any q-commuting contractive tuple act-
ing on a separable Hilbert space K and rank DT = n (which is a non-negative
integer or ∞). Then there is a separable Hilbert space M of dimension n, another
separable Hilbert space N with a q-commuting tuple of operators Z = (Z1, . . . , Zd)
acting on it, satisfying Z1Z

∗
1 + · · ·+ ZdZ

∗
d = 1l such that:

(i) K is contained in K̂ def= (H⊗M)⊕N as a subspace and it is co-invariant
under A

def= n · S ⊕ Z.
(ii) T is the compression of A to K, that is, T = PKA|K.

Proof. Let ϕ, K̂ and π be as in Theorem 4.3 and its proof. Note that we may
and do assume π to be a minimal Stinespring dilation. So

K̂ = span{π(X)u : X ∈ T q
d and u ∈ K}.

The C∗-algebra T q
d is separable and hence the Hilbert space K̂ is also separable.

The tuple (π(S1), . . . , π(Sd)) is a dilation of (T1, . . . , Td) in the sense that for any
polynomial f (in d non-commuting variables),

f(T1, . . . , Td) = PKf(π(S1), . . . , π(Sd))|K,
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and K is a co-invariant subspace for (π(S1), . . . , π(Sd)) in view of (4.1).
Let us denote the set of all compact operators on H by B0(H) (or just B0

when there is no chance of confusion). Since T q
d contains B0, by standard theory

of representations of C∗-algebras (see [10], Chapter I for example), the represen-
tation π decomposes as π = π0 ⊕ π1, where πi : T q

d → B(K̂i) with π0 being a
non-degenerate representation of B0 on K̂0, π1 being 0 on B0 and K̂ = K̂0 ⊕ K̂1

(one of π0 and π1 could be absent too). Since the only non-degenerate represen-
tation of the C∗-algebra of compact operators is the identity representation with
some multiplicity and since a represenation which is non-degenerate on an ideal,
extends uniquely to the entire C∗-algebra, it follows that π0 is just the identity
representation with some multiplicity i.e., upto unitary isomorphism, K̂0 = H⊗M
and π0(X) = X ⊗ 1lM for some Hilbert space M. So if we take N = K̂1, and
π1(Si) = Zi then (Z1, . . . , Zd) is a q-commuting contractive tuple and (i), (ii) are
satisfied. Moreover

∑
ZiZ

∗
i = 1l as π1 kills compact operators and 1l−

∑
SiS

∗
i is

compact.
It remains to prove that the multiplicity i.e., dim(M) is just the rank of DT .

For this, note that dimM = dim( range π0(E)) where E is any one-dimensional
projection in T q

d . Taking E = E0, the projection onto the constant functions, and
making use of minimality of Stinespring representation, we have

range π(E0) = {π(E0)ξ : ξ ∈ K̂} = span{π(E0)π(X)u : X ∈ T q
d , u ∈ K}.

Then by Lemma 4.1 and its proof,

range π(E0) = span{π(E0)π(E0X)u : X ∈ T q
d , u ∈ K}

= span{π(E0)π(X)u : X ∈ B0, u ∈ K}
= span{π(E0)π(SkE0(Sl)∗)u : all multi-indices k, l, and u ∈ K}
= span{π(E0)π((Sl)∗)u : all multi-indices k, l, and u ∈ K}.

Now we define a unitary U : range π(E0) → range DT by setting

Uπ(E0)π((Sl)∗)u = DT (T l)∗u

and extending linearly. Then U is isometric because for u, v ∈ K and all k and l,

〈π(E0)π((Sk)∗)u, π(E0)π((Sl)∗)v〉 = 〈u, π(Sk)π(E0)π((Sl)∗)v〉
= 〈u, T kD2

T (T l)∗v〉 = 〈DT (T k)∗u, DT (T l)∗v〉.
Taking l = 0, it is clear that U is onto. This proves that rangeDT and M have
the same dimensions.

As remarked before in the direct sum for K̂ and A appearing in this theorem
one of the summands could be absent; M and n · S are absent iff n = 0, that is,
iff
∑

TiT
∗
i = 1l. Just as in [5], it can be shown that N and Z is absent if and

only if Pm
T (1lK) converges to zero strongly as m tends to infinity where PT is the

completely positive map associated with T in Section 2. Arveson’s computation of
multiplicity n used the fact that if qij ≡ 1, then spanAA∗ is a C∗-algebra which
may not be the case in general, and so the proof given here had to be different.

We have a couple of remarks to make about some special values of the com-
plex numbers qij . The first one of them is about what happens when they lie on
the unit circle, i.e., pij ≡ 1.
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Remark 4.6. In the case when pij ≡ 1, the C∗-algebra T q
d is the same as

the operator space E = spanAA∗. This follows from Corollary 3.8, and Lemma 3.9
as by virtue of them, commutators [S∗i , Si], [S∗i , Sj ]q with i < j, and [S∗i , Sj ]q with
i > j, are compact, and all compact operators are in E (Lemma 4.1).

Because of the above fact, Arveson’s extension theorem is not needed in
proving Theorem 4.3 and there is unique unital A-morphism ϕ from T q

d to B(K)
carrying Sj to Tj . Moreover, as each Si is essentially normal, in Theorem 4.5 the
operators Z1, . . . , Zd are now normal.

Definition 4.7. A q-commuting operator tuple (Z1, . . . , Zd) is said to be
a q-spherical unitary if each Zi is normal, and

∑
ZiZ

∗
i = 1l. It is said to be a

spherical unitary if each qij = 1.

The following is a generalization, from commutative to the q-commutative
case, of a result of Athavale ([6], Proposition 2).

Theorem 4.8. Suppose (T1, . . . , Td) is a q-commuting d-tuple of operators
on a Hilbert space K, with |qij | = 1 for all i < j, and

∑
TiT

∗
i = 1l. Then there

exists a q-spherical unitary (Z1, . . . , Zd) acting on a Hilbert space K̂ containing K
as a subspace such that

∑
ZiZ

∗
i = 1l, and each Z∗i is an extension of T ∗i , that is,

K is co-invariant for Zi and Ti = PKZi|K. In particular each T ∗i is sub-normal.

Proof. Immediate from Theorem 4.5 and Remark 4.6.

At this stage perhaps it is worthwhile to study q-spherical unitaries. Of
course, if all qij = 1 their structure is quite transparent due to Gelfand theory
of commutative C∗-algebras.

Theorem 4.9. Suppose (Z1, . . . , Zd) is a q-spherical unitary acting on a
Hilbert space K.

(i) If |qkl| 6= 1 for some k < l, then ZkZl = ZlZk = Z∗kZl = ZlZ
∗
k = 0. If

|qij | 6= 1 for all 1 6 i < j 6 d, then Z∗i Zi are projections orthogonal to each other
such that

∑
Z∗i Zi = 1l.

(ii) If |qij | = 1 for all i < j, let Zi = UiPi be the unique polar decomposition
of Zi, such that Ui is a partial isometry, Pi is a positive operator and ker Ui =
ker Pi = ker Zi, for 1 6 i 6 d. Then (P1, . . . , Pd) is a (commuting) spherical
unitary and (U1, . . . , Ud) is a q-commuting tuple.

Proof. We make repeated use of Fuglede-Putnam Theorem ([12], [17]). Re-
call that this theorem states that if M,N,B are bounded operators on a Hilbert
space satisfying MB = BN , and if M,N are normal then M∗B = BN∗.

Consider 1 6 i < j 6 d. From q-commutativity we have

(4.2) ZjZi = qijZiZj .

Taking M = Zj , N = qijZj , B = Zi in Fuglede-Putnam Theorem,

(4.3) Z∗j Zi = qijZiZ
∗
j .

In this equation taking M = qijZi, N = Zi, B = Z∗j and once again applying
Fuglede-Putnam Theorem we have

qijZ
∗
i Z∗j = Z∗j Z∗i .

Taking adjoints, ZiZj = qijZjZi = |qij |2ZiZj .
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So if |qkl| 6= 1, ZkZl = 0 and consequently ZlZk = 0. Once again by Fuglede-
Putnam Theorem Z∗kZl = ZlZ

∗
k = 0. If |qij | 6= 1 for all i, j then Z∗kZk and Z∗l Zl

are commuting and orthogonal for k 6= l. The condition that
∑

Z∗i Zi = 1l, clearly
forces them to be projections.

Here after assume all |qij | = 1, and Zi = UiPi is the polar decompostion
of Zi as in the hypothesis of the theorem. From (4.2) and (4.3), (Z∗j Zj)Zi =
qijZ

∗
j ZiZj = |qij |2ZiZ

∗
j Zj = Zi(Z∗j Zj). Hence Zi and Z∗j Zj commute. As Pj =

(Z∗j Zj)
1
2 , Zi and Pj commute and also Z∗i and Pj commute. If follows that

(P1, . . . , Pd) is a commuting tuple. Of course,
∑

PiP
∗
i =

∑
P 2

i =
∑

Z∗i Zi = 1l.
Finally to prove that (U1, . . . , Ud) q-commutes, fix 1 6 i < j 6 d. As Pi and

Pj commute, the Hilbert space K decomposes as K = K0 ⊕K1 ⊕K2 ⊕K3, where

K0 = (ker(Pi)) ∩ (ker(Pj)) = (ker(Ui)) ∩ (ker(Uj))

K1 = (ker(Pi)) ∩ (ker(Pj))⊥ = (ker(Ui)) ∩ (range(Pj))

K2 = (ker(Pi))⊥ ∩ (ker(Pj)) = (range(Pi)) ∩ (ker(Uj))

K3 = (ker(Pi))⊥ ∩ (ker(Pj))⊥ = rangePiPj .

Now for x ∈ K0, clearly UiUjx = UjUix = 0. For x in ker(Ui)) ∩ (range(Pj)),
UjUix = 0. Also as x = Pjy for some y ∈ K,

PiUjx = PiUjPjy = PiZjy = ZjPiy = UjPjPiy = UjPix = 0.

But then as ker(Ui) = ker(Pi), UiUjx = 0. By continuity, UiUjx = UjUix = 0 for
x ∈ K1. For similar reasons UiUj and UjUi are zero operators on K3. However,
for x in range (PiPj), as x = PiPjy for some y ∈ K,

UjUix = UjUiPiPjy = UjZiPjy = UjPjZiy = ZjZiy

= qijZiZjy = qijUiPiUjPjy = qijUiUjx.

Thus UjUix = qijUiUjx for all x ∈ K, and 1 6 i < j 6 d.

Now we examine the qij ≡ 0 case.

Remark 4.10. For qij ≡ 0 also, the C∗-algebra T q
d is the same as the

operator space E . This follows from Lemma 3.10 where it was noticed that all
operators S∗i Sj can be written in terms of 1l and the operators SrS

∗
r for r = 1, . . . , d.

So the A-morphism ϕ of Theorem 4.3 is uniquely defined.

It is not clear to us whether spanAA∗ = T q
d holds for any other values of

qij when |qij | is not identically equal to one or zero for all i < j. However, it
is clear that whenever that is the case we have uniqueness of ϕ in Theorem 4.3.
Moreover, using the uniqueness of minimal Stinespring representation one can also
make a uniqueness up to unitary equivalence statement in dilation theorem namely
in Theorem 4.5.
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5. THE OPERATOR SPACE SPANNED BY S

Here we study operator spaces spanned by q-commuting, contractive d-tuples. The
operator space generated by standard q-commuting shift S will be denoted by Sq

d .
So Sq

d is simply the linear span of S1, . . . , Sd. Let S be an operator space acting
on K for some Hilbert space K. Any tuple of operators T1, . . . , Td from S, gives
rise to two completely positive maps on B(K) as follows:

PT (X) = T1XT ∗1 + · · ·+ TdXT ∗d , X ∈ B(K),

and
QT (X) = T ∗1 XT1 + · · ·+ T ∗d XTd, X ∈ B(K).

Assume that S is an operator space spanned by component operators of a q-
commuting contractive d-tuple. The energy sequence of the operator space S is
defined to be the sequence of numbers (n > 1):

(5.1)
Eq

n(S) = sup{‖QT
n‖ : T is a q-commuting contractive d-tuple from

S and ‖PT ‖ 6 1}.

In the commutative case the above definition is the same as the one by
Arveson in [5]. Arveson does not restrict to d-tuples but as he himself shows, a
completely positive map determined by a tuple of arbitrary length can always be
re-written in terms of a d-tuple, where d is the dimension of the operator space and
this does not change any of the norms involved. Obviously unlike the commutative
case linear combinations of q-commuting operators need not q-commute.

Lemma 5.1. Given a d-dimensional operator space S and Eq
n(S) as defined

in (5.1),

Eq
n(S) 6

(
n + d− 1

n

)
.

Proof. The proof is similar to that of Proposition 7.5 in [5]. Suppose we
have a q-commuting contractive tuple T and its associated maps PT and QT with
‖PT ‖ 6 1. Then we also have ‖Pn

T (1l)‖ = ‖Pn
T ‖ 6 1. Now note that

Pn
T (1l) =

∑
|k|=n

1
‖zk‖2

T k(T k)∗.

This implies that ∥∥∥∥ 1∥∥zk
∥∥2 (T k)∗T k

∥∥∥∥ 6 1 for all k.

Now we have∥∥Qn
T

∥∥ =
∥∥Qn

T (1l)
∥∥ 6

∑
|k|=n

∥∥∥∥ 1∥∥zk
∥∥2 (T k)∗T k

∥∥∥∥ 6

(
n + d− 1

n

)

because there are
(

n + d− 1
n

)
terms in the sum.
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Lemma 5.2. Let S be the q-commuting shift and let Q = QS be the com-
pletely positive map

Q(X) = S∗1XS1 + · · ·+ S∗dXSd.

For the positive operator Qn(1l), the monomial zl is an eigen-vector for any multi-
index l. If qij 6= 0 for all i < j, this operator attains its norm only at the constant
function 1.

Proof. For any multi-index l, a short computation reveals,

Qn(1l)zl =
∑
|k|=n

1
‖zk‖2

(Sk)∗Skzl.

Thus every zl is an eigen-vector of the operator Qn(1l). Moreover, for l = 0 the

eigen-value is
(

n + d− 1
n

)
because each term in the sum is 1 and the sum is over(

n + d− 1
n

)
many terms. It is easy to see from the proof of Lemma 3.3 that for

any non-zero multi-index l, the summands are less than or equal to 1 with strict
inequality in some cases. Hence

‖Qn‖ =
(

n + d− 1
n

)
is attained at the unique vector 1.

We see in the next lemma of this section that Eq
n(Sq

d) is independent of q.

Lemma 5.3. The energy sequence for the operator space Sq
d is(

n + d− 1
n

)
.

Proof. Let P = PS and Q = QS be the completely positive maps determined
by the q-commuting shift. Then by Lemma 3.5, ‖P‖ = 1. And in the proof of the
last lemma we found that,

‖Qn‖ =
(

n + d− 1
n

)
.

Since we have already proved that the energy sequence can not be bigger than(
n + d− 1

n

)
,

we are done.

The converse of the above lemma is contained in the following theorem.

Theorem 5.4. Assume qij 6= 0 for all 1 6 i < j 6 d. Let S ⊆ B(K) be
a d-dimensional operator space with Eq

n(S) = Eq
n(Sq

d) for all n > 1. Let C be
the C∗-algebra generated by S and the identity operator on K. Then there is a
representation π of C on H such that π(S) = Sq

d .

Proof. The proof involves the construction of a state ρ with the property that
〈f, g〉H = ρ((g(T ))∗f(T )). The consideration of the GNS space for ρ along with
standard theory of boundary representations give the result. We omit it because
it is similar to the proof of Theorem 7.7 in [5].
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