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Abstract. On a separable infinite dimensional complex Hilbert space, we
show that the set of hypercyclic operators is dense in the strong operator
topology, and moreover the linear span of hypercyclic operators is dense in
the operator norm topology. Both results continue to hold if we restrict to
only those hypercyclic operators with an infinite dimensional closed hyper-
cyclic subspace. Our works make connections with the classical result on the
nondenseness of cyclic operators in the operator norm topology, as well as
the recent developments on hypercyclic subspaces.
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1. INTRODUCTION

Throughout this paper, we useH to denote a separable infinite dimensional Hilbert
space over the complex field, and use B(H) to denote the algebra of all bounded
linear operators T : H → H. For an operator T in B(H) and a vector f in H,
we define the orbit to be the set orb(T, f) = {f, Tf, T 2f, T 3f, . . .}. If the orbit
orb(T, f) is dense in H for some vector f in H, then the operator T is called a
hypercyclic operator, and in that case the vector f is said to be a hypercyclic vector
of T . An example of a hypercyclic operator on a Hilbert space was first given by
Rolewicz ([24]) who showed that if B is the unilateral backward shift on H then
the operator λB is hypercyclic for any scalar λ with |λ| > 1. In fact, Rolewicz
proved this result in the setting of Banach spaces c0 and `p for finite p > 1.

The existence of hypercyclic operators on H naturally leads to the problem
of determining how large a set the hypercyclic operators form in the operator
algebra B(H). In the present paper, we study this problem in terms of density in
a topology of B(H). Along this line, two classical results are helpful. To explain
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them, we need the following definition: An operator T in B(H) is called a cyclic
operator if there exists a vector f in H such that the linear span of the orbit
orb(T, f) is dense in H, and in that case the vector f is called a cyclic vector of
T . It is well-known, as documented in Halmos’ Problem Book ([18], p. 88), that
the cyclic operators are not dense in the operator norm topology of B(H). On
the other hand, the noncyclic operators are dense, due to Fillmore, Stampfli, and
Williams ([13]). These two results give us a hint on the situation of hypercyclic
operators. From the definitions, it is easy to see that the norm of a hypercyclic
operator is strictly larger than one, and that every nonzero scalar multiple of a
hypercyclic operator is cyclic. Hence if the hypercyclic operators were dense in
the complement of the closed unit ball of B(H), then the cyclic operators would
be dense in B(H). To summarize our discussion, we provide the following fact.

Fact 1.1. The nonhypercyclic operators are dense in B(H), but the hyper-
cyclic operators are not dense in the complement of the closed unit ball of B(H).

It follows from this fact that the closure of hypercyclic operators is a special
class of operators in B(H). This class of operators was completely characterized
by Herrero ([19]) in terms of Weyl spectra, normal eigenvalues, and Fredholm
indices.

On the other hand, it is interesting to investigate whether the hypercyclic
operators are dense in other topologies that are weaker than the operator norm
topology in B(H). Among the natural topologies that B(H) carries, the strongest
one next to the operator norm topology is the strong operator topology. These two
topologies are the only ones that we consider in the present paper. To distinguish
the two, we use the convention that when a topological term is used for B(H)
it always refers to the operator norm topology, otherwise we specify the strong
operator topology, by adding in most cases the prefix “SOT” in front of the term.

In Section 2 a major result states that the hypercyclic operators in B(H) are
SOT-dense. At the first glance, the result may not seem to be possible, because
every hypercyclic operator must have norm larger than 1. Nevertheless the zero
operator is the SOT-limit of a sequence of hypercyclic operators. For instance, if
we take the unilateral backward shift B : H → H and define operators Tn for all
n > 1 by

Tn =
n+ 1
n

Bn,

then it is clear that Tn → 0 in the strong operator topology, as n → ∞. Fur-
thermore, we can prove that each Tn is a hypercyclic operator, by using Rolewicz’
result ([24]) that the operator

n

√
n+ 1
n

B

is hypercyclic, along with Ansari’s result ([1]) that if A : H → H is a hyper-
cyclic operator then An is also hypercyclic. Alternatively, we can repeat Rolewicz’
argument on each Tn, or use the hypercyclic criterion that we discuss in Section 2.

Instead of proving directly in Section 2 that the hypercyclic operators are
SOT-dense, we prove a better result which states that the set of those hypercyclic
operators with a hypercyclic Hilbert subspace is SOT-dense.
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Definition 1.2. A hypercyclic Hilbert subspace of an operator T in B(H) is
an infinite dimensional closed subspace of H consisting, except for the zero vector,
entirely of hypercyclic vectors of T .

The interests in the linear structure of hypercyclic vectors was originated
by Beauzamy ([3], [4], [5]) who constructed an operator T in B(H) with a dense
invariant linear manifold consisting, except for the zero vector, of hypercyclic
vectors of T . Manifolds of this kind were also studied extensively by Godefroy
and Shapiro ([16]) for operators possessing some major properties of the unilateral
backward shift. Then Herrero ([19]) and independently Bourdon ([10]) proved
that any hypercyclic operator on H has such a dense invariant linear manifold of
hypercyclic vectors. In fact, Bourdon’s proof works for a complex locally convex
space. Recently, Bès ([8]) gave a proof for a real locally convex space.

The construction of a hypercyclic Hilbert subspace was originated by Bernal-
González and Montes-Rodŕıguez ([7]). Then Montes-Rodŕıguez ([23]) provided a
sufficient condition for a bounded linear operator on a separable infinite dimen-
sional Banach space to have an infinite dimensional closed subspace consisting,
except for the zero vector, of hypercyclic vectors. This sufficient condition gives
us a method to construct in Section 2 an SOT-dense set of hypercyclic operators
with a hypercyclic Hilbert subspace.

Though the set of hypercyclic operators can only be SOT-dense but not
dense in B(H), we show in Section 3 that its linear span is indeed dense. To prove
that, we require the recent results of Salas ([25]) and León-Saavedra and Montes-
Rodŕıguez ([22]) on the hypercyclicity of the operators in form of the identity plus
a unilateral weighted backward shift.

For more information on the recent developments on hypercyclicity, one may
refer to the survey article by K.G. Grosse-Erdmann ([17]).

2. STRONG OPERATOR TOPOLOGY

In this section, we study the SOT-density of hypercyclic and cyclic operators in
B(H), for a separable infinite dimensional complex Hilbert space H. To begin, we
extract the following definition from [21], Theorem A.

Definition 2.1. Let Bhy(H) denote the set of all operators T in B(H)
such that T has a sequence of positive integers {nk} satisfying the following three
Axioms:

(1) There is a dense subset D1 of H such that ‖Tnkf‖ → 0 for every vector
f in D1.

(2) There is a dense subset D2 of H, and a mapping A : D2 → D2 such that
TA = the identity map on D2 and ‖Ankf‖ → 0 for every vector f in D2.

(3) There is an infinite dimensional closed subspace H0 of H such that
‖Tnkf‖ → 0 for every vector f in H0.

Every operator in Bhy(H) is hypercyclic and moreover it has a hypercyclic
Hilbert subspace, as proved by Montes–Rodŕıguez ([23]). In fact Montes-Rodŕıguez
proved the result not only for a Hilbert space but for a Banach space. Then Chan
([11]) gave a simple proof for the Hilbert space version of this result. Certainly
not every hypercyclic operator on H has a hypercyclic Hilbert subspace, and in
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fact León-Saavedra and Montes-Rodŕıguez ([22]) showed that Axiom 3 is essential
for the existence of a hypercyclic Hilbert subspace.

Axioms 1 and 2 combined is called the hypercyclicity criterion, which is a
sufficient condition, first shown by Kitai ([20]), for the operator T to be hypercyclic.
In fact, Kitai’s work takes place in a Banach space setting. Then Gethner and
Shapiro ([15]) rediscovered the criterion in a Fréchet space setting, by using an
argument totally different from Kitai’s. Axiom 3 was added by Montes-Rodŕıguez
([23]) in order to show that T has a hypercyclic Hilbert subspace.

Before we state the results of this section, we remark that the finite rank
operators are SOT-dense in B(H). To see that, we fix a countable orthonormal
basis of H, and let Pn denote the orthogonal projection onto the linear span of
first n members of the orthonormal basis. Then for any operator S in B(H),
the sequence PnSPn converges to S in the strong operator topology, as n → ∞.
Furthermore, it is easy to construct a sequence of nonzero finite rank operators
that converges to the zero operator in the operator norm topology. Hence the
nonzero finite rank operators are SOT-dense in B(H). With this observation, we
prove the main theorem of this section.

Theorem 2.2. The set Bhy(H) is SOT-dense in B(H).

Proof. We are to prove that every SOT-open set U contains an operator T
in Bhy(H). Since U contains a nonzero finite rank operator S, we can assume that
U is the SOT-basic open set given by

U = {T ∈ B(H) : ‖(T − S)fγ‖ < ε for all γ = 1, 2, . . . , n},

for some nonzero vectors f1, f2, . . . , fn in H and some positive ε, and then con-
struct an operator T in U that is also in Bhy(H).

We begin by letting the dimension of the range of S be k > 1, and let
{h(1), h(2), . . . , h(k)} be an orthonormal basis of the range of S. It follows that a
vector f is in kerS if and only if

〈f, S∗h(i)〉 = 〈Sf, h(i)〉 = 0, for all i = 1, . . . , k.

Thus span{S∗h(i) : 1 6 i 6 k} = kerS⊥ is a finite dimensional subspace, and so
is the subspace M defined by

M = kerS⊥ + span{h(1), . . . , h(k)}.

This subspace M coincides with span{h(1), . . . , h(k)} if and only if the subspace
kerS⊥ is contained in span{h(1), . . . , h(k)}. Otherwise there exist orthonormal
vectors g(1), g(2), . . . , g(m) such that the vectors h(1), . . . , h(k), g(1), . . . , g(m)
form an orthonormal basis of M . We continue the proof only for the case when
m > 1, but the same proof works for the case when the vectors g(i) do not exist
and consequently we take m = 0 whenever m appears in an algebraic expression.

Thus an orthonormal basis of the orthogonal complement M⊥ of M is a
countably infinite set, which we divide into three different sequences to facilitate
the definition of our operator T . In other words, we let

{e(i), a(i), b(i) : i > 1}
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be an orthonormal basis of M⊥ so that the set E defined by

E = {h(1), . . . , h(k)} ∪ {g(1), . . . , g(m)} ∪ {e(1), e(2), e(3), . . .}
∪ {a(1), a(2), a(3), . . .} ∪ {b(1), b(2), b(3), . . .}

is an orthonormal basis of H. In addition, we may assume that there exists a large
enough positive integer p so that if P : H → H denotes the orthogonal projection
onto the closed linear span of the set

{e(i) : i > p+ 1} ∪ {a(i) : i > 1}

and if C denotes the positive constant given by

C = max{‖fγ‖ : γ = 1, 2, . . . , n},

then

(2.1) ‖Pfγ‖ < min
(

ε2

9Ck‖S‖2 + 3kε‖S‖
,
ε

6
√

2

)
, for all γ = 1, 2, . . . , n.

In terms of the orthonormal basis E, we define a linear mapping T : H → H

by the following equations:

Tg(i) = Sg(i), if 1 6 i 6 m;(2.2)

Th(i) = Sh(i) +
ε

3C
e(p+ i), if 1 6 i 6 k;(2.3)

Te(i) = 0, if 1 6 i 6 p.(2.4)

Note that Equation (2.3) defines T on the range of S, and hence we can continue
to give the following definition in Equation (2.5):

Te(p+ i) =
−3C
ε

TSh(i), if 1 6 i 6 k;(2.5)

Te(p+ k + i) = g(i), if 1 6 i 6 m;(2.6)

Te(p+ k +m+ i) = h(i), if 1 6 i 6 k;(2.7)

Te(p+ 2k +m+ i) = 2e(i), if i > 1;(2.8)

Ta(1) = 0.(2.9)

Ta(2i+ 1) = 2a(i), if i > 1;(2.10)

Ta(2i) = b(i), if i > 1;(2.11)

Tb(i) = 0, if i > 1.(2.12)

Equations (2.2) to (2.12) define a bounded linear operator T in B(H). In the case
that the vectors g(i) do not exist, we do not have Equations (2.2) and (2.6), and
so m = 0 in Equations (2.7) and (2.8) as we have commented before.
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We now proceed to show that T ∈ U . We begin with the following estimate:
If ρ1, ρ2, . . . , ρk are scalars and if h = ρ1h(1) + · · ·+ ρkh(k), then

(2.13)

‖Th‖ 6 |ρ1| ‖Th(1)‖+ · · ·+ |ρk| ‖Th(k)‖

6
(
|ρ1|2 + · · ·+ |ρk|2

)1/2(‖Th(1)‖2 + · · ·+ ‖Th(k)‖2
)1/2

= ‖h‖
( k∑
i=1

‖Th(i)‖2

)1/2

6 ‖h‖
( k∑
i=1

(‖S‖+
ε

3C
)2

)1/2

, by Equation (2.3)

= ‖h‖
√
k

(
‖S‖+

ε

3C

)
.

This allows us to estimate ‖(T − S)fγ‖ for a fixed γ with 1 6 γ 6 n. For that
purpose, we first observe that M⊥ is contained in kerS and so

Se(i) = Sa(i) = Sb(i) = 0 for all i > 1.

This observation, along with Equation (2.4), implies that (T−S)e(i) = 0 whenever
1 6 i 6 p. In addition, Equation (2.2) gives (T − S)g(i) = 0 whenever 1 6 i 6 m.
Hence if we write the vector fγ as

fγ =
m∑
i=1

σig(i) +
k∑
i=1

ρih(i) +
∞∑
i=1

cie(i) +
∞∑
i=1

αia(i) +
∞∑
i=1

βib(i)

such that the three infinite sums
∑
|ci|2,

∑
|αi|2, and

∑
|βi|2 are all finite, then

we derive the following inequality:

‖(T −S)fγ‖ 6

∥∥∥∥ k∑
i=1

ρi(T −S)h(i)
∥∥∥∥ +

∥∥∥∥ ∞∑
i=p+1

ciTe(i) +
∞∑
i=1

αiTa(i) +
∞∑
i=1

βiTb(i)
∥∥∥∥.

Then we use Equations (2.3), and (2.5) through (2.12), to continue our estimation.

(2.14)

‖(T − S)fγ‖ 6

∥∥∥∥ k∑
i=1

ε

3C
ρie(p+ i)

∥∥∥∥ +
∥∥∥∥ p+k∑
i=p+1

ci
3C
ε
TSh(i− p)

∥∥∥∥+

+

√√√√ ∞∑
i=p+k+1

22|ci|2 +

√√√√ ∞∑
i=1

22|αi|2.

For the second summand on the right-hand side of Inequality (2.14), we observe
that each Sh(i−p) is in the range of S, which is spanned by h(1), . . . , h(k). Hence
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we can use Inequality (2.13) to deduce that∥∥∥∥ p+k∑
i=p+1

ci
3C
ε
TSh(i− p)

∥∥∥∥
6

3C
ε

√
k
(
‖S‖+

ε

3C

) p+k∑
i=p+1

|ci| ‖Sh(i− p)‖

6
3C
ε

√
k
(
‖S‖+

ε

3C

)
‖S‖

( p+k∑
i=p+1

|ci|2
)1/2( p+k∑

i=p+1

12

)1/2

<
3C
ε
k
(
‖S‖+

ε

3C

)
‖S‖ ε2

9Ck‖S‖2 + 3kε‖S‖
, by Inequality (2.1)

=
ε

3
.

This, along with Inequalities (2.14) and (2.1), implies that

‖(T − S)fγ‖ <
ε

3C
‖fγ‖+

ε

3
+ 2

√
2‖Pfγ‖ <

ε

3C
C +

ε

3
+ 2

√
2

ε

6
√

2
= ε,

which means that T ∈ U .
We now turn our attention to showing that T is in Bhy(H). We first remark

that if H0 is the closed linear span of {b(i) : i > 1}, then Tf = 0 for all vectors
f in H0. It remains to show that T satisfies the hypercyclicity criterion; that is,
Axioms 1 and 2 in the definition of Bhy(H). For Axiom 1, we note that spanE is
dense in H and hence it suffices to show that T j → 0 pointwise on E, as j →∞.
To do that we first notice that if 1 6 i 6 k, then we use Equations (2.3) and (2.5)
to derive that

(2.15) T 2h(i) = T (Th(i)) = TSh(i) +
ε

3C
Te(p+ i) = 0.

Since the vectors h(i) span the range of S, we have that

(2.16) T 2S = 0.

Then it follows from Equation (2.2) that T 3g(i) = T 2Sg(i) = 0 for all i = 1, . . . ,m.
We now consider the basis elements e(i) in E. First Te(i) = 0 if 1 6 i 6 p,

by Equation (2.4). Then we deduce from Equations (2.5) and (2.6) that

T 2e(p+ i) =
−3C
ε

T 2Sh(i) = 0, if 1 6 i 6 k.

If 1 6 i 6 m, then we observe by Equations (2.6), (2.2) and (2.16) that

T 4e(p+ k + i) = T 2(Tg(i)) = T 2Sg(i) = 0.

Furthermore, if 1 6 i 6 k, then we use Equations (2.7) and (2.15) to derive that

T 3e(p+ k +m+ i) = T 2h(i) = 0.
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For a fixed integer i with i > p+ 2k+m, we write i = q(p+ 2k+m) + r for some
positive integer q and some nonnegative integer r < p + 2k + m. It follows from
Equations (2.8) and (2.7) that

T je(i) = 2T j−1e(i− (p+ 2k +m)) = · · · =
{

2qT j−qe(r) if r 6= 0
2q−1T j−qh(k) if r = 0,

which is 0 whenever j − q > 4. Finally, we note that Ta(1) = 0 by our definition,
and that T 2a(2) = Tb(1) = 0. In general, we can use induction to show that
for any positive integer i, there exists a large enough positive integer j such that
T ja(i) = 0. Hence T jf → 0 for all vectors f in spanE, when j →∞.

To finish the whole proof, we need to show that T satisfies Axiom 2. For
that, we define a linear operator A : H → H in terms of the orthonormal basis
E by

Ag(i) = e(p+ k + i), if 1 6 i 6 m,
Ah(i) = e(p+ k +m+ i), if 1 6 i 6 k,
Ae(i) = 1

2e(p+ 2k +m+ i), if i > 1,
Aa(i) = 1

2a(2i+ 1), if i > 1,
Ab(i) = a(2i), if i > 1.

This definition gives an operator A in B(H) satisfying TA = I and Ajf → 0 for
all vectors f in spanE.

The previous proof shows a slightly stronger statement than the theorem,
because of some special properties that the operator T in the proof has. Actually
the proof shows that those operators T in Bhy(H) having all following four addi-
tional properties are SOT-dense in B(H): First, kerT = span{b(i) : i > 1} is an
infinite dimensional closed subspace of H. Second, we can take the sequence of
positive integers {nk} of T in the definition of Bhy(H) to be the entire sequence of
positive integers. Third, the sets D1 and D2 for T in the definition of Bhy(H) are
the same set, namely the linear span of an orthonormal basis of H. Lastly T has
a right inverse A satisfying Axiom 2 in the definition of Bhy(H). Despite these
refinements of the theorem, we point out the following direct consequence of the
theorem.

Corollary 2.3. The set of all hypercyclic operators on H is SOT-dense in
B(H).

Since every hypercyclic operator is cyclic, we derive the following result from
Corollary 2.3.

Corollary 2.4. The set of all cyclic operators on H is SOT-dense in
B(H).

The cyclic operators are not dense in B(H), as we have mentioned in the
Introduction. In particular, a co-rank argument in [18], p. 88 shows that if V =
S ⊕ S, where S is the unilateral forward shift, then every operator T satisfying
‖T − V ‖ < 1 cannot be cyclic. Nevertheless, Corollary 2.4 shows that the cyclic
operators are dense in the topology of B(H) that is one step weaker than the
operator norm topology.
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3. NORM TOPOLOGY

In this section, we investigate how large the set Bhy(H) is in terms of the operator
norm topology. Though Bhy(H) is not dense, we can prove, in Theorem 3.3 below,
that the linear span of Bhy(H) is dense. This result does not follow from Theo-
rem 2.2, because the linear span of an SOT-dense set in B(H) is not necessarily
dense. For instance, the set of all finite rank operators is an SOT-dense linear
manifold in B(H), but it fails to be dense in B(H). Before we prove Theorem 3.3,
we need the following lemma that helps us identify some operators in the linear
span of Bhy(H).

Lemma 3.1. If S is an orthogonal projection with rank one, then S is the
sum of two operators in Bhy(H).

Proof. Let {en : n > 0} be an orthonormal basis of H such that Se0 = e0
and Sen = 0 for all n > 1. Then we define an operator T1 in B(H) by

T1en =

{ 1
2e0 if n = 0,
2e(n−2)/2 if n is nonzero even,
0 if n is odd;

and define an operator T2 in B(H) by

T2en =

{ 1
2e0 if n = 0,
−2e(n−2)/2 if n is nonzero even,
0 if n is odd.

Since S = T1 + T2, it remains to show that T1 and T2 are in Bhy(H). For
that, we define A1 and A2 in B(H) by

A1en =
1
2
e2n+2 and A2en = −1

2
e2n+2 for all n > 0.

Then T1A1 = T2A2 = the identity map on H. Furthermore, for all i = 1, 2 and
for all vectors f in the linear span of the orthonormal basis {e0, e1, e2, . . .}, we can
check that T ji f → 0 and Ajif → 0 when j →∞.

If we take H0 to be the infinite dimensional closed subspace spanned by
{en : n is odd}, then for all vectors f in H0 we have that T1f = T2f = 0.

We now turn our attention to approximating the identity operator I, by
beginning with the following definition: A bounded linear operator B : H → H
is called a unilateral weighted backward shift if there exist an orthonormal basis
{en : n > 0} of H and a bounded positive weight sequence {wn : n > 1} such that
Be0 = 0 and Ben = wnen−1 for all n > 1. For every unilateral weighted backward
shift B on H, Salas ([25]) proved that the operator I + B is hypercyclic. Then
F. León-Saavedra and A. Montes-Rodŕıguez ([21], Theorem 4.1) further proved
that if B is a compact unilateral weighted backward shift, then the operator I+B
is in Bhy(H). Consequently, the sequence{

I +
1
n
B : n > 1

}
is a sequence of operators in Bhy(H) converging to I in the operator norm, and
so we have the following statement.



140 Kit C. Chan

Lemma 3.2. The identity map I : H → H is the limit of a sequence of
operators in Bhy(H).

In Lemmas 3.1 and 3.2, we considered two special operators and showed
that they are in the closed linear span of Bhy(H). As it turns out, they are two
important cases in the proof of the following general statement.

Theorem 3.3. The linear span of Bhy(H) is dense in B(H).

Proof. We need to show that if S is an operator in B(H), then there exists a
sequence {Tn : n > 1} of operators such that each Tn is a finite linear combination
of operators in Bhy(H) and Tn → S in operator norm. In fact we can assume
that S is self-adjoint, because every operator S can be decomposed as a sum
S = ReS+iImS, where ReS = (S+S∗)/2 and ImS = −i(S−S∗)/2 are two self-
adjoint operators. Furthermore we can apply the spectral theorem ([12], p. 272–
273) to find L∞ and L2 spaces of a σ-finite measure, and also a function ψ in L∞

such that S is unitarily equivalent to the multiplication operator Mψ : L2 → L2

defined by Mψf = ψf . Since unitary equivalence preserves all three Axioms in
the definition of Bhy(H), it suffices for us to continue our argument only for the
case where S = Mψ and H = L2.

Since the function ψ is bounded almost everywhere, there is a sequence of
simple functions (ψn) such that ψn → ψ in L∞; see, for example, [14], p. 45. Hence

‖Mψn
−Mψ‖ = ‖ψn − ψ‖∞ → 0;

see, for example, [12], p. 265. Since each ψn is a finite linear combination of mea-
surable characteristic functions, we need only to finish the proof under a further
assumption that the operator S is the multiplication operator Mχ on L2, where χ
is a measurable characteristic function.

With the function χ, the Hilbert space L2 can be written as the orthogonal
sum of two closed subspaces, namely χL2 and (1 − χ)L2, correponding to which
our argument continues in three separate cases.

In the first case we assume that χL2 is a finite dimensional subspace, spanned
by orthonormal vectors f1, . . . , fN in χL2. For each fi, we let Pi be the orthogonal
projection onto span{fi}, and so we can write Mχ as Mχ = P1 + P2 + · · · + PN .
Since each Pi is the sum of two operators in Bhy(L2) by Lemma 3.1, the operator
Mχ is the sum of 2N operators in Bhy(L2).

Secondly we discuss the situation where χL2 and (1− χ)L2 are two infinite
dimensional closed subspaces. We begin by writing the operator Mχ as

Mχ =
1
2
I +

1
2
(Mχ −M1−χ),

where I is the identity operator on L2. Thus by using Lemma 3.2, we need only
to show that Mχ −M1−χ is the limit of a sequence of operators in Bhy(H). Note
that Mχ and M1−χ are two identity operators respectively on χL2 and (1−χ)L2,
both of which are isomorphic to our separable infinite dimensional Hilbert space
H. Hence we can use Lemma 3.2 again to find a sequence of operators (Wn) in
Bhy(χL2) and a sequence of operators (Tn) in Bhy((1− χ)L2) such that

Wn →Mχ in B(χL2), and Tn →M1−χ in B((1− χ)L2),



The density of hypercyclic operators on a Hilbert space 141

and furthermore each Wn is unitarily equivalent to Tn for each n. Hence each
direct sum operator Wn

⊕
(−Tn) is on χL2

⊕
(1 − χ)L2 = L2 and they together

satisfy
Wn ⊕ (−Tn) →Mχ −M(1−χ) in L2.

Moreover one can use the unitary equivalence of Wn and Tn to check that the
same sequence of positive integers {nk} in the definition of Bhy(L2) can be used
for both Wn and −Tn, and hence for the direct sum operator Wn ⊕ (−Tn) also.
Thus each operator Wn ⊕ (−Tn) is in Bhy(L2).

Lastly we must discuss the case in which χL2 is infinite dimensional and
(1−χ)L2 is finite dimensional. We begin by letting G be the measurable set such
that χ = 1 on G and χ = 0 off G. Then G can be written as G = G1 ∪G2, where
G1 and G2 are disjoint measurable subsets of G with positive measures. This is
because if G could not be written as such a union, then every measurable function
on G would be a scalar multiple of χ, and so χL2 would be one dimensional.
Repeating this argument, we see that G can be written as a countable union⋃
{Gn : n > 0} of disjoint measurable subsets Gn, each of which has positive

measure. Consequently if we let χ1 be the characteristic function for the union of
Gn for all odd integers n, and let χ2 be the characteristic function for the union of
Gn for all even integers n, then χ = χ1 + χ2 and both χ1L

2 and χ2L
2 are infinite

dimensional. Thus (1− χ1)L2 = (1− χ)L2 + χ2L
2 is infinite dimensional, and so

is (1 − χ2)L2. Hence we can write the multiplication operator Mχ as the sum of
two multiplication operators Mχ1 and Mχ2 , on each of which we can apply the
argument in the second case. This finishes the whole proof.

Since every operator in Bhy(H) is necessarily hypercyclic, we derive the fol-
lowing statement directly from Theorem 3.3.

Corollary 3.4. The linear span of all hypercyclic operators is dense in
B(H).

Since every hypercyclic operator is necessarily cyclic, we deduce the following
statement from Corollary 3.4.

Corollary 3.5. The linear span of all cyclic operators is dense in B(H).

This corollary shows that the structure in B(H) of the cyclic operators is
similar to the structure in H of the cyclic vectors of a particular cyclic operator
T , as it is proved in [18], p. 285 that the linear span of the cyclic vectors of T is
dense in H.

To conclude this paper, we remark that the techniques that we use in proving
Theorems 2.2 and 3.3 rely very heavily on the assumption that the underlying space
H is a Hilbert space. Thus it is very natural to raise the following question.

Question 3.6. Do Theorems 2.2 and 3.3 hold for a separable infinite di-
mensional Banach space?

When Rolewicz ([24]) exhibited the first example of a hypercyclic operator on
a Banach space, he raised the question whether every separable infinite dimensional
Banach space X admits a hypercyclic operator in B(X). Recently Ansari ([2]) and
independently Bernal-González ([6]) provided an affirmative answer for Rolewicz’
question. Both of them used Salas’ result ([25]) that the perturbation of the
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identity map on `2 by a unilateral weighted backward shift is hypercyclic. This
result produced a class of operators on X, which are the only operators on X
known to be hypercyclic. However, this class of operators does not seem to help
answer our question.

Based on Ansari’s argument, Bonet and Peris ([9]) recently showed that
every separable infinite dimensional Fréchet space admits a continuous hypercyclic
operator. Though the continuous operators on a Fréchet space do not carry the
operator norm topology, we can rephrase the above question as follows: What
results analogous to Theorems 2.2 and 3.3 hold for a Fréchet space?

Acknowledgements. The author thanks Juan Bès for providing several valuable
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