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Abstract. Let L1 be the predual of a von Neumann algebra with a finite
faithful normal trace. We show that a bounded sequence in L1 converges to 0
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1. INTRODUCTION; MAIN RESULTS

The present article deals with convergence in probability in L1-spaces from a
functional analytic point of view. The L1-spaces in question are the preduals of von
Neumann algebras with finite faithful normal traces. To consider an easy example
we look at the commutative case: Let (Ω,Σ, µ) be a finite measure space, let (fn)
be a bounded sequence in L1(Ω,Σ, µ). If (appropriately chosen representatives of)
the fn have pairwise disjoint supports then clearly (fn) converges to 0 in measure.
From the functional analytic point of view such a sequence, up to normalization, is
the canonical basis of an isometric copy of l1. If one perturbes (fn) by a norm null
sequence (gn) then (fn+gn) still µ-converges to 0 and spans l1 almost isometrically
(in a sense to be made precise below in Section 2). It has been known ([11],
Theorem 2; see also [20], Theorem 3, Remark 6bis) for quite a time that these are
essentially the only examples of µ-null sequences.

Theorem 1.1 contains the analogous statement for the predual of a von Neu-
mann algebra with finite faithful normal trace. (For notation and definitions see
Section 2.)
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Theorem 1.1. Let (xn) be a bounded sequence in L1(N , τ) = N∗ where
(N , τ) is a von Neumann algebra with a finite normal faithful trace τ . Then the
following assertions are equivalent:

(i) xn
τ−→ 0.

(ii) For each subsequence (xnk
) of (xn) there are a subsequence (xnkl

) and a
sequence (yl) of pairwise orthogonal elements of L1(N , τ) such that ‖xnkl

−yl‖1→0.
(iii) For each subsequence (xnk

) of (xn) there is a subsequence (xnkl
) which

tends to 0 in ‖ · ‖1 or spans l1 almost isometrically.
(iv) For each subsequence (xnk

) of (xn) there is a subsequence (xnkl
) which

tends to 0 in ‖ · ‖1 or spans l1 asymptotically.
The implications (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) hold also for unbounded sequences

(xn), the implications (iii) ⇒ (ii), (i) do not.

Implication (i) ⇒ (ii) has already appeared as a special case of a result of
Sukochev ([21], Proposition 2.2). The other nontrivial implication (iii) ⇒ (ii)
follows immediately from Theorem 1.2 which holds for the predual of any von
Neumann algebra and is of independent interest:

Theorem 1.2. Let N be an arbitrary von Neumann algebra and (ϕm) a
bounded sequence in its predual N∗. If (ϕm) spans l1 almost isometrically then
there are a subsequence (ϕml

) of (ϕm) and a sequence (ϕ̃l) of pairwise orthogonal
functionals in N∗ such that ‖ϕml

− ϕ̃l‖ → 0 as l→∞.
This amounts to saying that there are pairwise orthogonal projections sl and

pairwise orthogonal projections tl in N such that ‖ϕml
− tlϕml

sl‖ → 0 as l→∞.

It is natural to ask what can be improved in Theorem 1.2 if one replaces the
predual of the von Neumann algebra by the dual of a C∗-algebra. At the time of
this writing this is not clear. What we have is

Proposition 1.3. Let (ϕm) be a bounded sequence that spans l1 almost iso-
metrically in the dual of an arbitrary C∗-algebra A. Then, given ε > 0, there are a
subsequence (ϕmn

), pairwise orthogonal positive normalized elements an and pair-
wise orthogonal positive normalized elements bn in A such that ‖ϕmn−bnϕmnan‖ <
ε for all n ∈ N.

For a more detailed discussion see Section 6.
As to the organization of the paper, after recalling some notation and defini-

tions in the next section we gather some auxiliary results in Section 3 in order to
prove Theorem 1.2 in Section 4. In Section 5 we prove Theorem 1.1 for the sake
of completeness although, as already mentioned, it follows essentially from [21],
Proposition 2.2 and Theorem 1.2. In Section 6 perturbations of l1-copies in the
dual of C∗-algebras are considered and Proposition 1.3 is proved.
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2. NOTATION; DEFINITIONS

Let (xn) be a sequence of nonzero elements in a Banach space X.
We say that (xn) spans l1 r-isomorphically or just isomorphically if there

exists r > 0 (trivially r 6 1) such that r
( ∞∑

n=1
|αn|

)
6

∥∥∥ ∞∑
n=1

αn
xn

‖xn‖

∥∥∥ 6
∞∑

n=1
|αn| for

all scalars αn (the second inequality being trivial).
We say that (xn) spans l1 almost isometrically if there is a sequence (δm) in

[0, 1[ tending to 0 such that (1− δm)
∞∑

n=m
|αn| 6

∥∥∥ ∞∑
n=m

αn
xn

‖xn‖

∥∥∥ 6
∞∑

n=m
|αn| for all

m ∈ N.
Trivially the property of spanning l1 almost isometrically passes to subse-

quences. Recall that James’ distortion theorem (see [10] or [4]) for l1 says that
every isomorphic copy of l1 contains an almost isometric copy of l1. To be more
precise, let r > 0, [0, 1[3 δn → 0, and let (xn) be a normalized basis spanning l1
r-isomorphically. Then it follows from the proof of [10] that there is a sequence
(λi) of scalars and a sequence (Fn) of pairwise disjoint finite subsets of N such

that (1− δm)
∞∑

n=m
|αn| 6

∥∥∥ ∞∑
n=m

αnyn

∥∥∥ 6
∞∑

n=m
|αn| for all scalars αn and all m ∈ N

where yn =
∑

i∈Fn

λixi and where
∑

i∈Fn

|λi| 6 1
r for all n ∈ N.

Finally (xn) is said to span l1 asymptotically isometrically or just to span l1

asymptotically if there is a sequence (δn) in [0, 1[ tending to 0 such that
∞∑

n=1

(1− δn)|αn| 6
∥∥∥ ∞∑

n=1

αn
xn

‖xn‖

∥∥∥ 6
∞∑

n=1

|αn|

for all scalars αn. We say that a Banach space is isomorphic (respectively almost
isometric, respectively asymptotically isometric) to l1 if it has a basis with the
corresponding property. Clearly a sequence spanning l1 asymptotically spans l1
almost isometrically. The main result of [6] states that the converse does not hold
because there are almost isometric copies of l1 which do not contain l1 asymptot-
ically. However, it follows from [19] that this cannot happen in the predual of a
von Neumann algebra because each sequence spanning l1 almost isometrically in
a von Neumann predual contains a subsequence spanning l1 asymptotically (cf.
(iii) ⇒ (iv) in the proof of Theorem 1.1). Note that the present definitions of
almost and asymptotically isometric differ slightly from those in [6] and [19] by
the term xn/‖xn‖ but that, of course, for normalized sequences the definitions are
the same. Note also the technical detail that because of this term one might have
‖xn‖ → 0 for a sequence spanning l1 isomorphically (or almost or asymptotically
isometrically) whereas sequences that are equivalent to the canonical l1-basis ([4],
p. 43) are uniformly bounded away from 0.

The dual of a Banach space X is denoted by X ′. We work with complex
scalars. Two elements a, b of a C∗-algebra are called orthogonal — a⊥b in symbols
— if ab∗ = 0 = a∗b.

Let N be a von Neumann algebra, a ∈ N , ϕ ∈ N∗. Then aϕ denotes
the normal functional N 3 x 7→ ϕ(xa) and ϕa denotes the normal functional
N 3 x 7→ ϕ(ax). Two elements ϕ,ψ ∈ N∗ of the predual ofN are called orthogonal
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— ϕ⊥ψ in symbols — if they have orthogonal right and orthogonal left support
projections.

We recall the polar decomposition of a functional ϕ ∈ N∗, cf. [22], III.4.2:
There exist a partial isometry u in N and a positive functional |ϕ| in N∗ such
that ϕ = u|ϕ|, uu∗ is the left support projection of ϕ which equals the support
projection of |ϕ∗|, and u∗u is the right support projection of ϕ which equals the
support projection of |ϕ|; finally ϕ(u∗) = ‖ϕ‖ and ‖ϕ‖ = ‖ |ϕ| ‖. If arbitrary
ϕ ∈ N∗ and x ∈ N are such that x∗(ϕ) = ‖ϕ‖ then ϕ = x|ϕ| and |ϕ| = x∗ϕ (see
the proof of [22], III.4.2, or compare with (3.4), (3.5) of Lemma 3.3 below). It
is known that for positive ϕ,ψ the condition ‖ϕ − ψ‖ = ‖ϕ‖ + ‖ψ‖ is equivalent
to ϕ⊥ψ ([22], III.4.2). It seems to be well known that an analogous equivalence
holds without the positivity assumption. For lack of suitable reference we provide
a proof:

Lemma 2.1. Let N be a von Neumann algebra and let ϕ,ψ ∈ N∗ be two
normalized functionals. Then the following assertions are equivalent:

(i) The linear span of ϕ and ψ is isometrically isomorphic to the two-
dimensional l12, more specifically ‖αϕ+ βψ‖ = |α|+ |β| for all α, β ∈ C.

(ii) ‖ϕ− ψ‖ = ‖ϕ‖+ ‖ψ‖ = ‖ϕ+ ψ‖.
(iii) ‖ |ϕ| − |ψ| ‖ = ‖ϕ‖+ ‖ψ‖ = ‖ |ϕ∗| − |ψ∗| ‖.
(iv) |ϕ|⊥|ψ| and |ϕ∗|⊥|ψ∗|.
(iv′) ϕ⊥ψ.
Proof. (iv) ⇔ (iv′) is immediate from the definition of orthogonality and

from the above mentioned facts of the polar decomposition.
(iii) ⇒ (iv) By the first (the second) equality of (iii) and by what has been

said before the statement of the lemma, the right (the left) support projections of
ϕ and ψ are orthogonal.

(iv) ⇒ (i) is elementary: If ϕ = u|ϕ|, ψ = v|ψ| are the polar decompositions
of ϕ and ψ then uu∗⊥vv∗ and u∗u⊥v∗v by hypothesis. Hence u⊥v, and u and
v span the two-dimensional l∞2 because ‖αu + βv‖2 = ‖ |α|2u∗u + |β|2v∗v‖ =
max(|α|2, |β|2). Since u, v act like biorthogonal functionals on ϕ,ψ we get (i) by
duality.

(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) Let w, y ∈ N be the partial isometries of the polar decomposition

of ϕ+ ψ and ϕ− ψ that is
ϕ+ ψ = w|ϕ+ ψ|, ϕ− ψ = y|ϕ− ψ|.

Then
(ϕ+ ψ)(w∗) = ‖ϕ+ ψ‖ = ‖ϕ‖+ ‖ψ‖,(2.1)
(ϕ− ψ)(y∗) = ‖ϕ− ψ‖ = ‖ϕ‖+ ‖ψ‖,(2.2)

by hypothesis. Since |ϕ(w∗)| 6 ‖ϕ‖, |ψ(w∗)| 6 ‖ψ‖ it follows from (2.1) that
ϕ(w∗) = ‖ϕ‖ and ψ(w∗) = ‖ψ‖ hence
(2.3) ϕ = w|ϕ| and ψ = w|ψ|.
Thus

‖ |ϕ| − |ψ| ‖ > (|ϕ| − |ψ|)(y∗w) = (w|ϕ| − w|ψ|)(y∗)
(2.3)
= (ϕ− ψ)(y∗)

(2.2)
= ‖ϕ‖+ ‖ψ‖,

whence the first equality of (iii). Since the involution is isometric, the second
equality of (iii) is obtained analogously.
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We recall some basic facts on the definition of noncommutative Lp spaces
associated to (semi-)finite von Neumann algebras. Let τ be a semifinite faithful
normal trace on a von Neumann algebra N . The set I = {x ∈ N : τ(|x|) < ∞}
is an ideal in N , can be normed by x 7→ τ(|x|) =: ‖x‖1 and its Banach space
completion is denoted by L1 = L1(N , τ). Then L1 is isometrically isomorphic
to the predual N∗ via the map L1 3 x 7→ ϕx ∈ N∗ where ϕx(y) = τ(xy) for
y ∈ N and where τ is understood as the (well-defined) extension of τ from I to
L1 ([22], V.2.18). In particular, the multiplication on N × I can be extended to
N ×L1, the map x 7→ ϕx respects orthogonality and one has |τ(xy)| 6 ‖x‖1‖y‖∞
for x ∈ L1, y ∈ L∞ = L∞(N , τ) := N . More generally one can define Lp(N , τ)-
spaces, 1 6 p < ∞, as the sets of those x ∈ L0 for which ‖x‖p := τ(|x|p)1/p < ∞
where L0 = L0(N , τ) is the space of τ -measurable densely defined (in general
unbounded) operators affiliated withN and where τ is understood as the extension
of τ from N to L0. On L0 one defines the measure topology as the translation
invariant topology in which the sets {x ∈ L0 : ∃p ∈ Nproj : xp ∈ N , ‖xp‖∞ 6
ε, τ(p⊥) 6 δ}, ε, δ > 0, form a base of the zero neighborhoods. (Nproj denotes the
set of projections of N .) In this topology, L0 becomes a (well-defined) metrizable
complete Hausdorff topological vector ∗-algebra and all Lp embed injectively in
L0. In particular, sum and product are well-defined in L0. All this can be found
for example in [15], [23], Chapter 1 or [24].

In the sequel we will suppose τ to be faithful, normal, and finite not only
semifinite. (Of course, in this case we have I = N in the last paragraph.)

If a sequence (xn) in L0 converges to x ∈ L0 with respect to the measure
topology this is denoted by xn

τ−→ x. In this context Chebyshev’s inequality reads
τ(χ]ε,∞[(|x|)) 6 τ( 1

ε |x|) = 1
ε‖x‖1 for x ∈ L1 — which means in particular that the

norm topology is finer than the measure topology induced by τ — and from [9],
A48, we know that in accordance with the commutative case, xn

τ−→ 0 if and only
if τ(χ]ε,∞[(|xn|)) → 0 as n→∞ for all ε > 0.

Basic properties and definitions which are not explained here can be found
in [4], or in [13] and [14] for Banach spaces, and in [17] or [22] for C∗-algebras.

3. SOME AUXILIARY RESULTS

Let us first state an easy lemma which says that almost isometric and asymp-
totically isometric l1-copies are stable with respect to perturbations by norm null
sequences.

Lemma 3.1. Let (xn), (yn) be two sequences in a Banach space X such that
inf ‖xn‖ > 0, ‖yn‖ → 0 and xn + yn 6= 0.

If (xn) spans l1 almost isometrically then so does (xn + yn).
If (xn) spans l1 asymptotically then so does (xn + yn).
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Proof. Suppose that (xn) spans l1 almost isometrically. For all scalar se-
quences (αn) one has:∥∥∥ ∞∑

n=m

αn
xn + yn

‖xn + yn‖

∥∥∥
>

∥∥∥ ∞∑
n=m

αn
xn

‖xn‖

∥∥∥− ∥∥∥ ∞∑
n=m

αn

(
1− ‖xn‖

‖xn + yn‖

) xn

‖xn‖

∥∥∥− ∥∥∥ ∞∑
n=m

αn
yn

‖xn + yn‖

∥∥∥
>

(
(1− δm)

∞∑
n=m

|αn|
)
−

(
sup
n>m

∣∣∣1− ‖xn‖
‖xn + yn‖

∣∣∣ ∞∑
n=m

|αn|
)

−
(

sup
n>m

‖yn‖
‖xn + yn‖

∞∑
n=m

|αn|
)

= (1− δ′m)
∞∑

n=m

|αn|,

where δ′m = δm+ sup
n>m

|1− ‖xn‖
‖xn+yn‖ |+ sup

n>m

‖yn‖
‖xn+yn‖ → 0 as m→∞. Hence (xn+yn)

spans l1 almost isometrically. The asymptotic case is proved similarly.

Lemmas 3.2–3.4 seem to be known and are proved mainly for lack of suitable
reference. (In part they overlap with [18], Lemmas 3–5].)

Lemma 3.2. Let A be a C∗-algebra, ω a positive functional on A and a, b
elements of the unit ball of A. Then:

‖aω − ω‖ 6 (2‖ω‖)1/2 | ‖ω‖ − ω(a)|1/2,(3.1)

‖ωa− ω‖ 6 (2‖ω‖)1/2 | ‖ω‖ − ω(a)|1/2,(3.2)

‖bωa− ω‖ 6 (2‖ω‖)1/2 (| ‖ω‖ − ω(a)|1/2 + | ‖ω‖ − ω(b)|1/2).(3.3)

Proof. Let x ∈ A and ‖x‖ 6 1. Set γ = ‖ω‖ − ω(a), thus ω(a∗) = ‖ω‖ − γ.
Without loss of generality we assume ‖ω‖ = 1. The inequality of Cauchy-Schwarz
yields

|ω(x)− aω(x)|2 = |ω(x(1− a))|2 6 ω(xx∗)ω((1− a)∗(1− a))

6 ω((1− a)∗(1− a)) = ω(1− a)− ω(a∗ − a∗a)

= γ − (1− γ) + ω(a∗a) 6 2Re γ 6 2|1− ω(a)|

whence (3.1); (3.2) follows analogously; (3.3) follows from (3.1), (3.2) and from
‖ω − bωa‖ 6 ‖ω − bω‖+ ‖b(ω − ωa)‖ 6 ‖ω − bω‖+ ‖ω − ωa‖.

Lemma 3.3. Let A be a C∗-algebra, ϕ a functional on A and a, b in the unit
ball of A. Then:

‖ϕ− a|ϕ| ‖ 6 (2‖ϕ‖)1/2 | ‖ϕ‖ − ϕ∗(a)|1/2,(3.4)

‖ |ϕ| − aϕ‖ 6 (2‖ϕ‖)1/2 | ‖ϕ‖ − ϕ(a)|1/2,(3.5)

‖bϕa− ϕ‖ 6 (2‖ϕ‖)1/2
(
| ‖ϕ‖ − |ϕ|(a)|+ | ‖ϕ‖ − |ϕ∗|(b)|1/2

)
.(3.6)

Proof. Let ϕ = u|ϕ| be the polar decomposition of ϕ. Then the polar decom-
position of ϕ∗ is ϕ∗ = u∗|ϕ∗| (cf. the proof of III.4.2 in [22]), we have ϕ = |ϕ∗|u,
|ϕ| = u∗ϕ = |ϕ|∗ = ϕ∗u. Without loss of generality we assume ‖ϕ‖ = 1.
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Inequality (3.5) follows from

‖aϕ− |ϕ| ‖ = ‖au|ϕ| − |ϕ| ‖
(3.1)

6 |2(1− |ϕ|(au))|1/2 = |2(1− ϕ(a))|1/2.

Replacing ϕ by ϕ∗ we have ‖aϕ∗ − |ϕ∗| ‖ 6 |2(1 − ϕ∗(a))|1/2 whence (3.4) by
‖a|ϕ| − ϕ‖ = ‖(aϕ∗ − |ϕ∗|)u‖ 6 ‖aϕ∗ − |ϕ∗| ‖. (3.6) follows from

‖ϕ− bϕa‖ 6 ‖ϕ− bϕ‖+ ‖bϕ− bϕa‖
= ‖ |ϕ∗|u− b|ϕ∗|u‖+ ‖bu|ϕ| − bu|ϕ|a‖
6 ‖ |ϕ∗| − b|ϕ∗| ‖+ ‖ |ϕ| − |ϕ|a‖

(3.1)(3.2)

6 (2‖ϕ‖)1/2 (| ‖ϕ‖ − |ϕ∗|(b)|1/2 + | ‖ϕ‖ − |ϕ|(a)|1/2).

Lemma 3.4. Let N be a von Neumann algebra with predual N∗. If a func-
tional σ in the unit ball of N∗, projections r, l ∈ N and a number β ∈]0, 1[ are
such that r(|σ|) > 1− β and l(|σ∗|) > 1− β then ‖σ− τ‖ < 6

√
β where τ = lσr

‖lσr‖ .

Proof. ‖lσr − σ‖ 6 2
√

2β by (3.6) and
∥∥∥ lσr
‖lσr‖ − lσr

∥∥∥ = 1−‖lσr‖
‖lσr‖ ‖lσr‖ =

1−‖lσr‖ 6 β+‖σ‖−‖lσr‖ (because ‖σ‖ > 1−β) · · · 6 β+‖σ− lσr‖ 6 β+2
√

2β
thus ‖σ − τ‖ < 6

√
β.

We recall some more definitions and notation. Let A be a C∗-algebra. By
A+ (respectively Asa) we denote the positive (respectively selfadjoint) part of
A. A projection p ∈ A′′ is called open if it is the limit of an increasing net of
positive elements of A ([17], 3.11, [22]). If p ∈ A′′ is open then B′′ = pA′′p
where B = pA′′p ∩ A is a hereditary subalgebra. A projection q ∈ A′′ is called
closed if there is an open projection p ∈ A′′ such that q = pc where pc denotes the
complement 1−p of p. (This makes sense also if A is not unital because one always
has 1 ∈ A′′.) By definition the closure p of a projection p ∈ A′′ is the infimum
of all closed projections majorizing p. χM denotes the characteristic function
of a set M . By functional calculus, χ]ε,1](x) (respectively χ[ε,1](x)) is an open
(respectively closed) projection in A′′ if 1 > ε > 0, x ∈ A, 0 6 x 6 1, because χ]ε,1]

(respectively χ[ε,1]) is the pointwise limit of an increasing (respectively decreasing)
sequence of continuous functions on [0, 1] (cf. [1], II.3, if A is unital). [As to
χ]ε,1](x) this is easy but as to χ[ε,1](x) a bit more attention must be paid to
the case where A is not unital; in this case one works with the unitisation Ã
of A and with a result of Akemann and Pederson ([2], [17], 3.11.9). We sketch
this for the sake of completeness (and for lack of due reference): Showing the
closedness of χ[ε,1](x) amounts to showing that χ[0,ε[(x) is open. Since χ[0,ε[ is
the pointwise limit of an increasing sequence of continuous functions on [0, 1] we
have that χ[0,ε[(x) ∈ (Ãsa)m where (Ãsa)m denotes the set of those elements in
the enveloping von Neumann algebra of A (identified with A′′) which are limits of
increasing nets of elements of Ãsa. Now, χ[0,ε[(x) is open because χ[0,ε[(x) ∈ (Ã+)m

by [17], 3.11.9.
The following Lemma 3.5 is a natural generalisation of Lemma 3.5 from [18].
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Lemma 3.5. For each ε > 0 and each n ∈ N there is δ = δ(n, ε) > 0 with
the following property.

Let A be a C∗-algebra. If there are functionals ϕ1, . . . , ϕn in the unit ball of
A′ and open projections s, t ∈ A′′ such that

(3.7) (1− δ)
n∑
1

|αk| 6
∥∥∥ n∑

1

αk tϕks
∥∥∥ 6

n∑
1

|αk| ∀ (αk) ⊂ C

then there are open projections p1, . . . , pn ∈ sA′′s with pairwise orthogonal closures
in sA′′s and open projections q1, . . . , qn ∈ tA′′t with pairwise orthogonal closures
in tA′′t such that

pk(|ϕk|) > 1− ε,(3.8)
qk(|ϕ∗k|) > 1− ε,(3.9)

for k = 1, . . . , n.
In particular the ϕk are close to normalized orthogonal elements ψk on sAt

in the sense that ‖ϕk − ψk‖ < 6
√
ε where ψk = qkϕkpk/‖qkϕkpk‖ are normalized

and pairwise orthogonal with left (right) supports majorized by t (by s).

Proof. Recall that A′′ always contains the unit as an open projection. There-
fore the assumption s = t = 1 below in part (a) makes sense also when A is not
unital. Note also that the last assertion of the lemma (concerning the ψk) is
immediate from Lemma 3.4 and from (3.8), (3.9).

(a) First we suppose s = t = 1 and deal only with the special case:
(a1) of positive functionals ϕk.
Let ε > 0. For n = 1 choose an x > 0 in the unit ball of A such that

ϕ1(x) > 1− ε and set p1 = q1 = χ]0,1](x), δ(1, ε) = ε.
Suppose now that the assertion holds true (for positive functionals, for s =

t = 1 and) for some n ∈ N. By hypothesis on n we choose δn = δ(n, ε). We choose
δn+1 > 0 such that

δn+1 + (32nδn+1)1/2 < δn and 4nδn+1 < ε.

Consider positive functionals ϕk, k = 1, . . . , n + 1, in the unit ball of A such

that
∥∥∥n+1∑

1
αkϕk

∥∥∥ > (1 − δn+1)
n+1∑

1
|αk|. Set σ = 1

n

n∑
1
ϕk and τ = ϕn+1. Then

(1 − δn+1)(|α| + |β|) 6 ‖ασ + βτ‖ 6 |α| + |β| for all scalars α, β. In particular
‖σ − τ‖ > 2(1− δn+1). There is a selfadjoint normalized element x ∈ A such that
(σ − τ)(x) > 2(1 − 2δn+1). Decompose x = x+ + x− in its negative and positive
parts. Then (σ − τ)(x) = (σ(x+) + τ(x−)) − (σ(x−) + τ(x+)) > 2(1 − 2δn+1)
whence, since τ(x−) 6 1,

(3.10) σ(x+) > 2(1− 2δn+1)− τ(x−) > 1− 4δn+1

and similarly

(3.11) ϕn+1(x−) > 1− 4δn+1.

Together with ϕk(x+) 6 1 we obtain that

(3.12) ϕk(x+) > 1− 4nδn+1 for all k = 1, . . . , n
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because otherwise one would have nσ(x+) 6 1− 4nδn+1 + (n− 1) = n(1− 4δn+1)
in contrast to (3.10). If 0 6 a 6 1, a ∈ A, then by functional calculus χ]η,1](a) →
χ]0,1](a) in the w∗-topology of A′′ as 0 < η → 0. Furthermore, χ]0,1](a) > a.
Thus there is η > 0 such that by (3.12) and (3.11) the projections p = χ]η,1](x+),
pn+1 = χ]η,1](x−) satisfy

(3.13) p(ϕk) > 1− 4nδn+1 for k = 1, . . . , n

and

(3.14) pn+1(ϕn+1) > 1− 4δn+1 > 1− ε.

By functional calculus the projections p and pn+1 are open and orthogonal. Since
η > 0 they have orthogonal closures because their closures are majorized by the
orthogonal closed projections χ[η,1](x+) and χ[η,1](x−).

B = pA′′p∩A ⊂ A is a hereditary subalgebra of A. This explains the equality
sign in the following formula:∥∥∥ n∑

1

αkϕk|B

∥∥∥
B

=
∥∥∥ n∑

1

αk(pϕkp)
∥∥∥ >

∥∥∥ n∑
1

αkϕk

∥∥∥− ∥∥∥ n∑
1

αk(ϕk − pϕkp)
∥∥∥

(3.3)(3.13)
> (1− δn+1)

n∑
1

|αk| −
√

32nδn+1

n∑
1

|αk|

> (1− δn)
n∑
1

|αk|.

By induction hypothesis applied to B and to ϕk|B one gets n open projections
p1, . . . , pn ∈ B′′ with pairwise orthogonal closures in B′′ — whence in A′′ — such
that (3.8) holds for k = 1, . . . , n. For k = n+1, (3.8) holds by (3.14). We have that
pk⊥pn+1 for k = 1, . . . , n because pk 6 p⊥pn+1. Furthermore, (3.9) holds with
qk = pk because we have supposed ϕk > 0. This proves the case where s = t = 1
for positive functionals ϕk.

(a2) For the case of arbitrary functionals (but still with s = t = 1) suppose
that the lemma is false. Then there are ε > 0, n ∈ N, a sequence (Ai) of C∗-alge-
bras, and ϕk,i in the unit ball of Ai for k = 1, . . . , n such that for each i ∈ N,

(3.15)
(
1− 1

i

) n∑
k=1

|αk| <
∥∥∥ n∑

k=1

αkϕk,i

∥∥∥ 6
n∑

k=1

|αk| ∀ (αk) ⊂ C,

but for each i ∈ N the ϕk,i are far from orthogonal functionals, more precisely

(3.16) min
k6n

pk,i(|ϕk,i|) 6 1− ε or min
k6n

qk,i(|ϕ∗k,i|) 6 1− ε

for all sequences (pk,i)n
k=1 and (qk,i)n

k=1 of open projections with orthogonal clo-
sures in A′′i .

We recall some basic facts on ultraproducts (see e.g. [8]). If U is an ul-
trafilter on an index set I the ultraproduct X = (Xi)/U of a family (Xi)i∈I of
Banach spaces is defined as the quotient l∞(Xi)/c0(Xi) where l∞(Xi) = {(xi)i∈I :
‖(xi)‖ = sup ‖xi‖ < ∞} and c0(Xi) = {(xi)i∈I ∈ l∞(Xi) : lim

U
‖xi‖ = 0}.

With the quotient norm X becomes a Banach space. By [xi]U we denote the
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equivalence class represented by (xi)i∈I ∈ l∞(Xi). One has ‖[xi]U‖ = lim
U
‖xi‖

independently of the representative of [xi]U . The ultraproduct (X ′
i)/U of the

duals can be identified isometrically with a closed subspace of the dual X ′ via
[x′i]U ([xi]U ) = lim

U
x′i(xi). An ultraproduct A = (Ai)/U of a family of C∗-alge-

bras Ai is canonically a C∗-algebra with pointwise multiplication and involution
because in this case the null space c0(Xi) is an ideal in l∞(Ai).

Let now I = N and set A = (Ai)/U . For each element Ψ ∈ A′ of the form
Ψ = [ψi]U we have |Ψ| = [|ψi|]U and |Ψ∗| = [|ψ∗i |]U . [To see this choose a = [ai]U
in the unit ball of A such that ‖ai‖ = 1 and Ψ(a) = lim

U
ψi(ai) = lim

U
‖ψi‖. Then

|Ψ| = aΨ = [aiψi]U and ‖ |ψi| − aiψi‖ 6 (2 ‖ψi‖ | ‖ψi‖ − ψi(ai)|)1/2 U→ 0 by (3.5)
of Lemma 3.3. Hence |Ψ| = [|ψi|]U . For |Ψ∗| = [|ψ∗i |]U the proof is analogous.]

By (3.15) the n functionals Φk = [ϕk,i]U span l1n isometrically. Therefore,
by Lemma 2.1 the n functionals |Φk| = [|ϕk,i|]U span l1n isometrically, too, and so
do the n functionals |Φ∗k| = [|ϕ∗k,i|]U . This means that there is a sequence (δi) of
positive numbers tending to 0 (along U) such that(

1− δi

) n∑
k=1

|αk| 6
∥∥∥ n∑

k=1

αk|ϕk,i|
∥∥∥ 6

n∑
k=1

|αk| ∀ (αk) ⊂ C, i ∈ N;

(
1− δi

) n∑
k=1

|αk| 6
∥∥∥ n∑

k=1

αk|ϕ∗k,i|
∥∥∥ 6

n∑
k=1

|αk| ∀ (αk) ⊂ C, i ∈ N.

By part (a1) we choose δ0 = δ(n, ε/2). There is an infinite subset J ⊂ N such
that δi 6 δ0 for all i ∈ J . Thus, by part (a1), we obtain, for each i ∈ J , two
finite sequences (pk,i)n

k=1, (qk,i)n
k=1 of open projections with pairwise orthogonal

closures in A′′i such that

pk,i(|ϕk,i|) > 1− ε

2
, qk,i(|ϕ∗k,i|) > 1− ε

2
for all k = 1, . . . , n and all i ∈ J . This contradicts (3.16) and thus proves the
lemma for the case where s = t = 1.

(b) Now we turn to the general case of arbitrary open projections s, t ∈ A′′.
By part (a) we choose δ′ = δ(n, ε/2). Further we choose δ′′ > 0 and δ′′′ > 0

such that
2
√
δ′′ + δ′′ 6 δ′, δ′′′ <

ε

2
, 4

√
δ′′′ < δ′′.

Finally, we choose δ = δ(n, (δ′′′/6)2) by part (a) assuming in addition that δ 6 δ′′′.
Suppose now that (3.7) holds for this just defined δ.

Since (3.7) remains valid if tϕks is replaced by ϕk we can apply what has
been proved in part (a) in order to get normalized pairwise orthogonal ϕ̃k ∈ A′

such that

(3.17) ‖ϕk − ϕ̃k‖ 6 6
√

(δ′′′/6)2 = δ′′′ <
ε

2
for k = 1, . . . , n.

The |ϕ̃k| are normalized and, by Lemma 2.1, orthogonal and so are the |ϕ̃∗k|. Thus

(3.18)
∥∥∥ n∑

1

αk|ϕ̃k|
∥∥∥ =

n∑
1

|αk| and
∥∥∥ n∑

1

αk|ϕ̃∗k|
∥∥∥ =

n∑
1

|αk|
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for all scalars αk ∈ C. Let ϕ̃k = uk|ϕ̃k| be the polar decomposition. Then

1− 2δ′′′ 6 1− (δ + δ′′′)
(3.17)

6 1− δ − (‖tϕks‖ − ‖tϕ̃ks‖)
(3.7)

6 ‖tϕks‖ − (‖tϕks‖ − ‖tϕ̃ks‖) = ‖tϕ̃ks‖
= ‖tuk|ϕ̃k|s‖ = ‖ |(tuk|ϕ̃k|s)| ‖ = s(|(tuk|ϕ̃k|s)|) 6 s(|ϕ̃k|),

where the last inequality follows from [22], III.4.9. Analogously t(|ϕ̃∗k|) > 1− 2δ′′′.
Hence by (3.6) of Lemma 3.3,

‖tϕ̃ks− ϕ̃k‖ 6 4
√
δ′′′ < δ′′ and ‖sϕ̃∗kt− ϕ̃k‖ 6 4

√
δ′′′ < δ′′.

Recall that the absolute value is norm continuous on preduals of von Neumann
algebras and that, more precisely, ‖ |σ|− |τ | ‖ 6 2

√
‖σ − τ‖+ ‖σ− τ‖ for any pair

of elements σ, τ in the predual of a von Neumann algebra (see the proof of [22],
III.4.10 or see [12] for an improvement). Thus

‖ |tϕ̃ks| − |ϕ̃k| ‖ 6 2
√
δ′′ + δ′′ 6 δ′, ‖ |sϕ̃∗kt| − |ϕ̃∗k| ‖ 6 δ′.

In view of (3.18) we get the first inequalities of (3.19) and (3.20) (the second ones
being trivial):

(1− δ′)
n∑
1

|αk| 6
∥∥∥ n∑

1

αk |tϕ̃ks|
∥∥∥ 6

n∑
1

|αk| ∀ (αk) ⊂ C,(3.19)

(1− δ′)
n∑
1

|αk| 6
∥∥∥ n∑

1

αk |sϕ̃∗kt|
∥∥∥ 6

n∑
1

|αk| ∀ (αk) ⊂ C.(3.20)

Note that the support projection of |tϕ̃ks| (respectively of |sϕ̃∗kt|) is majorized by
s (respectively by t) and that sA′′s ∩ A and tA′′t ∩ A are hereditary subalgebras
of A. Therefore∥∥∥ n∑

1

αk |tϕ̃ks|
∥∥∥ =

∥∥∥ n∑
1

αk |(tϕ̃ks)|sA′′s∩A|
∥∥∥

sA′′s∩A

in (3.19) and likewise∥∥∥ n∑
1

αk |tϕ̃∗ks|
∥∥∥ =

∥∥∥ n∑
1

αk |(tϕ̃∗ks)|tA′′t∩A|
∥∥∥

tA′′t∩A

in (3.20). Now we apply part (a) to sA′′s ∩ A and to tA′′t ∩ A. The choice of
δ′ yields the desired open projections pk ∈ (sA′′s ∩ A)′′ = sA′′s and qk ∈ tA′′t
satisfying the analogues of (3.8) and (3.9); more precisely they satisfy

pk(|ϕ̃k|) > 1− ε

2
, qk(|ϕ̃∗k|) > 1− ε

2
,

for k = 1, . . . , n. Together with (3.17) this gives (3.8) and (3.9).
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Corollary 3.6. For each ε > 0 and each n ∈ N there is δ = δ(n, ε) > 0
with the following property.

Let N be a von Neumann algebra. If there are functionals ϕ1, . . . , ϕn in the
unit ball of N∗ and (arbitrary) projections s, t ∈ N such that

(3.21) (1− δ)
n∑
1

|αk| 6
∥∥∥ n∑

1

αk tϕks
∥∥∥ 6

n∑
1

|αk| ∀ (αk) ⊂ C,

then there are pairwise orthogonal projections p1, . . . , pn ∈ sN s and pairwise or-
thogonal projections q1, . . . , qn ∈ tN t such that

‖ϕk − ψk‖ < ε for k = 1, . . . , n

where ψk = qkϕkpk/‖qkϕkpk‖ (or ψk = ϕkpk/‖ϕkpk‖ or ψk = qkϕk/‖qkϕk‖).

Proof. For s = t = 1 the assertion is immediate from Lemma 3.5 and Lem-
ma 3.4. For arbitrary projections s, t ∈ N we proceed as in part (b) of the proof
of Lemma 3.5 in order to show that (3.21) can be replaced by (3.19) and (3.20)
and to apply this to the subalgebras sN s and tN t.

4. PROOF OF THEOREM 1.2

Without loss of generality we assume that ‖ϕm‖ = 1 for all m ∈ N. Let (ηn) be a
sequence of positive numbers such that

∑
ηn converges.

By induction on n = 1, 2, . . . we construct an increasing sequence (mn) in N,
functionals ψ(n)

mk ∈ N∗ for k = 1, . . . , n, such that for all n ∈ N:

|ψ(n)
mk
|⊥|ψ(n)

ml
|, k, l = 1, . . . , n, k 6= l,(4.1)

‖ψ(n)
mk
‖ = 1, k = 1, . . . , n(4.2)

‖ψ(n)
mk

− ψ(n−1)
mk

‖ < ηn, k = 1, . . . , n− 1,(4.3)

‖ψ(n)
mn

− ϕmn
‖ < ηn.(4.4)

For n = 1 one may simply set ψ(1)
m1 = ϕ1; ((4.1), n = 1) and ((4.3), n = 1) are

void, ((4.2), n = 1) and ((4.4), n = 1) are trivial.
Induction step n 7→ n+ 1.
Suppose that mk and ψ(n)

mk have been constructed for k = 1, . . . , n according
to (4.1)–(4.4).

Choose δ1 = δ(n, ηn+1/2) > 0 according to Corollary 3.6 such that further-
more δ1 < ηn+1/2. Let j ∈ N be such that (2/j)1/2 < δ1. Now, again according
to Corollary 3.6, choose δ0 = δ(nj, ηn+1).

Since (ϕm) spans l1 almost isometrically there is an indexm0 > mn such that
(ϕm)m>m0 spans l1 (1 − δ0)-isomorphically. By Corollary 3.6 (with s = t = 1,
δ = δ0) we find a finite set N ⊂ N of cardinality nj (for example N = {m0 +
1, . . . ,m0 + nj}), a finite sequence of orthogonal projections (pm)m∈N in N such
that

(4.5)
∥∥∥ϕm − ϕmpm

‖ϕmpm‖

∥∥∥ < ηn+1 ∀m ∈ N.
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Set ϕ =
n∑

k=1

|ψ(n)
mk |; ϕ is positive. We have

( ∑
m∈N

pm

)
(ϕ) 6 ‖ϕ‖ 6 n. Thus there

is an index mn+1 ∈ N such that 0 6 pmn+1(ϕ) 6 1/j and 0 6 pmn+1(|ψ
(n)
mk |) 6 1/j

for k = 1, . . . , n. We set s = 1− pmn+1 and define ψ̃(n+1)
mk = ψ

(n)
mks for k = 1, . . . , n

and

ψ(n+1)
mn+1

=
ϕmn+1pmn+1

‖ϕmn+1pmn+1‖
.

Then ((4.2), n+ 1) holds for k = n+ 1 and ((4.4), n+ 1) holds by (4.5). We have
s(|ψ(n)

mk |) = ‖ψ(n)
mk‖ − pmn+1(|ψ

(n)
mk |) > 1 − 1/j by (4.2). From this and (3.6) one

gets that

(4.6) ‖ψ̃(n+1)
mk

− ψ(n)
mk
‖ 6 (2/j)1/2 < δ1 <

ηn+1

2
, k = 1, . . . , n.

Thus, up to δ1 the ψ̃(n+1)
mk are near to an isometric copy of l1n because

n∑
k=1

|αk| >
∥∥∥ n∑

k=1

αkψ̃
(n+1)
mk

∥∥∥ =
∥∥∥ n∑

k=1

αkψ̃
(n+1)
mk

s
∥∥∥

>
∥∥∥ n∑

k=1

αkψ
(n)
mk

∥∥∥− ∥∥∥ n∑
k=1

αk(ψ̃(n+1)
mk

− ψ(n)
mk

)
∥∥∥

(4.6)

>
∥∥∥ n∑

k=1

αkψ
(n)
mk

∥∥∥− (2/j)1/2
n∑

k=1

|αk|

(4.1)(4.2)
=

(
1− (2/j)1/2

) n∑
k=1

|αk|

> (1− δ1)
n∑

k=1

|αk|.

It remains to apply Corollary 3.6 another time (with t = 1, δ = δ1) in order to
get small normalized orthogonal perturbations ψ(n+1)

mk — whence ((4.2), n + 1)
for k 6 n — of the ψ̃(n+1)

mk whose right supports are majorized by s and thus
orthogonal to the right support of ψ(n+1)

mk such that ‖ψ(n+1)
mk − ψ̃

(n+1)
mk ‖ < ηn+1/2

for k = 1, . . . , n. Together with (4.6) this gives ((4.3), n+ 1). Finally one verifies
((4.1), n + 1) by observing that the support projections of the |ψ(n+1)

mk | are the
right supports of the ψ(n+1)

mk . This ends the induction.
By construction, (ψ(n)

mk)n∈N is a Cauchy sequence for each k because ‖ψ(n)
mk −

ψ
(i)
mk‖ 6

n∑
l=i+1

ηl → 0 as n > i → ∞. Let ψk = lim
n
ψ

(n)
mk be its limit. Then

‖ψk−ϕmk
‖ 6 ‖ϕmk

−ψ(k)
mk‖+‖ψ

(k)
mk−lim

n
ψ

(n)
mk‖ 6 ηk +

∞∑
l=k+1

ηl → 0 as k →∞. The

ψk have pairwise orthogonal right supports because by continuity of the absolute
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value ([22], III.4.10), if k 6= l one has

‖ |ψk| − |ψl| ‖ = lim
n→∞

‖ |ψ(n)
mk
| − |ψ(n)

ml
| ‖

(4.1)
= lim

n→∞
‖ |ψ(n)

mk
| ‖+ ‖ |ψ(n)

ml
| ‖ = ‖ψk‖+ ‖ψl‖.

So far we have proved that if (ϕm) spans l1 almost isometrically then there is a
subsequence (ϕmk

) and there are pairwise orthogonal projections sk ∈ N (namely
the right support projections of the ψk) such that ‖ϕmk

−ϕmk
sk‖ 6 ‖ϕmk

−ψk‖+
‖ψksk − ϕmk

sk‖ 6 2‖ϕmk
− ψk‖ → 0. Since (ϕ∗mk

) spans l1 almost isometrically,
too, there are pairwise orthogonal projections tl ∈ N such that ‖ϕ∗mkl

−ϕ∗mkl
tl‖ →

0 for an appropriate sequence (mkl
) in N. Set ϕ̃l = tlϕmkl

skl
. Then ‖ϕmkl

−ϕ̃l‖ 6
‖ϕmkl

−ϕmkl
skl
‖+‖(ϕmkl

−tlϕmkl
)skl

‖ 6 ‖ϕmkl
−ϕmkl

skl
‖+‖ϕ∗mkl

−ϕ∗mkl
tl‖ → 0.

The second statement of the theorem is trivial by the definiton of the ϕ̃l.
This ends the proof.

From Remark 5.1 (2) after the proof of Theorem 1.1 at the end of the next
section it follows that Theorem 1.2 does not hold for unbounded sequences (ϕm).

5. PROOF OF THEOREM 1.1

(i) ⇒ (ii). Let (xnk
) be a subsequence of (xn). If (xnk

) contains a sequence
(xnkl

) such that xnkl
= 0 for all l ∈ N then we simply choose yl = 0 for l ∈ N.

Otherwise we may (pass to another subsequence and) suppose that ‖xnk
‖1 6= 0 for

all k ∈ N. By norm density of L1 ∩L∞ in L1 and the fact that the norm topology
is finer than the measure topology we may suppose without loss of generality that
0 6= ‖xnk

‖∞ <∞ for all k ∈ N. We set εl = 2−l/τ(1) for l ∈ N.
By induction over l ∈ N we construct a strictly increasing subsequence (nkl

)
of (nk), projections pl ∈ N and positive numbers δl such that for all l ∈ N

(5.1) τ(pl) < δl where pl = χ]εl,∞[(|xnkl
|)

and where

(5.2) δl =
2−l

max
16m6l−1

‖xnkm
‖∞

, if l > 2.

For l = 1 we choose nk1 = n1 and any δ1 > τ(p1). For the induction step l 7→ l+1
we suppose nkm

, pm, and δm to be constructed for m = 1, . . . , l, we define δl+1 by
(5.2) and choose nkl+1 such that

τ(χ]εl+1,∞[(|xnkl+1
|) < δl+1

which is possible because xn
τ−→ 0. We define pl+1 by (5.1). This settles ((5.1),

l + 1) and ends the induction.
By (5.2) we have

δl+1+r =
2−(l+1+r)

max
m6l+r

‖xnkm
‖∞

6 2−(r+1) 2−l

‖xnkl
‖∞
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for r ∈ N ∪ {0} which gives

(5.3)
∑

m>l+1

δm =
∑
r>0

δl+1+r 6
2−l

‖xnkl
‖∞

.

Put ql = 1 −
∨

m>l+1

pm and ỹl = xnkl

(
pl ∧ ql). By construction the ỹl have

pairwise orthogonal right support projections and their left support projections
are majorized by the ones of the xnkl

. We show that ‖xnkl
− ỹl‖1 → 0. In order

to save indices we use the abbreviations x = xnkl
, p = pl, q = ql, ỹ = ỹl until the

end of formula (5.4):

(5.4)

‖x− ỹ‖1 6 ‖x− xp‖1 + ‖xp− ỹ‖1 = ‖x(1− p)‖1 + ‖x(p− (p ∧ q))‖1
6 ‖x(1− p)‖∞ τ(1) + ‖x‖∞ τ(p− (p ∧ q))
(∗)
= ‖ |x|χ[0,εl](|x|)‖∞ τ(1) + ‖x‖∞ τ

(
(p ∨ q)− q

)
6 εl τ(1) + ‖x‖∞ τ(1− q) 6 εl τ(1) + ‖x‖∞

( ∑
m>l+1

τ(pm)
)

(5.1)(5.3)

6 2−(l−1).

For (∗) we used that p− (p ∧ q) and (p ∨ q)− q are equivalent projections for any
two projections p, q ([22], V.1.6) hence τ(p− (p ∧ q)) = τ((p ∨ q)− q).

So far we have proved that given a τ -null subsequence (xnk
) there are xnkl

and there are ỹl whose right supports are orthogonal and whose left supports
are majorized by the left supports of the xnkl

such that ‖xnkl
− ỹl‖1 → 0. In

particular, ỹl
τ−→ 0 whence ỹ∗l

τ−→ 0. Thus we can apply the same reasoning
(up to passing to appropriate subsequences) in order to find perturbations y∗l of
the ỹ∗l which have both orthogonal right and orthogonal left supports such that
‖ỹl − yl‖1 = ‖ỹ∗l − y∗l ‖1 → 0 hence ‖xnkl

− yl‖1 → 0. This ends the proof of (i) ⇒
(ii).

(ii) ⇒ (i) Since τ is finite and the yl are pairwise orthogonal we have that
yl

τ−→ 0. And ‖xnkl
− yl‖ → 0 entails xnkl

− yl
τ−→ 0 hence xnkl

τ−→ 0. Thus
each subsequence of (xn) contains a subsequence which converges to 0 in measure
whence xn

τ−→ 0.
(ii) ⇒ (iii) follows from Lemma 3.1: Suppose (ii) holds and inf ‖xnk

‖1 > 0
for a subsequence (xnk

) of (xn). Then by (ii), there are orthogonal yl and there is
(xnkl

) such that ‖xnkl
− yl‖1 → 0. One may suppose that inf ‖yl‖1 > 0 hence (yl)

spans l1 isometrically. Thus by Lemma 3.1, the sequence (xnkl
) = (yl +(xnkl

−yl))
spans l1 almost isometrically.

(iii) ⇒ (iv): Von Neumann preduals are L-embedded spaces ([7], IV.1.1),
thus by [19] each sequence spanning l1 almost isometrically admits a subsequence
spanning l1 asymptotically.

(iv) ⇒ (iii) is trivial.
(iii) ⇒ (ii) follows from Theorem 1.2.
See the following Remark 5.1 (2) for an example which shows that in general

(iii) does not imply (i), (ii) for unbounded sequences (xn).
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Remarks 5.1. (1) As an illustration of how to get an orthogonal subse-
quence consider the sequence xn = n 1[0, 1/n] in L1([0, 1]). One may take, for
example, yl = xnl

1]1/nl+1,1] = nl1]1/nl+1,1/nl] where nl = 2(2l).
(2) In general (iii) does not imply (i), neither (ii), if the sequence (xn) is

unbounded. Take the bounded sequence xn = n21[1/n+1, 1/n[ + 1
n in L1([0, 1]). It

converges to zero in measure and does not contain a norm null sequence. Hence by
(i)⇒(iii) an appropriate subsequence (xnk

) spans l1 almost isometrically. Thus the
unbounded sequence (n2

kxnk
) satisfies (iii) but not (i). It cannot satisfy (ii) either

because (ii) ⇔ (i) holds also for unbounded sequences. This means in particular
that Theorem 1.2 does not hold for unbounded sequences (ϕm).

(3) A few straightforward modifications show that (i)⇔ (ii) holds accordingly
also for Lp(N , τ), 1 6 p <∞. (Cf. [21].)

6. l1-COPIES IN THE DUAL OF C∗-ALGEBRAS; PROOF OF PROPOSITION 1.3

The proof of the main result of [18] gives the following: Let (ϕm) ⊂ A′ be a
bounded sequence of selfadjoint functionals on a C∗-algebra A, let ε > 0. If (ϕm)
spans l1 r-isomorphically (0 < r < 1) then there is a subsequence (ϕmn) and there
is a sequence (xn) of pairwise orthogonal normalized selfadjoint elements of A
such that ϕmn

(xn) > (1− ε)r‖ϕmn
‖. This amounts to saying that |ϕmn

|(|xn|) >
(1 − ε)r‖ϕmn‖. (To see this it is enough to decompose both ϕmn and xn in
their positive and negative parts.) This is Lemma 6.3 for selfadjoint ϕm with
an = bn = |xn| and with the better factor r instead of r2 in (6.2) and (6.3).

With Lemma 3.5 at one’s disposal, the proof of Lemma 6.3 — and thus of
Proposition 1.3 — is a straightforward modification of [18] and gives a kind of
quantitative version of [18] which holds for arbitrary functionals, not only selfad-
joint ones. (We give the entire proof of Proposition 1.3 not only for the sake of
completeness but also because it is quite lengthy; therefore the usual argument
“The details are left to the reader” would be somewhat misleading.) Yet, it does
not complete the subject “perturbations of l1-copies in C∗-algebras” as at least
two questions remain open.

Question 6.1. Is it necessary in Theorem 1.2 or in Proposition 1.3 to pass
to subsequences?

In the commutative case a result of Dor ([5]) shows that, if N∗ = L1([0, 1])
contains a (1−δ)-isomorphic copy of l1 then the whole canonical basis of this copy
can be perturbed in norm so to span l1 isometrically with the perturbation smaller
than δ′ and δ′ → 0 as δ → 0. Furthermore Arazy ([3]) proved that if the predual
of an arbitrary von Neumann algebra N contains a (1 − δ)-copy of l1 then the
whole copy is complemented by a projection whose norm is majorized by 1+ δ′ —
a result which has recently been generalized by N. Ozawa ([16]) to the category of
operator spaces.
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Question 6.2. Can the (mn), (an) and (bn) in Proposition 1.3 be arranged
such that ‖ϕmn

− bnϕmn
an‖ → 0 as n→∞?

[Let us sketch in passing why this would generalize Lemma 6.3. If (ϕm) ⊂
A′ is normalized and spans l1 r-isomorphically then by James’ distortion theo-
rem there are blocks ψn =

∑
i∈Fn

λiϕi spanning l1 almost isometrically such that∑
i∈Fn

|λi| 6 1/r. Now, if there are appropriate an, bn ∈ A such that ‖ψn −

bnψnan‖ → 0 (after passing, if necessary, to an appropriate subsequence of (ψn)),
one deduces that |ψn|(an) → lim ‖ψn‖ = 1 that is there are εn such that 0 < εn →
0 and |ψn|(an) >

√
1− εn. Thus Lemma 6.3 holds because for each n there is

in ∈ Fn such that |ϕin
|(an) > (1 − εn)r2 because otherwise by [22], III.4.7 one

would have the contradiction
√

1− εn < |ψn|(an) =
∣∣∣ ∑
i∈Fn

λiϕi

∣∣∣(an) 6
(∑

Fn

|λi| ‖ϕi‖
)1/2(∑

Fn

|λi| (|ϕi|(a2
n))

)1/2

6
1
r

(
max
Fn

|ϕi|(a2
n)

)1/2

6
1
r

(
max
Fn

|ϕi|(an)
)1/2

6
√

1− εn.

Similarly one obtains |ϕ∗in
|(bn) > (1− εn)r2.]

Proposition 1.3 follows immediately from Lemma 6.3 (and (3.6) of Lem-
ma 3.3) with s = 1 = t. The technical part concerning s, t is added because it
might be usefull for answering the second question just mentioned above.

Lemma 6.3. Let A be a C∗-algebra (unital or not), r > 0, let (ϕm) be a
normalized sequence in A′ spanning l1 r-isomorphically that is such that

(6.1) r
∑

|αm| 6
∥∥∥∑

αmϕm

∥∥∥ 6
∑

|αm| ∀ (αm) ⊂ C.

Then, given ε > 0, there are a sequence (mn) in N and a sequence (an) of pairwise
orthogonal positive normalized elements in A and another sequence (bn) of pairwise
orthogonal positive normalized elements in A such that

|ϕmn |(an) > (1− ε)r2,(6.2)
|ϕ∗mn

|(bn) > (1− ε)r2,(6.3)

for each n ∈ N.
Moreover, if s and t are open projections in A′′ such that s (respectively t)

majorizes the right (respectively left) supports of all ϕm (that is tϕms = ϕm for
all m ∈ N) then one can obtain in addition that an ∈ sA′′s and bn ∈ tA′′t.

Moreover, if the ϕm are selfadjoint such that sϕms = ϕm for an open pro-
jection s ∈ A′′ then one can obtain in addition |ϕmn

|(an) = |ϕ∗mn
|(an) > (1− ε)r

instead of (6.2) and (6.3) with an ∈ sA′′s.

Proof. The last statement concerning selfadjoint functionals follows from the
discussion in the beginning of this section.

For the other statements it is enough to construct a sequence (pn) of orthog-
onal open projections in sA′′s such that

(6.4) |ϕmn
|(pn) > (1− ε)r2
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for an appropriate subsequence (ϕmn
) because then, by the definition of open

projections, for all n ∈ N positive elements an 6 pn can be choosen so to be
pairwise orthogonal (since the pn are) and so to satisfy (6.2); finally, since (6.1)
remains valid if ϕ∗n is substituted for ϕn the same reasoning that leads to (6.2)
shows the existence of a sequence (bn) in tA′′t as desired in (6.3).

Let 0 < ε < 1 and choose a sequence (εn) of positive numbers such that∑
εn = ε and εn 6 3/4 for all n ∈ N.

By induction over n = 1, 2, . . . we construct a sequence (pn) of open projec-
tions in sA′′s, a sequence of indices (mn), a decreasing sequence (Nn) of infinite
subsets of N, i.e. · · · ⊂ Nn+1 ⊂ Nn ⊂ · · · ⊂ N1 ⊂ N0 = N, such that we have for
all n ∈ N:

pn ∈ sA′′s,(6.5)
pi pn = 0 ∀ i < n,(6.6)

pn(|ϕm|) <
1
72
r2ε4n ∀m ∈ Nn,(6.7)

pn(|ϕmn |) > r2
(
1−

n∑
1

εi

)
,(6.8)

mn ∈ Nn−1.(6.9)

We start the induction with n = 1.
Choose j1 ∈ N with 1/j1 < r2ε41/72. For j1 and ε1/4 Lemma 3.5 yields a

number δ1 = δ1(j1, ε1/2) > 0. By James’ distortion theorem applied to (6.1) there
are pairwise disjoint finite sets F (1)

k ⊂ N0 = N, a finite sequence (λ(1)
i )

i∈F
(1)
k

⊂ C

and functionals τ (1)
k =

∑
i∈F

(1)
k

λ
(1)
i ϕi for k ∈ N, such that

∑
F

(1)
k

|λ(1)
i | 6 1

r
,(6.10)

(1− δ1)
∑
k>1

|αk| 6
∥∥∥∑

k>1

αkτ
(1)
k

∥∥∥ 6
∑
k>1

|αk| ∀ (αk)k∈N0 ⊂ C.(6.11)

By Lemma 3.5 and the choice of δ1 there are pairwise orthogonal open projections
p
(1)
k ∈ sA′′s, k 6 j1, such that

(6.12) p
(1)
k (|τ (1)

k |) > 1− ε1
2

∀ k 6 j1,

and since the projections can be chosen to have orthogonal closures in sA′′s we
have ( j1∑

1

p
(1)
k

)
(|ϕm|) 6 1 ∀m ∈ N0.

Therefore there exist a k1 6 j1 and an infinite set N1 ⊂ N0 such that

(6.13) p
(1)
k1

(|ϕm|) 6
1
j1
<
r2ε41
72

∀m ∈ N1.
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Set p1 = p
(1)
k1

, τ1 = τ
(1)
k1

, F1 = F
(1)
k1

. Then (6.5) holds for n = 1. Now we infer that

p1(|τ1|)
(6.12)
> 1− ε1

2
>
√

1− ε1,

which in turn yields the existence of an index m1 ∈ F1 ⊂ N0 as desired in (6.8)
and (6.9) for n = 1, because otherwise we would have

p1(|τ1|) = p1

(∣∣∣∑
F1

λ
(1)
i ϕi

∣∣∣)
(∗)
6

(∑
F1

‖λ(1)
i ϕi‖

)1/2(∑
F1

p1

(
|λ(1)

i ϕi|
))1/2

6
(∑

F1

|λ(1)
i |

)1/2(
max
i∈F1

p1(|ϕi|)
∑
F1

|λ(1)
i |

)1/2

(6.10)

6
1
r

(
r2(1− ε1)

)1/2 =
√

1− ε1.

Here inequality (∗) can be proved like III.4.7 in [22]. For ((6.6), n = 1) nothing
needs to be proved. Inequality ((6.7), n = 1) corresponds to (6.13). The first
induction step is done.

Induction step n→ n+ 1:
Suppose pk, Nk, mk to be constructed for k 6 n according to (6.6)–(6.9).

Since the pk are orthogonal in sA′′s,
n∑
1
pk is closed by [1], Theorem II.7.

Therefore sn = s−
n∑
1
pk ∈ sA′′s is open. Set ϕ̃m = ϕmsn for m ∈ Nn.

Claim 6.4. The normalized functionals
(

ϕ̃m

‖ϕ̃m‖

)
m∈Nn

form an l1-basis with

(6.14)

r
(
1−

n∑
1

ε2i

)1/2 ∑
m∈Nn

|αm| 6
∥∥∥ ∑

m∈Nn

αm
ϕ̃m

‖ϕ̃m‖

∥∥∥
6

∑
m∈Nn

|αm| ∀ (αm)m∈Nn
⊂ C.

Set η = r2

72

n∑
1
ε4i . Then

(6.15) (s− sn)(|ϕm|) =
( n∑

1

pk

)
(|ϕm|)

(6.7)
< η ∀m ∈ Nn,

thus since s(|ϕm|) = ‖ϕm‖ = 1

(6.16)
‖ϕmsn − ϕm‖

(3.6)

6 |2(‖ϕm‖ − sn(|ϕm|))|1/2

=
(
2

n∑
1

pk(|ϕm|)
)1/2 (6.15)

<
√

2η ∀m ∈ Nn;
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further we note that for all m ∈ Nn

‖ϕ̃m‖ 6 ‖ϕm‖ = 1,(6.17)

0 6 1− ‖ϕ̃m‖ = ‖ϕm‖ − ‖ϕ̃m‖ 6 ‖ϕm − ϕ̃m‖
(6.18)

6
√

2η(6.18)

‖ϕ̃m‖
(6.18)

> 1−
√

2η,(6.19)

hence

(6.20)
‖ ϕ̃m

‖ϕ̃m‖
− ϕ̃m‖

(6.17)

6
1

‖ϕ̃m‖
− 1 =

(
1− ‖ϕ̃m‖

) 1
‖ϕ̃m‖

(6.18)(6.19)

6

√
2η

1−
√

2η

and

(6.21)
‖ ϕ̃m

‖ϕ̃m‖
− ϕm‖ 6 ‖ ϕ̃m

‖ϕ̃m‖
− ϕ̃m‖+ ‖ϕ̃m − ϕm‖

(6.20)(6.16)

6
√

2η
(
1 +

1
1−

√
2η

)
< 3

√
2η

because ε < 1, r 6 1, thus
√

2η < 1/2. Then (6.14) follows from∥∥∥ ∑
m∈Nn

αm
ϕ̃m

‖ϕ̃m‖

∥∥∥ >
∥∥∥∑

Nn

αmϕm

∥∥∥− ∥∥∥∑
Nn

αm
ϕ̃m

‖ϕ̃m‖
−

∑
Nn

αmϕm

∥∥∥
(6.1)

> r
(
1− sup

Nn

‖ ϕ̃m

‖ϕ̃m‖
− ϕm‖

) ∑
Nn

|αm|

(6.21)

> r(1− 3
√

2η)
∑
Nn

|αm| = r
(
1− 1

2

( n∑
1

ε4i

)1/2) ∑
Nn

|αm|

> r
(
1−

( n∑
1

ε4i

)1/2)1/2 ∑
Nn

|αm| > r
(
1−

n∑
1

ε2i

)1/2 ∑
m∈Nn

|αm|

and the Claim 6.4 is established.
Choose a number jn+1 ∈ N such that 1/jn+1 < r2ε2n+1/4. Further choose

a number δn+1 = δn+1(jn+1, ε
2
n+1/2) > 0 according to Lemma 3.5. Now we

apply James’ distortion theorem. By (6.14) there are pairwise disjoint finite sets
F

(n+1)
k ⊂ Nn, a finite sequence (λ(n+1)

i )
i∈F

(n+1)
k

⊂ C and functionals τ (n+1)
k =∑

i∈F
(n+1)
k

λ
(n+1)
i

ϕ̃i

‖ϕ̃i‖
for each k ∈ N such that

∑
i∈F

(n+1)
k

|λ(n+1)
i | 6 1

r(1−
n∑
1
ε2i )1/2

∀ k ∈ N,(6.22)

(1− δn+1)
∑
k>1

|αk| 6
∥∥∥∑

k>1

αkτ
(n+1)
k sn

∥∥∥ 6
∑
k>1

|αk|.(6.23)
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By Lemma 3.5, applied to the open projections sn and 1, to the functionals
τ

(n+1)
k ∈ A′, and to (6.23), there exist open projections p(n+1)

k ∈ snA
′′sn, k 6 jn+1,

with pairwise orthogonal closures in snA
′′sn such that

(6.24) p
(n+1)
k (|τ (n+1)

k |) > 1−
ε2n+1

2

for k 6 jn+1. Since the projections have orthogonal closures we have

(jn+1∑
1

p
(n+1)
k

)
(|ϕm|) 6 1 ∀m ∈ Nn.

Therefore there exist an index kn+1 6 jn+1 and an infinite subset Nn+1 ⊂ Nn

such that

p
(n+1)
kn+1

(|ϕm|) 6
1

jn+1
<
r2ε4n+1

72
∀m ∈ Nn+1.

Set pn+1 = p
(n+1)
kn+1

, τn+1 = τ
(n+1)
kn+1

, Fn+1 = F
(n+1)
kn+1

. Then (6.5), (6.6) and (6.7)
hold for n+ 1. Now we infer that

(6.25) pn+1(|τn+1|)
(6.24)
> 1−

ε2n+1

2
>

√
1− ε2n+1,

hence there is an index mn+1 ∈ Fn+1 ⊂ Nn as desired in (6.8) and (6.9) such that

(6.26) pn+1

(
ϕ̃mn+1

‖ϕ̃mn+1‖

)
> r2(1− ε2n+1)

(
1−

n∑
1

ε2i

)
,

because otherwise the following estimates would contradict (6.25):

pn+1(|τn+1|) = pn+1

(∣∣∣ ∑
Fn+1

λ
(n+1)
i

ϕ̃i

‖ϕ̃i‖

∣∣∣)
(∗)
6

( ∑
Fn+1

∥∥∥λ(n+1)
i

ϕ̃i

‖ϕ̃i‖

∥∥∥)1/2( ∑
Fn+1

pn+1

(∣∣∣λ(n+1)
i

ϕ̃i

‖ϕ̃i‖

∣∣∣))1/2

6
( ∑

Fn+1

|λ(n+1)
i |

)1/2(
max

i∈Fn+1
pn+1

(∣∣∣ ϕ̃i

‖ϕ̃i‖

∣∣∣) ∑
Fn+1

|λ(n+1)
i |

)1/2

(6.22)

6
1

r(1−
n∑
1
ε2i )1/2

(
r2(1− ε2n+1)

(
1−

n∑
1

ε2i

))1/2

=
√

1− ε2n+1.

Here inequality (∗) can be proved like III.4.7 in [22]. Note that for a functional ϕ

with polar decomposition ϕ = u|ϕ| one has |ϕs| = |u |ϕ| s| 6 |ϕ| by III.4.9 in [22]



166 Hermann Pfitzner

which explains inequality (∗∗) below; now ((6.8), n+ 1) follows from

pn+1(|ϕmn+1 |)
(∗∗)
> pn+1(|ϕmn+1sn|)

(6.26)
> ‖ϕmn+1sn‖r2(1− ε2n+1)

(
1−

n∑
1

ε2i

)
(6.19)

>
(
1−

√
2η

)
r2(1− ε2n+1)

(
1−

n∑
1

ε2i

)
> r2

(
1−

n+1∑
1

εi

)
where the last inequality follows from the following completely elementary esti-
mates: (

1−
√

2η
)
(1− ε2n+1)

(
1−

n∑
1

ε2i

)
=

(
1− r

6

( n∑
1

ε4i

)1/2)
(1− ε2n+1)

(
1−

n∑
1

ε2i

)
>

(
1− r

3

n∑
1

ε2i

)
(1− ε2n+1)

(
1−

n∑
1

ε2i

)
=

(
1−

n+1∑
1

ε2i

)
− r

3

[
1− (1− ε2n+1)

n∑
1

ε2i −
(
1 +

3
r

)
ε2n+1

] n∑
1

ε2i

>
(
1−

n+1∑
1

ε2i

)
− r

3

n∑
1

ε2i >
(
1−

n+1∑
1

ε2i

)
− 1

3

n+1∑
1

ε2i

=
(
1−

n+1∑
1

εi

)
+

n+1∑
1

εi

(
1− εi −

εi

3

)
> 1−

n+1∑
1

εi

since we assumed εi 6 3/4 for all i ∈ N. Thus ((6.8), n+ 1) is proved. This ends
the induction and the proof.
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