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Abstract. A collection of partial isometries whose range and initial pro-
jections satisfy a specified set of conditions often gives rise to a partial rep-
resentation of a group. The corresponding C∗-algebra is thus a quotient of
the universal C∗-algebra for partial representations of the group, from which
it inherits a crossed product structure, of an abelian C∗-algebra by a partial
action of the group. This allows us to characterize faithful representations
and simplicity, and to study the ideal structure of these C∗-algebras in terms
of amenability and topological freeness of the associated partial action. We
also consider three specific applications: to partial representations of groups,
to Toeplitz algebras of quasi-lattice ordered groups, and to Cuntz-Krieger
algebras.
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INTRODUCTION

In this paper we develop tools to analyze partial dynamical systems and use them
in our general approach to C∗-algebras generated by partial isometries. Our work
builds upon [8], where a certain crossed product is shown to be universal for the
partial representations of a group. Here we realize the universal C∗-algebra for
partial representations of a group subject to relations as the crossed product of a
partial action of the group on a commutative C∗-algebra. The key feature of our
method is a machine that, given a partial representation with relations, produces
an explicit description of the spectrum of this commutative C∗-algebra and of the
partial action of the group. This machine, which is the main contribution of this
work, has already been applied elsewhere ([9]) to define and study Cuntz-Krieger
algebras for arbitrary infinite matrices, a generalization that had previously eluded
other approaches.
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We begin by reviewing the definition and basic construction of crossed prod-
ucts by partial actions in Section 1. In Section 2 we adapt the notion of topo-
logical freeness for group actions ([1]) to the context of partial actions on abelian
C∗-algebras. The main technical result is Theorem 2.6, where we show that for
a locally compact Hausdorff space X the ideals in the reduced crossed product of
C0(X) by a topologically free partial action of a discrete group G necessarily in-
tersect C0(X) nontrivially; hence a representation of the reduced crossed product
is faithful if and only if it is faithful on C0(X). This leads to a sufficient condition
for simplicity of the reduced crossed product in Corollary 2.9.

In Section 3 we consider invariant ideals of a partial action and the ideals they
generate in the crossed product. In Proposition 3.1 we give a general short exact
sequence relating an invariant ideal of a partial action, the corresponding ideal of
the crossed product, and the crossed product by the quotient partial action. After
discussing the approximation property introduced in [6], which implies amenability
of a partial action and hence equality of the full and reduced crossed products,
we prove Theorem 3.5, the main result of the section. Specifically, the result is
that if a partial action has the approximation property and is topologically free on
closed invariant subsets, then the ideals of the crossed product are in one-to-one
correspondence with the invariant ideals, and hence with invariant open subsets
under the partial action.

We begin Section 4 by introducing a class of partial dynamical systems arising
from partial representations whose range projections satisfy a given set of relations.
In Proposition 4.1 we describe the spectrum associated to the relations and give
a canonical partial action of the group on this spectrum. The resulting crossed
product has a universal property with respect to partial representations of the
group satisfying the relations; this is proved in Theorem 4.4, which is our main
result. It is through this that the results of the first three sections become available
to study the C∗-algebras generated by partial representations subject to relations.
The partial crossed product realization entails, as one of its useful features, that
these C∗-algebras have canonical gradings over the group (corresponding to the
dual coaction of the partial action).

In the final sections we apply the main results to some concrete situations.
In Section 5 we show that the partial dynamical system canonically associated to a
discrete group in [8] is topologically free if and only if the group is infinite. Since the
reduced partial C∗-algebra of such a group is a crossed product by a partial action,
we are able to characterize its faithful representations. In Section 6 we realize the
Toeplitz C∗-algebras associated by Nica in [16] to quasi-lattice ordered groups
as crossed products by partial actions. We show that the corresponding partial
dynamical systems are always topologically free. This allows us to prove a stronger
version of a result from [14] about faithful representations of Toeplitz algebras.
Indeed, we show in Theorem 6.7 that a representation of the Toeplitz algebra of a
quasi-lattice ordered group is faithful if and only if it is faithful on the diagonal,
without any amenability assumptions. Finally, in Section 7 we briefly indicate how
to realize the Cuntz-Krieger algebra OA associated to a {0, 1}-valued n×n matrix
A as a crossed product by a partial action of the free group on n generators. As
with the Toeplitz algebras, our description of the crossed product realization of
Cuntz-Krieger algebras is explicit, as opposed to the indirect method of [21]. We
also indicate that the Cuntz-Krieger uniqueness theorem can be obtained from the
results of Section 2 and an amenability result from [6].
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1. CROSSED PRODUCTS BY PARTIAL ACTIONS

Let α be a partial action of the discrete group G on the C∗-algebra A in the sense of
[5], [15], [8], [21]. That is, for each s ∈ G we have an isomorphism αs : Ds−1 → Ds

between closed ideals of A, such that

ae = idA andαst extends αsαt for s, t ∈ G.

We say that the triple (A,G, α) is a partial dynamical system. There are two
C∗-algebras associated with a partial dynamical system: the full crossed product
A oα G and the reduced crossed product A oα,r G, cf. [15]. These are defined, in
analogy with the crossed products of group actions, as certain C∗-completions of
the convolution ∗-algebra of finite sums

{ ∑
t

atδt : at ∈ Dt

}
. It is also possible to

view the full crossed product as a universal C∗-algebra for covariant representa-
tions as in [21]. Since we will exploit this point of view, we briefly review some
definitions and basic facts. In [8], Definition 6.2, a partial representation of G on
a Hilbert space H is defined as a map u : G → B(H) such that

ue = 1, ut−1 = u∗t , and usutut−1 = ustut−1 , for s, t ∈ G.

Note that these conditions imply that the ut are partial isometries on H. An
equivalent definition which is sometimes easier to verify is given in [21], Defini-
tion 1.7, where one only requires that the ut be partial isometries with commuting
range projections, satisfying u(e)u(e)∗ = 1, u(s)∗u(s) = u(s−1)u(s−1)∗, and that
u(st) extends u(s)u(t) in the sense of [21], Lemma 1.6. The equivalence is proved
in [21], Lemma 1.8.

A covariant representation of the partial dynamical system (A,G, α) on a
Hilbert space H is a pair (π, u) in which π is a nondegenerate representation of
A on H and u is a partial representation of G on H such that for each t ∈ G we
have that utu

∗
t is the projection onto the subspace spanπ(Dt)H and

π(αt(a)) = utπ(a)ut−1 , for a ∈ Dt−1 .

As in the case of actions of groups, covariant representations of a partial action
correspond to representations of the associated crossed product. This correspon-
dence was first proved in [5], Propositions 5.5 and 5.6, in the case of a single partial
automorphism, and it was generalized to partial actions of discrete groups in [15],
Propositions 2.7 and 2.8. Our definition of covariant representations is slightly
different from those of [5] and [15], but this poses no problem because the various
definitions have been shown to be equivalent ([21], Remark 1.12; see also [21],
Section 3). There is a one-to-one correspondence (π, u) 7→ π×u between covariant
representations of (A,G, α) on H and non-degenerate representations of A oα G
on H, determined by

(π × u)(aδt) = π(a)ut for t ∈ G, a ∈ Dt.
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2. TOPOLOGICALLY FREE PARTIAL ACTIONS

We will mostly be concerned with partial actions arising from partial homeomor-
phisms of a locally compact space X, so that for every t ∈ G there is an open
subset Ut of X and a homeomorphism θt : Ut−1 → Ut such that θst extends θsθt

([8], [15], [7]). The partial action α of G on C0(X) corresponding to θ is given by

αt(f)(x) := f(θt−1(x)), f ∈ C0(Ut−1).

So, here the ideals are Dt = C0(Ut). We will talk about the partial action at either
the topological or the C∗-algebraic level, according to convenience.

Definition 2.1. (cf. [1]) The partial action θ is topologically free if for every
t ∈ G \ {e} the set Ft := {x ∈ Ut−1 : θt(x) = x} has empty interior.

We point out that although the set Ft need not be closed in X, it is relatively
closed in the domain Ut−1 of θt. A standard argument gives the following equivalent
version of topological freeness which is more appropriate for our purposes.

Lemma 2.2. The partial action θ on X is topologically free if and only if for

every finite subset {t1, t2, . . . , tn} of G \ {e}, the set
n⋃

i=1

Fti has empty interior.

Proof. It suffices to show that for every t ∈ G \ {e}, the fixed point set Ft

is nowhere dense (i.e., its closure in X has empty interior), and then use the fact
that a finite union of nowhere dense sets is nowhere dense.

Since Ft is closed relative to Ut we can write Ft = C∩Ut with C closed in X.
Suppose V ⊂ F t is open. Since the set V ∩Ut is contained in C ∩Ut = Ft, it must
be empty, by the assumption of topological freeness. Thus V and Ut are disjoint
open sets, so each one is disjoint from the other’s closure. But V ⊂ C ∩ Ut ⊂
C ∩ U t ⊂ U t, so V itself is empty and hence Ft is nowhere dense.

Lemma 2.3. Let t ∈ G \ {e}, f ∈ Dt, and x0 /∈ Ft. For every ε > 0 there
exists h ∈ C0(X) such that:

(i) h(x0) = 1,
(ii) ‖h(fδt)h‖ 6 ε, and
(iii) 0 6 h 6 1.

Proof. We separate the proof into two cases according to x0 being in the
domain Ut of θt−1 or not. If x0 /∈ Ut, let K := {x ∈ Ut : |f(x)| > ε}. Then K is
a compact subset of Dt and x0 /∈ K, so there is h ∈ C0(X) such that 0 6 h 6 1,
h(x0) = 1 and h(K) = 0. Since f is bounded by ε off K, it follows that ‖hf‖ 6 ε,
so (ii) holds too.

If x0 ∈ Ut then θt−1(x0) is defined and not equal to x0. Take disjoint open
sets V1 and V2 such that x0 ∈ V1 and θt−1(x0) ∈ V2. We may assume that V1 ⊂ Ut

and V2 ⊂ Ut−1 .
Letting V := V1 ∩ θt(V2), we have that x0 ∈ V ⊂ V1 and θt−1(V ) ⊂ V2, from

which it follows that θt−1(V ) ∩ V = ∅. Take now h ∈ C0(X) such that 0 6 h 6 1,
h(x0) = 1 and h(X \ V ) = 0. It remains to prove that h satisfies (ii). In fact,
the product hfδth = αt(αt−1(hf)h)δt vanishes because the support of αt−1(hf) is
contained in θt−1(V ) and the support of h is in V .
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The reduced crossed product associated to a partial dynamical system in
[15], Section 3 can also be obtained as the reduced cross-sectional algebra of the
Fell bundle determined by the partial action ([6], Definition 2.3).

This reduced crossed product is a topologically graded algebra and the con-
ditional expectation, denoted by Er, from C0(X) or G onto C0(X) is a faithful
positive map ([6], Proposition 2.12; see also [19], Corollary 3.9 and Lemma 1.4 and
[21], Corollary 3.8).

Proposition 2.4. If (C0(X), G, α) is a topologically free partial action then
for every c ∈ C0(X) or G and every ε > 0 there h ∈ C0(X) such that:

(i) ‖hEr(c)h‖ > ‖Er(c)‖ − ε,
(ii) ‖hEr(c)h− hch‖ 6 ε, and
(iii) 0 6 h 6 1.

Proof. Assume first c is a finite linear combination of the form
∑
t∈T

atδt, where

T denotes a finite subset of G, in which case Er(c) = ae (where we put ae = 0 if
e /∈ T ). Let V = {x ∈ X : |ae(x)| > ‖ae‖−ε}, which is clearly open and nonempty.
By Lemma 2.2 there exists x0 ∈ V such that x0 /∈ Ft for every t ∈ T \ {e}, and by
Lemma 2.3 there exist functions ht satisfying

ht(x0) = 1, ‖ht(atδt)ht‖ 6
ε

|T |
, and 0 6 ht 6 1.

Let h :=
∏

t∈T\{e}
ht. Then (iii) is immediate, and (i) also holds because x0 ∈ V so

‖haeh‖ > |ae(x0)| > ‖ae‖ − ε. For (ii), we have

‖haeh− hah‖ =
∥∥∥ ∑

t∈T\{e}

hatδth
∥∥∥ 6

∑
t∈T\{e}

‖hatδth‖ 6
∑

t∈T\{e}

‖htatδtht‖ < ε.

Since the elements of the form
∑
t∈T

atδt are dense in the crossed product and

the conditional expectation Er is contractive, a standard approximation argument
gives the general case.

Remark 2.5. It is easy to see that the Proposition 2.4 also holds with the
full crossed product replacing the reduced one.

Theorem 2.6. Suppose (C0(X), G, α) is a topologically free partial action.
If I is an ideal in C0(X) or G with I ∩ C0(X) = {0}, then I = {0}. A repre-
sentation of the reduced crossed product C0(X) or G is faithful if and only if it is
faithful on C0(X).

Proof. Denote by π : C0(X) or G → (C0(X) or G)/I the quotient map, and
let a ∈ I with a > 0, so that π(a) = 0. Given ε > 0 take h ∈ C0(X) satisfying
conditions (i), (ii) and (iii) of Proposition 2.4. Then

‖π(hEr(a)h)‖ = ‖π(h(Er(a)− a)h)‖ 6 ε,

because π(a) = 0. Since π is isometric on C0(X), because I ∩ C0(X) = {0}, it
follows that ‖hEr(a)h‖ 6 ε. By Proposition 2.4 (i), ‖Er(a)‖ − ε 6 ‖hEr(a)h‖,
so ‖Er(a)‖ 6 2ε, and Er(a) has to vanish. Since the conditional expectation
Er is faithful on the reduced crossed product this implies that a = 0 and hence
that I = {0}. This proves the first assertion, which, applied to the kernel of a
representation, gives the second one.
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Definition 2.7. A subset V of X is invariant under the partial action θ on
X if θs(V ∩ Us−1) ⊂ V for every s ∈ G.

An ideal J in C0(X) is invariant under the corresponding partial action α

on C0(X) if αt(J ∩Dt−1) ⊂ J for every t ∈ G.

It is easy to see that if U is an invariant open set then the associated ideal
C0(U) is invariant and, conversely, every invariant ideal corresponds to an invariant
open set.

Definition 2.8. The partial action θ on X is minimal if there are no θ-
invariant open subsets of X other than ∅ and X or, equivalently, if the partial
action α on C0(X) has no nontrivial proper invariant ideals.

The complement of an invariant set is invariant too, so the partial action is
minimal if and only if it has no nontrivial proper closed invariant subsets.

Corollary 2.9. If a partial action is topologically free and minimal then
the associated reduced crossed product is simple.

Proof. Suppose J is the kernel of a representation ρ = π× v of C0(X) or G.
Then J ∩C0(X) is an ideal in C0(X) which is invariant under α because for every
f ∈ J ∩ Dt−1 , we have, by covariance, that π(αt(f)) = vtπ(f)v∗t = 0, and hence
that αt(f) ∈ J .

By assumption α is minimal, so either J ∩ C0(X) = C0(X), in which case
π = 0, hence ρ = 0, or else J ∩ C0(X) = {0}, in which case the representation π

is faithful by Theorem 2.6. This proves that the crossed product is simple.

3. INVARIANT IDEALS AND THE APPROXIMATION PROPERTY

Let α be a partial action on the C∗-algebra A. For each invariant ideal I of A

there is a restriction of α to a partial action on I, with ideals Dt ∩ I as ranges of
the restricted partial automorphisms, and there is also a quotient partial action
α̇t of G on A/I, defined by passage to the quotient: the domain of α̇t is the ideal
Ḋt−1 := {a + I ∈ A/I : a ∈ Dt−1} and α̇t(a + I) = αt(a) + I.

We will show that the quotient of the crossed product A o G modulo the
ideal generated by I is isomorphic to the crossed product of the quotient partial
action modulo I. This result generalizes [20], Proposition 3.4, which proves the
case G = Z, and extends part of [15], Proposition 5.1, which only concerns ideals.
The original argument, for group actions, is from [10], Lemma 1. We will denote
by 〈S〉 the ideal generated by a subset S of a C∗-algebra B.
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Proposition 3.1. Suppose α is a partial action on A and assume I is an
α-invariant ideal of A. Then the map aδt ∈ I o G 7→ aδt ∈ A o G extends to an
injection of I o G onto the ideal 〈I〉 generated by I in A o G, and 〈I〉 ∩A = I.

The map aδt ∈ A o G 7→ (a + I)δt ∈ (A/I) o G extends to a surjective
homomorphism, giving the short exact sequence

0 → I o G → A o G → (A/I) o G → 0.

Proof. The assertion that I o G injects as an ideal in A o G is proved in
[15], Proposition 5.1 and Corollary 5.2 and, as done there, we identify I o G with
span{aδt : a ∈ Dt ∩ I, t ∈ G}; we also identify I with its canonical image Iδe in
A o G. It is clear that 〈I〉 is contained in I o G. To prove the reverse inclusion it
suffices to show that aδt ∈ 〈I〉 for every a ∈ Dt ∩ I and t ∈ G. Assume a ∈ Dt ∩ I
and let bλ be an approximate unit for the ideal Dt. Then abλδt = (aδe)(bλδt) ∈ 〈I〉
so aδt = lim

λ
abλδt ∈ 〈I〉. This proves that I o G = 〈I〉, from which it is obvious

that I = 〈I〉 ∩A.
The map aδt 7→ (a + I)δt induces a ∗-homomorphism from `1(G, A) onto

`1(G, A/I). Since A o G is the enveloping C∗-algebra of `1(G, A), there is C∗-
homomorphism ϕ of A o G onto (A/I) o G which sends aδt to (a + I)δt for every
a ∈ Dt and every t ∈ G. To finish the proof we need to show that kerϕ = 〈I〉.

It is clear that kerϕ contains the ideal 〈I〉 generated by I in A o G. It remains
to prove that kerϕ ⊂ 〈I〉. Let π× u be a representation of A o G with kernel 〈I〉.
Since the kernel of π contains I, π factors through the quotient map A → A/I;
denote by π̃ the corresponding representation of A/I. The pair (π̃, u) is covariant
and determines a representation π̃× u of (A/I) o G. Then π× u = (π̃× u) ◦ϕ, so
ker ϕ ⊂ ker(π × u).

Remark 3.2. We point out that, at the level of reduced crossed products,
it is always true that I or G injects as an ideal in A or G ([15], Proposition 5.1),
but whether the quotient is the reduced crossed product (A/I) or G is a sub-
tler question. We refer to the discussion at the end of [6], Section 4 for related
considerations.

When A = C0(X) the α-invariant ideals are in one to one correspondence
with invariant open sets; the corresponding quotients are naturally identified with
the continuous functions on the complements of these invariant open sets. Specif-
ically, if α is a partial action on C0(X) and U is an invariant open subset of X
then C0(U) is an invariant ideal in C0(X), and every invariant ideal is of this
form. Moreover, C0(X)/C0(U) ∼= C0(Ω) with Ω = X \ U , the quotient map be-
ing simply restriction. The quotient partial action α̇ of G on C0(Ω) is given by
α̇t(f |Ω) = αt(f)|Ω for f ∈ Dt−1 (the domain of α̇t consists of the restrictions to
Ω of functions in Dt−1).

In general there may be more ideals in a crossed product than those of the
form 〈I〉 with I an invariant ideal in A. Easy examples abound even for full
actions; for instance write C∗(G) = C o G (with the trivial action). If G has more
than one element, then the kernel of the trivial homomorphism s 7→ 1 from C∗(G)
to C is a proper nontrivial ideal which is not generated by an ideal in C.

The quotient system (C0(Ω), G, α), obtained by restricting the partial action
α to a closed invariant subset Ω of X, need not be topologically free even if
(C0(X), G, α) is. An easy example of this phenomenon is obtained by restricting
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the action of Z by translation on C(Z∪{±∞}) to the subset {±∞}. However, we
will see that if topological freeness holds on quotients of a partial action having
the approximation property introduced in [], then all the ideals of the crossed
product are obtained from their intersections with C0(X), via the map I 7→ 〈I〉.
Before we prove this we briefly review some basic facts about amenability and the
approximation property.

A partial dynamical system (C0(X), G, α) is amenable if the canonical homo-
morphism from the full crossed product to the reduced one is faithful. Amenability
is equivalent to faithfulness (as a positive map) of the conditional expectation from
the full crossed product C0(X) o G onto C0(X) ([6], Proposition 4.2); it is also
equivalent to normality of the dual coaction in the sense of [18] and to amenability
of the associated semi-direct product Fell bundle ([7], Definition 2.8).

Definition 3.3. The partial dynamical system (C0(X), G, α) has the ap-
proximation property if the semi-direct product bundle has the approximation
property of [6], Definition 4.4, that is, if there exists a net (ai) of finitely sup-
ported functions ai : G → C0(X) such that

sup
i

∥∥∥ ∑
t∈G

ai(t)∗ai(t)
∥∥∥ < ∞

and
lim

i

∑
t∈G

ai(st)∗fδsai(t) = fδs s ∈ G, f ∈ Ds.

This approximation property implies amenability ([6], Theorem 4.6), over
which it has the advantage of being inherited by graded quotients of Fell bundles
in the sense specified in the next proposition. We do not know at present whether
the approximation property is actually equivalent to amenability.

Although we will only need the following result in the special situation of
crossed products by partial actions, it is more convenient to formulate it for the
topologically graded algebras studied in [6].

Proposition 3.4. Suppose the C∗-algebra B is topologically graded over G,
and assume the associated Fell bundle has the approximation property. Let J ⊂ B

be such that J = 〈J ∩ Be〉. Then the quotient B/J is topologically graded over G

and its associated Fell bundle also has the approximation property.

Proof. Let π : B → B/J be the quotient map. That B/J is topologically
graded is proved in [6], Proposition 3.1. To prove the second claim, suppose that
the ai are the approximating functions for B. Then the collection of functions
t 7→ π(ai(t)) can be used to show that the approximation property holds for B/J .
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Theorem 3.5. Let (C0(X), G, α) be a partial dynamical system which is
topologically free on every closed invariant subset of X and which satisfies the
approximation property. Then the map

U 7→ 〈C0(U)〉

is a lattice isomorphism of the invariant open subsets of X onto the ideals of
C0(X) o G.

Proof. It is clear that the map U 7→ 〈C0(U)〉 maps invariant open subsets of
X to ideals in C0(X) o G, and that if U1 ⊂ U2 then 〈C0(U1)〉 ⊂ 〈C0(U2)〉. Since
C0(U) = 〈C0(U)〉∩C0(X) by Proposition 3.1, the map is one-to-one. Next we show
that every ideal in C0(X) o G is of this form; this will prove that U 7→ 〈C0(U)〉 is
an order preserving bijection, hence a lattice isomorphism.

Suppose J is an ideal of C0(X) o G, and let I := J∩C0(X). Then I = C0(U)
for an open invariant subset U ⊂ X, and it is clear that 〈C0(U)〉 ⊂ J ; we will
show that in fact 〈C0(U)〉 = J .

The set Ω := X \ U is closed and invariant, so 〈C0(U)〉 is the kernel of the
homomorphism

ϕ : C0(X) o G → C0(Ω) o G

by the preceding proposition. Let b ∈ ϕ(J) ∩ C0(Ω), so that b = ϕ(a) for some
a ∈ J and b = ϕ(a1) for some a1 ∈ C0(X). Thus a− a1 ∈ ker ϕ, and since kerϕ =
〈C0(U)〉 ⊂ J it follows that a1 itself is in J . But then a1 ∈ J ∩C0(X) = C0(U), so
b = ϕ(a1) = 0. This shows that the ideal ϕ(J) of C0(Ω) o G has trivial intersection
with C0(Ω).

By Proposition 3.4 the partial action on the quotient C0(Ω) satisfies the ap-
proximation property, so it is amenable and the reduced and full crossed products
coincide, by [6], Proposition 4.2.

Since by assumption α is topologically free on Ω, ϕ(J) is trivial by Proposi-
tion 2.6, and thus J ⊂ ker ϕ = 〈C0(U)〉 as required.

4. PARTIAL REPRESENTATIONS SUBJECT TO CONDITIONS

The C∗-algebra of an inverse semigroup of isometries was realized as the crossed
product of a partial action in [8]. In this section we show how to generalize and
extend that construction to the C∗-algebra generated by a partial representation
subject to relations. In order to set up the notation we briefly review the main
ideas from [8]. Consider the compact Hausdorff space {0, 1}G, and let e denote
the identity element in G. The subset

XG := {ω ∈ {0, 1}G : e ∈ ω}

is a compact Hausdorff space with the relative topology inherited from {0, 1}G.
The sets Xt := {ω ∈ XG : t ∈ ω} are clopen, and we define a partial

homeomorphism θt on Xt−1 by θt(ω) = tω, where tω = {tx : x ∈ ω}. This gives a
partial action ({Xt}, {θt})t∈G canonically associated to the group G.

At the algebra level, denote by 1t the characteristic function of Xt; then
C(XG) is the C∗-algebra generated by the projections {1s : s ∈ G}. The domain
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of the partial automorphism αt is C0(Xt−1) = span{1s1t−1 : s ∈ G}, and αt is
determined by

αt(1s1t−1) = 1ts1t.

The crossed product C(XG) oα G has the following universal property:

(U1) For every partial representation u of G there is a unique representation ρu

of C(XG) satisfying ρu(1t) = utu
∗
t , and (ρu, u) is a covariant representation

of (C(XG), G, α);
(U2) every representation of C(XG) oα G is of the form ρu × u with (ρu, u) as

above.

Since C∗({ut : t ∈ G}) coincides with the C∗-algebra generated by the range
of ρ×u, this justifies referring to the crossed product C(XG) o G as the universal
C∗-algebra for partial representations of G or, simply, as the partial group algebra
of G ([8], Definition 6.4).

Notice that since Xt is clopen the partial isometries themselves belong to
the crossed product and, indeed, they generate it. We will denote by [t] the
partial isometry corresponding to the group element t in the universal partial
representation of G, and, by abuse of notation, we will also write 1t = [t][t]∗.
When u is a partial representation of G we will denote the range projections
utut−1 = utu

∗
t by eu(t) or simply by e(t). Notice that the initial projection of ut

is the range projection of ut−1 , so we only need to mention range projections.
We are interested here in partial representations u whose range projections

satisfy a set of relations of the form∑
i

∏
j

λije(tij) = 0,

where the λij are scalars and the sums and products are over finite sets. Observe
that if u is such a representation then, since ρu(1t) = utu

∗
t = e(t), we have

ρu

( ∑
i

∏
j

λij1tij

)
=

∑
i

∏
j

λije(tij) = 0.

It follows that ρu vanishes on
∑
i

∏
j

λij1tij
. More generally, given a collection of

functions R in C(XG) we will say that the partial representation u of G satisfies
the relations R if ρu vanishes on every f ∈ R. When the relations in R are of the
form specified above, this amounts to saying that the generating partial isometries
satisfy

∑
i

∏
j

λijutij
u∗tij

= 0.

Proposition 4.1. Let R be a collection of functions in C(XG). Then the
smallest α-invariant (closed, two-sided ) ideal of C(XG) containing R is the ideal,
denoted I, generated by the set {αt(f1t−1) : t ∈ G, f ∈ R}. Moreover the zero set
of I coincides with

(4.1) ΩR := {ω ∈ XG : f(t−1ω) = 0 for all t ∈ ω, f ∈ R},

from which it follows that ΩR is a compact invariant subset of XG such that
I = C0(XG \ΩR), and the quotient C(XG)/I is canonically isomorphic to C(ΩR).
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Proof. Notice first that for every f ∈ C(XG) the function f1t−1 is in Dt−1

so that it makes sense to talk about αt(f1t−1). Moreover, identifying C(XG)
with its image in the crossed product and using covariance, we have αt(f1t−1) =
[t]f [t−1]. Let I be the ideal generated by {αt(f1t−1) : t ∈ G, f ∈ R}. Since any
invariant ideal which contains f must contain αt(f1t−1), the smallest invariant
ideal containing R must contain I. The reverse inclusion will follow once we
show that I is invariant, i.e., that αs(I ∩ Ds−1) ⊂ I for every s ∈ G. Since
I ∩Ds−1 = 1s−1I, we need to show that αs(1s−1I) ⊂ I for every s ∈ G.

For g ∈ C(XG), f ∈ R and s, t ∈ G, we have

αs(αt(f1t−1)g1s−1) = [s]([t]f [t−1]g)[s−1] = [st][t−1][t]f [t−1]g[s−1][s][s−1]

= [st]f [t−1][s−1][s]g[s−1] = [st]f [(st)−1]αs(g1s−1)

= αst(f1(st)−1)αs(g1s−1).

Since the linear span of the elements αt(f1t−1)g is dense in I, it follows that
αs(1s−1I) ⊂ I for every s ∈ G.

Since αt(f1t−1)(ω) is equal to f(t−1ω) when t ∈ ω, and 0 otherwise, the
characterization of I given in the first part implies that f(t−1ω) = 0 for every
t ∈ ω and f ∈ R if and only if F (ω) = 0 for every F ∈ I. This proves that ΩR is
indeed the zero set of I, finishing the proof.

Definition 4.2. The set ΩR is called the spectrum of the relations R.

The spectrum of a set of relations is invariant under the partial action α on
XG so there is a partial action (also denoted α) on ΩR obtained by restricting
the partial homeomorphisms to ΩR. The restricted partial homeomorphisms have
compact open (relative to ΩR) sets as domains and ranges so for each group
element t the partial isometry vt = (vtv

∗
t )vt belongs to the crossed product. We will

show that the crossed product C(ΩR) o G has a universal property with respect
to partial representations of G subject to the relations R.

Definition 4.3. Suppose G is a group and let R ⊂ C0(XG) be a set of
relations. A partial representation v of G is universal for the relations R if

(i) v satisfies R, i.e., ρv(R) = {0}, and
(ii) for every partial representation V of G satisfying R the map vt 7→ Vt

extends to a C∗-algebra homomorphism from C∗({vt : t ∈ G}) onto C∗({Vt : t ∈
G}).

The C∗-algebra generated by a universal partial representation for R (which
is clearly unique up to canonical isomorphism) will be called the universal C∗-
algebra for partial representations of G subject to the relations R and denoted
C∗

p(G;R).

Theorem 4.4. Suppose R is a collection of relations in C(XG) with spec-
trum

ΩR = {ω ∈ XG : f(t−1ω) = 0 for all t ∈ ω, f ∈ R}.
(i) If ρ× V is a representation of C(ΩR) o G then V is a partial represen-

tation of G satisfying the relations R.
(ii) Conversely, if V is a partial representation of G satisfying the relations

R, then 1t 7→ V (t)V (t)∗ extends uniquely to a representation ρV of C(ΩR), and
the pair (ρV , V ) is covariant.
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(iii) C(ΩR) o G is isomorphic to the universal C∗-algebra C∗
p(G;R) for par-

tial representations of G subject to the relations R.

Proof. (i) holds because the range projections of the partial isometries vt are
in C(ΩR), which was defined precisely so that the relations R be satisfied.

Next we prove (ii). If V is a partial representation satisfying the relations,
then the representation of C(XG) determined by the range projections 1t 7→ VtV

∗
t

factors through C(ΩR), and hence gives a covariant representation of (C(ΩR), G, α).
By (i) and (ii) there is a bijection between partial representations satisfying

the relations and covariant representations of (C(ΩR), G, α). Furthermore, the
range of a partial representation generates the same C∗-algebra as the range of the
corresponding covariant representation. Since C∗

p(G;R) and C(ΩR) o G are both
generated by the ranges of universal representations, C(ΩR) o G is a realization
of C∗

p(G;R).

In the remaining sections we consider several situations that fall naturally
into the framework of partial representations with relations.

5. NO RELATIONS: THE PARTIAL GROUP ALGEBRA C∗
p(G)

Let R be the empty set of relations and consider all partial representations of a
group G, subject to no restrictions. This is the situation from [8] mentioned at the
beginning of Section 4. In this section we will characterize topological freeness and
the approximation property for the corresponding partial action. The spectrum
Ω∅ is XG := {ω ⊂ 2G : e ∈ ω} and the canonical partial action θ is given by
θt(ω) = tω for ω 3 t−1. By Theorem 4.4, the crossed product C(XG) oα G is the
universal C∗-algebra C∗

p(G) := C∗
p(G; ∅) for partial representations of G.

Proposition 5.1. The canonical partial action of a nontrivial group G on
XG is topologically free if and only if G is infinite.

Proof. When the group G is finite, the spectrum XG has the discrete topol-
ogy. Since the point G ∈ XG is fixed by every group element, the partial action
associated to partial representations of G is never topologically free.

Assume now that G is infinite and let

U := {χ ∈ XG : ai ∈ χ and bj /∈ χ for 1 6 i 6 m and 1 6 j 6 n}

be a typical basic (nonempty) open set in XG where ai, bj ∈ G. It suffices to show
that for every element t ∈ G \ {e} there is some ω0 ∈ U which is not fixed by t.
We may restrict our attention to the intersection of U with the domain of θt, by
assuming that one of the ai’s (and none of the bj ’s) is equal to t−1.

Since G is infinite there exists an element c ∈ G different from the ai and
the bj and such that tc is different from the ai. Then ω0 := {e, a1, a2, . . . , am, c}
is in U and θt(ω0) = {t, ta1, ta2, . . . , tam, tc} is different from ω0 because tc is not
in ω0. Thus ω0 is not fixed by t, finishing the proof.

Corollary 5.2. For infinite G, a representation of C(XG) or G is faithful
if and only if its restriction to C(XG) is faithful.

Proof. Direct application of Theorem 2.6.
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Remark 5.3. The singleton {G} ⊂ XG is always closed and invariant under
the partial action, so topological freeness fails at least for the restriction to {G}.
Because of this the situation of Theorem 3.5 never arises for the empty set of
relations, and a characterization of the ideals in C∗

p(G) lies beyond the present
techniques.

Theorem 5.4. The canonical partial action of G on C(XG) has the approx-
imation property if and only if G is amenable.

Proof. That the partial action of an amenable group G on XG satisfies the
approximation property is an easy consequence of [7], Theorem 4.7.

To prove the converse suppose the action of G on XG satisfies the approxima-
tion property. Then by Proposition 3.4 the (trivial) action on the closed invariant
singleton {G} satisfies the approximation property. Hence this trivial action is
amenable and the reduced and full crossed products coincide. Since they corre-
spond to the reduced and full group C∗-algebras of G, G itself must be an amenable
group.

Remark 5.5. Since we do not know whether amenability itself is inherited
by quotients, we do not know whether amenability of the partial action of G on
C(XG) entails amenability of G.

6. NICA COVARIANCE: THE TOEPLITZ ALGEBRAS OF QUASI-LATTICE GROUPS

Let (G, P ) be a quasi-lattice ordered group, as defined by Nica in [16], Section 2.
The semigroup P induces a partial order in G via x 6 y if and only if x−1y ∈ P .
The quasi-lattice condition says that if for x, y ∈ G the set {z ∈ P : x 6 z, y 6 z}
is nonempty, then it has a smallest element, denoted x ∨ y, and referred to as the
least common upper bound in P of x and y, (if there is no common upper bound,
we write x∨ y = ∞). It is easy to see that x has an upper bound in P if and only
if x ∈ PP−1.

An isometric representation of P on H is a map V : P → B(H) such that
V ∗

x Vx = 1 and VxVy = Vxy. The isometric representation V is covariant if it
satisfies

VxV ∗
x VyV ∗

y = Vx∨yV ∗
x∨y, x, y ∈ P,

here we use the convention that V∞ = 0, so that if x and y do not have a common
upper bound in P then the corresponding isometries have orthogonal ranges.

The Toeplitz (or Wiener-Hopf) algebra T (G, P ) is the C∗-algebra generated
by the left regular representation T of P on `2(P ) ([16]), which is easily seen
to be covariant. The universal C∗-algebra C∗(G, P ) is the C∗-algebra generated
by a universal covariant semigroup of isometries. When (G, P ) is amenable, the
canonical homomorphism C∗(G, P ) 7→ T (G, P ) is an isomorphism ([16], [14]).

Every x ∈ PP−1 can be written in a “most efficient way” as x = σ(x)τ(x)−1,
where σ(x) := x ∨ e is the smallest upper bound of x in P and τ(x) := σ(x−1) =
x−1σ(x). Using this factorization Raeburn and the third author have shown in [21],
Theorem 6.6 that T (G, P ) is a crossed product by a partial action on its diagonal
subalgebra. Their proof involves extending isometric covariant representations of
P to partial representations of G, and can be pushed further to describe the class
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of such extensions in terms of relations satisfied by the range projections, which
we do next.

Proposition 6.1. Let (G, P ) be a quasi-lattice ordered group.
(1) If V is a covariant isometric representation of P then

(6.1) ux =
{

Vσ(x)V
∗
τ(x) if x ∈ PP−1,

0 if x /∈ PP−1,
is a partial representation of G satisfying the relations:

(N1) u∗t ut = 1 for t ∈ P , and
(N2) uxu∗xuyu∗y = ux∨yu∗x∨y for x, y ∈ G,

which we denote collectively by (N ).
(2) Conversely, every partial representation ut of G satisfying the relations

(N ) arises this way from a covariant isometric representation of P .

Proof. (1) That ux is a partial representation is proved in [21], Theorem 6.6
and that it satisfies (N1) is obvious. We prove (N2) next. Let x, y ∈ G and assume
both are in PP−1, for otherwise both sides are zero and there is nothing to prove.
Notice first that uxu∗x = Vσ(x)V

∗
τ(x)Vτ(x)V

∗
σ(x) = Vσ(x)V

∗
σ(x), so

uxu∗xuyu∗y = Vσ(x)V
∗
σ(x)Vσ(y)V

∗
σ(y) = Vσ(x)∨σ(y)V

∗
σ(x)∨σ(y).

Since x ∨ y = x ∨ e ∨ y = σ(x) ∨ σ(y) this proves (N2).
(2) Assume now that ux is a partial representation of G satisfying (N ). Then

ut is an isometry for every t ∈ P , and usut = usutu
∗
t ut = ustu

∗
t ut = ust. Thus the

restriction of u to P is an isometric representation, which is covariant by (N2).
It only remains to check that u arises from its restriction V to P as in (6.1).

Let x ∈ G. Then uxu∗x = uxu∗xueu
∗
e = uσ(x)u

∗
σ(x) by (N2). If x /∈ PP−1, then

σ(x) = ∞ and uxu∗x vanishes. If x ∈ PP−1, then
ux = uxu∗xux = uσ(x)u

∗
σ(x)ux.

The last two factors can be combined because u is a partial representation,
and since σ(x)−1x = τ(x)−1 we conclude that ux = uσ(x)u

∗
τ(x).

Definition 6.2. A subset ω of G is hereditary if xP−1 ⊂ ω for every x ∈ ω.
It is directed if for every x, y ∈ ω there exists z ∈ ω ∩ P with x 6 z and y 6 z.

Notice that a hereditary subset ω is directed if and only if the least upper
bound of any two of its elements exists and is in ω; in particular, hereditary,
directed subsets are contained in the set PP−1.

Lemma 6.3. The set of hereditary, directed subsets of G containing e is
invariant under the partial action θ on XG.

Proof. Suppose ω ∈ XG is hereditary and directed and let z−1 ∈ ω. In order
to see that zω is hereditary, suppose zx ∈ zω with x ∈ ω and let t ∈ P . Then
xt−1 ∈ ω and zxt−1 ∈ zω.

Next we show that zω is directed. Assume zx and zy are elements of zω.
Since ω is directed and contains x, y, and z−1, it follows that (x∨y∨z−1) ∈ P ∩ω.
It is easy to see using the definition that z(x∨y∨z−1) ∈ P ∩zω is a common upper
bound for zx and zy. Thus zx ∨ zy 6 z(x ∨ y ∨ z−1) and, since zω is hereditary,
zx ∨ zy ∈ zω.
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Theorem 6.4. The spectrum ΩN of the relations (N ) is the set of heredi-
tary, directed subsets of G which contain the identity element.

The crossed product C(ΩN ) oα G is canonically isomorphic to the universal
C∗-algebra C∗(G, P ) for covariant isometric representations of P .

Proof. Let H be the set of hereditary, directed subsets of G containing the
identity element. Then clearly H ⊂ XG.

First we show that every ω ∈ ΩN is hereditary and directed; that e ∈ ω
is obvious because ΩN ⊂ XG. If x ∈ ω then ω is in the domain of the partial
homeomorphism θx−1 , and since ΩN is invariant we have x−1ω = θx−1(ω) ∈ ΩN .
By the relation (N1), for t ∈ P we obtain [t]∗[t](x−1ω) = 1, which means that
t−1 ∈ x−1ω. Since xt−1 ∈ ω for every t ∈ P and every x ∈ ω, ω is hereditary.

If x and y are elements of ω, then 1 = [x][x]∗[y][y]∗(ω) = [x ∨ y][x ∨ y]∗(ω)
by (N2). Thus x ∨ y ∈ ω and ω is directed.

Conversely, by the preceding lemma, if ω ∈ XG is hereditary and directed,
and if z−1 ∈ ω, then zω is also hereditary and directed, so it suffices to show that
the relations (N ) hold at every hereditary, directed ω ∈ XG.

It is trivial to verify (N1), since e ∈ ω implies et−1 ∈ ω for every t ∈ P by
hereditarity of ω. For (N2) we need to show that [x][x]∗[y][y]∗(ω) = [x ∨ y][x ∨
y]∗(ω), or, equivalently, that x and y are in ω if and only if x ∨ y ∈ ω. The “only
if” holds because ω is directed, and the “if” holds because it is hereditary, since
(x ∨ y)−1x ∈ P and x = (x ∨ y) (x ∨ y)−1x.

The crossed product is isomorphic to C∗(G, P ) because of Proposition 6.1.

Remark 6.5. Hereditary directed subsets of the semigroup P were intro-
duced by Nica in [16], Section 6.2, where he showed that the spectrum of the
diagonal subalgebra in the Toeplitz algebra is (homeomorphic to) the space of
hereditary, directed, and nonempty subsets of P . The homeomorphism of our
spectrum ΩN to the space considered by Nica is obtained simply by sending an
element ω of ΩN to its intersection with P .

Proposition 6.6. The canonical partial action θ on ΩN is topologically free.

Proof. For each t ∈ P the set tP−1 = {x ∈ G : x 6 t} is hereditary and
directed; moreover, t 6= t′ implies tP−1 6= t′P−1. This gives a copy of P inside
ΩN which is in fact dense ([16], Section 6.2).

Suppose x ∈ G; it is easy to see that the point tP−1 is in the domain of
the partial homeomorphism θx if and only if xt ∈ P . In this case θx(tP−1) =
(xt)P−1 6= tP−1. Since no point in this dense subset is fixed by θx for x 6= e, the
proof is finished.

As an application we obtain a characterization of faithful representations
of the reduced crossed product which is more general than [14], Theorem 3.7
because it does away with the amenability hypothesis by focusing on the reduced
crossed product. From this point of view, it becomes apparent that the faithfulness
theorem for representations is really a theorem about reduced crossed products and
that it is a manifestation of topological freeness.
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Theorem 6.7. Suppose (G, P ) is a quasi-lattice ordered group. A represen-
tation of the reduced crossed product C(ΩN )oα,rG is faithful if and only if it is
faithful on the diagonal C(ΩN ).

Proof. Since α is topologically free, the result follows from Theorem 2.6.

Of course we may use [14], Proposition 2.3 (3) to decide when the restriction
to C(ΩN ) of a representation π × v of C(ΩN )oα,rG is faithful in terms of the
generating partial isometries: the condition is that

π

( ∏
t∈F

(1− utu
∗
t )

)
6= 0

for every finite subset F of P \ {e}.
Since the diagonal algebra in Nica’s Wiener-Hopf C∗-algebra T (G, P ) is a

faithful copy of C(ΩN ) we can use the faithfulness theorem to express T (G, P ) as
the reduced crossed product by a partial action.

Corollary 6.8. If (G, P ) is a quasi-lattice ordered group, then

C(ΩN )oα,rG ∼= T (G,P).

This isomorphism is essentially ([21], Theorem 6.6); although the partial
action there is not given explicitly, it is not hard to see that it is the one above.

7. CUNTZ-KRIEGER RELATIONS: THE UNIVERSAL OA

Let A = [aij ] be a {0, 1}-valued n by n matrix with no zero rows. A Cuntz-Krieger
A-family is a collection of partial isometries {si}n

i=1 such that

(CK)
∑

j

sjs
∗
j = 1, and

∑
j

aijsjs
∗
j = s∗i si for i = 1, 2, . . . , n.

A Cuntz-Krieger A-family determines a semisaturated partial representation
of the free group Fn on n generators ([6], Theorem 5.2). This partial representation
satisfies the CK relations above. Conversely, any such partial representation comes
from a Cuntz-Krieger A-family, and thus the C∗-algebra OA (universal for Cuntz-
Krieger A-families) is universal for semisaturated partial representations of Fn

satisfying the CK relations.
The machinery developed in Section 4 then gives a natural isomorphism of

OA to a crossed product of the form C(ΩCK) oα Fn. The spectrum ΩCK given by
Proposition 4.1 is covariantly homeomorphic to the infinite path space associated
to A on which the action of a generator is defined by multiplication on the left; this
action is partial because one needs to require that the resulting path be admissible.

One can then verify that Cuntz and Krieger’s condition (I) amounts to topo-
logical freeness of the partial action of Fn on infinite path space, so that their
uniqueness theorem ([4], Theorem 2.13) can be obtained from our Theorem 2.6
and the isomorphism of reduced and full crossed products provided by [8], Theo-
rem 6.6.
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It is also not hard to see that if A is irreducible, and not a permutation
matrix, then the partial action on P∞

A is minimal and topologically free, so the
simplicity result for OA ([4], Theorem 2.14) follows from our Corollary 2.9.

In addition to the original direct approach of [4] and [3], Cuntz-Krieger alge-
bras have since been realized and studied using various other methods. We refer
to [12] and [13] for a groupoid approach, to [17] for a bimodule algebra realization,
and to [21] for considerations involving reduced partial crossed products.
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