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Abstract. “Weyl’s theorem” for an operator is a statement about the com-
plement in its spectrum of the “Weyl spectrum”, which we shall call “gen-
eralized Riesz points”. In this note we observe how Weyl’s theorem and its
more relaxed relative “Browder’s theorem” do not generally survive under
small perturbations.
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Recall [7], [8] that a bounded linear operator T ∈ BL(X, X) on a complex Banach
space X is Fredholm if T (X) is closed and both T−1(0) and X/T (X) are finite
dimensional. If T ∈ BL(X, X) is Fredholm we can define the index of T by
index(T ) = dim T−1(0) − dim X/T (X). An operator T ∈ BL(X, X) is called
Weyl if it is Fredholm of index zero. The essential spectrum σess(T ) and the Weyl
spectrum ωess(T ) of T ∈ BL(X, X) are defined by

(0.1) σess(T ) = {λ ∈ C : T − λI is not Fredholm}
and

(0.2) ωess(T ) = {λ ∈ C : T − λI is not Weyl}.
If T ∈ BL(X, X) we shall write

(0.3) πleft(T ) = {λ ∈ C : (T − λI)−1(0) 6= {0}}
for the eigenvalues of T ,

(0.4) πleft
0 (T ) = {λ ∈ iso σ(T ) : 0 < dim(T − λI)−1(0) < ∞}

for the isolated eigenvalues of finite multiplicity and

(0.5) π00(T ) = iso σ(T ) \ σess(T )
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for the Riesz points of T . From the continuity of the index we have
(0.6) π00(T ) = iso σ(T ) \ ωess(T ).

1. Definition. The generalized Riesz points of T ∈ BL(X, X) are the com-
plement of the Weyl spectrum in the spectrum of T :
(1.1) π0(T ) = σ(T ) \ ωess(T ).

Thus a necessary and sufficient condition for 0 ∈ π0(T ) is
(1.2) 0 < dim T−1(0) = dim X/T (X) < ∞;
in particular (1.2) guarantees that T has closed range T (X) = cl(TX). We recall
[2], [9] that “Weyl’s theorem holds for T” iff

(1.3) π0(T ) = πleft
0 (T ),

and ([9], Definition 1) “Browder’s theorem holds for T” iff
(1.4) π0(T ) = π00(T ).

The difference between Riesz and generalized Riesz points is environmental:

2. Theorem. Each of the following is equivalent to Browder’s theorem for
T ∈ BL(X, X):

π0(T ) ⊆ π00(T );(2.1)
π0(T ) ⊆ iso σ(T );(2.2)
π0(T ) ⊆ ∂σ(T );(2.3)
int π0(T ) = ∅.(2.4)

Proof. Since we always have π00(T ) ⊆ π0(T ) it follows (2.1) ⇔ (1.4). Inclu-
sion π00(T ) ⊆ iso σ(T ) ⊆ ∂σ(T ) gives implication (2.1) ⇒ (2.2) ⇒ (2.3). Since
int ∂σ(T ) = ∅ we have implication (2.3) ⇒ (2.4). For implication (2.4) ⇒ (2.3) ⇒
(2.2), we argue
(2.5) int

(
σ(T ) \ ωess(T )

)
= ∅ ⇒ σ(T ) ⊆ ωess(T ) ∪ ∂σ(T ) ⊆ ωess(T ) ∪ iso σ(T ),

since by the punctured neighbourhood theorem ([8], Theorem 9.8.4) the boundary
is contained in the union of the Weyl spectrum and the isolated points. Finally
since π00(T ) = π0(T ) ∩ iso σ(T ) we have (2.2) ⇒ (2.1).

Recall that ([8], Theorem 9.8.4)
(2.6) σess(T ) ⊆ ωess(T ) ⊆ ησess(T ),
where ηK is the “connected hull” of the compact set K ⊆ C in the sense ([8],
Definition 7.10.1) of the complement in C of the unbounded component of the
complement of K.

In this note we are interested to see whether, for “small” perturbations T +K
of T ∈ BL(X, X), “small” π0(T ) gives rise to “small” π0(T + K). For example
if K ∈ BL(X, X) is compact then the Weyl spectrum of T + K is the same as
that of T ; since however the spectrum of T + K can be very different than that
of T , we need not expect the sets of “generalized Riesz points” to agree. But if
K ∈ BL(X, X) is quasinilpotent and commutes with T then (cf. [10], Lemma 2)
(2.7) σ(T + K) = σ(T ) and ωess(T + K) = ωess(T ),
so that also π0(T + K) = π0(T ). For quasinilpotents which do not commute it is
not so clear what happens:
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3. Problem. For which operators T ∈ BL(X, X) is there implication, for
quasinilpotent K ∈ BL(X, X),

(3.1) π0(T ) = ∅ =⇒ π0(T + K) = ∅,

or implication

(3.2) int π0(T ) = ∅ =⇒ intπ0(T + K) = ∅?

We can also ask analogous questions for polynomials and for direct sums: is
there implication, for polynomials p,

(3.3) π0(T ) = ∅ =⇒ intπ0p(T ) = ∅,

or implication

(3.4) π0(T ) = ∅ = π0(S) =⇒ intπ0(S ⊕ T ) = ∅?

As we are about to see, the condition (3.1) fails for compact and for quasinilpo-
tent operators T , while the condition (3.2) fails for quasinilpotents but holds for
compact operators. Both (3.1) and (3.2) can fail for self adjoint and for unitary
operators. Many of our counterexamples are generated by taking 2 × 2 opera-
tor matrices built from just three operators on the sequence spaces `p or c0: the
forward shift

(3.5) u : (x1, x2, x3, . . .) 7→ (0, x1, x2, . . .),

the backward shift

(3.6) v : (x1, x2, x3, . . .) 7→ (x2, x3, x4 · · ·)

and the standard weight

(3.7) w : (x1, x2, x3, . . .) 7→ (x1,
1
2x2,

1
3x3, . . .).

We recall that

(3.8) vu = 1 6= uv

is Fredholm; also w is compact but not of finite rank, and commutes with the
projection uv. For operator matrices we observe that for most of the familiar
kinds of spectrum $ there is equality, for T ∈ BL(X, X) and S ∈ BL(Y, Y ),

(3.9) $

(
T 0
0 S

)
= $(T ) ∪$(S),

also, for V ∈ BL(X, Y ) and U ∈ BL(Y,X),

(3.10) $

(
0 U
V 0

)
=

√
$(UV ) ∪$(V U),

the set of those λ ∈ C for which λ2 is in the spectrum of one of the products.
When the entries in an operator matrix commute then ([6], Solution 70; [8], Theo-
rem 11.7.7) spectra can be calculated by determinants: if {S, T, U, V } ⊆ BL(X, X)
is commutative then

(3.11) $

(
T U
V S

)
= {λ ∈ C : 0 ∈ $

(
(S − λI)(T − λI)− UV

)
}.
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Indeed (3.9) is easily checked for the ordinary spectrum, the left and the right
spectrum, the essential spectrum, the eigenvalues and the approximate eigenvalues
while, for the same spectra $, (3.10) follows from (3.9) together with the spectral
mapping theorem for the polynomial z2: simply observe that

(3.12)
(

0 U
V 0

)2

=
(

UV 0
0 V U

)
.

For commutative matrices (3.11) just write down the “classical adjoint”:

(3.13)

(
S −U
−V T

) (
T U
V S

)
=

(
ST − UV 0

0 ST − UV

)
=

(
T U
V S

) (
S −U
−V T

)
.

For the Weyl spectrum $ = ωess it is more delicate:

4. Theorem. If T ∈ BL(X, X) and S ∈ BL(Y, Y ) there is inclusion

(4.1) ωess

(
T 0
0 S

)
⊆ ωess(T ) ∪ ωess(S),

with equality if

(4.2) either ωess(T ) = σess(T ) or ωess(S) = σess(S).

If V ∈ BL(X, Y ) and U ∈ BL(Y, X) then with no restriction there is equality

(4.3) ωess

(
0 U
V 0

)
=

√
ωess(UV ) ∪ ωess(V U).

If {S, T, U, V } commute there is inclusion

(4.4) {λ ∈ C : 0 ∈ ωess

(
(T − λI)(S − λI)− UV

)
} ⊆ ωess

(
T U
V S

)
.

Proof. For (4.1) recall that the index of a direct sum is the sum of the
indexes. The inclusion (4.1) and Theorem 5 in [9] imply (4.2). For (4.3) notice
that if 0 6= λ ∈ C

(4.5)

(
−λI U
V −λI

)−1 (
0
0

)
=

(
λI
V

)
(UV − λ2I)−1(0)

=
(

U
λI

)
(V U − λ2I)−1(0)

and

(4.6)
(

0 U
V 0

)−1 (
0
0

)
=

(
V −1(0)
U−1(0)

)
.

Taking adjoints and combining shows that, whether or not λ = 0 ∈ C,

(4.7) index
(
−λI U
V −λI

)
= index(UV − λ2I) = index(V U − λ2I)

if U and V are Fredholm. For (4.4) remember that the product of Weyl operators
is Weyl.
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In contrast both (3.9), (3.10) and (3.11) are all valid without restriction if
$ = ωcomm

ess is the “Browder spectrum”.
The failure of both (3.1) and (3.2) for quasinilpotent operators T is easy:

5. Example. If

(5.1) S =
(

u 0
0 v

)
with the forward and backward shifts u and v on `p or c0, put

(5.2) T =
(

0 S
0 0

)
and K =

(
0 0
S 0

)
;

then T and K are both nilpotents and

(5.3) π0(T ) = ∅ 6= int π0(T + K) = {|z| < 1}.

Proof. It is clear T and K are both nilpotents; thus π0(T ) = ∅. To compute
π0(T + K) use (3.10) and (4.3): by (3.10) we have

σ(T + K) =
√

σ(S2) =
√

σ(u2) ∪ σ(v2) = D,

the closed unit disc, while again by (3.10)

σess(T + K) =
√

σess(S2) =
√

σess(u2) ∪ σess(v2) = S,

the unit circle. Also since index(S2 − λ2I) = index(u2 − λ2) + index(v2 − λ2) = 0
whenever |λ| < 1, (4.3) gives

ωess(T + K) =
√

ωess(S2) = S.

The implication (3.2) is satisfied by compact operators T :

6. Theorem. If T ∈ BL(X, X) is a compact operator then

(6.1) intπ0(T + K) = ∅ for every quasinilpotent K ∈ BL(X, X).

Proof. If T is compact then

(6.2) σess(T + K) = σess(K) = {0} for every quasinilpotent K ∈ BL(X, X),

so that T + K is a “Riesz operator”. By the punctured neighborhood theorem
σ(T + K) is at most countable and hence int π0(T + K) = ∅.

Towards the failure of (3.1) for compact operators, notice that if π0(T ) = ∅
for a compact operator T then also σ(T ) = {0}, so that T is quasinilpotent:

7. Example. If

(7.1) T =
(

0 uw
0 0

)
and K =

(
0 0
v 0

)
on `p or c0 then T is compact, K is nilpotent and

(7.2) π0(T ) = ∅ 6= π0(T + K) =
{
± 1√

n
: n ∈ N

}
.
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Proof. It is clear that T is a compact nilpotent and K is nilpotent. Since T
is nilpotent, π0(T ) = ∅. By (3.10) the spectrum of T + K is given by

σ(T + K) =
√

σ(w) ∪ σ(uwv) =
{
± 1√

n
: n ∈ N

}
∪ {0},

while (3.10) and (2.6) together give

ωess(T + K) = σess(T + K) =
√

σess(w) ∪ σess(uwv) = {0}.

Both (3.1) and (3.2) fail for unitary and for self adjoint operators. In the
unitary case we can do both at once:

8. Example. If on `2

(8.1) T =
(

u 1− uv
0 v

)
and K =

(
0 1− uv
0 0

)
then T is unitary, K is a finite rank nilpotent and

(8.2) π0(T ) = ∅ 6= int π0(T −K) = {|z| < 1}.

Proof. This calculation is done in Example 6 of [9].

Example 8 shows we cannot guarantee that if T ∈ BL(X, X) then

(8.3)
π0(T ) = ∅ ⇒ intπ0(T + K) = ∅
for every compact operator K ∈ BL(X, X).

If however there is no hole of σess(T ) associated with index zero, in particular if
T is self-adjoint, then the right hand side of (8.3) is always satisfied. Indeed if

(8.4) ωess(T ) = ησess(T )

then Browder’s theorem holds for T , since ([8], Theorem 9.8.4) the spectrum is
included in the connected hull of the union of the essential spectrum and the Riesz
points. Now notice that if T satisfies (8.4) then so do all its compact perturbations
T + K.

For the failure of (3.1) for self-adjoint operators we have

9. Example. If on `2

(9.1) T =
(

uv uv
uv uv

)
and K =

(
0 uv
0 0

)
then

(9.2) π0(T ) = ∅ 6= π0(T −K) = {0}.

Proof. By (3.11) we have σ(T ) = σess(T ) = {0, 2} while σ(T −K) = {0, 1}
and σess(T −K) = {1}; now use (2.6).

For the failure of (3.2) we have:
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10. Example. If S =
(

u 0
0 v

)
put

(10.1) Q =
(

S 0
0 S

)
and R =

(
0 S
S 0

)
,

and then

(10.2) T =
(

0 Q∗

Q 0

)
and K =

(
0 R−Q∗

0 0

)
,

now T is self adjoint, K is nilpotent and

(10.3) π0(T ) = {0} 6= int π0(T + K) = {|z| < 1}.

Proof. Evidently T is self-adjoint and K is nilpotent. By (3.9), (3.10) and
(2.6) we have σ(T ) = {0, 1} and π0(T ) = {0}, while σ(T + K) is the closed unit
disc and σess(T + K) is the circle. By (4.3) the Weyl spectrum of T + K agrees
with the essential spectrum, so that π0(T + K) is the open disc.

For an alternative to Example 10, take

(10.4) T =
(

0 u
v 0

)
⊕

(
0 u
v 0

)
and K =

(
0 1
0 0

)
⊕

(
0 0
1 0

)
.

Problem 3 is liable to have a negative solution for Toeplitz operators:

11. Theorem. If T ∈ BL(X, X) satisfies the conditions

(11.1) σ(T ) = ωess(T ) 6= ησ(T )

then (3.1) fails.

Proof. It is clear that π0(T ) is empty. Choose a point λ ∈ C for which

(11.2) λ ∈ ησ(T ) \ σ(T ).

Since T cannot be a scalar there must exist x ∈ X for which

(11.3) (x, Tx− λx) ∈ X2 is linearly independent,

and hence a bounded linear functional f ∈ X† for which

(11.4) f(x)− 1 = 0 = f(Tx− λx);

now put

(11.5) K = f � (T − λI)x : y 7→ f(y)(Tx− λx).

Evidently K2 = 0, so that K is nilpotent; also since K is finite rank and hence
compact the Weyl spectrum of T −K is the same as that of T :

(11.6) ωess(T −K) = σ(T ).

On the other hand, since evidently Kx = Tx− λx,

(11.7) λ ∈ πleft(T −K) ⊆ σ(T −K).

This puts the point λ ∈ π0(T −K).
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The condition (11.1) can easily be satisfied by a “Toeplitz operator”: recall
([2]; [4], Definition 7.2) that Tϕ, induced by a function ϕ ∈ L∞(S), is the operator
on the Hardy space H2(S) given by setting

(11.8) Tϕ(f) = P(ϕf) for each f ∈ H2(S),

where P is the orthogonal projection from L2(S) onto H2(S). It is familiar ([4],
Corollary 7.46) that the spectrum of a Toeplitz operator is always connected,
and that the spectrum and the Weyl spectrum coincide ([4], Corollary 7.25; [3],
Theorem 4.1). The essential spectrum of the Toeplitz operator induced by a
continuous symbol coincides with the range of the function ([4], Theorem 7.26):

(11.9) σess(Tϕ) = σ(ϕ) = ϕ(S).

The spectrum and the Weyl spectrum both coincide ([4], Corollary 7.25) with the
exponential spectrum ([8], Definition 9.3.1) of the symbol:

(11.10) σ(Tϕ) = ωess(Tϕ) = ε(ϕ)

is the set of λ ∈ C for which either ϕ − λ vanishes somewhere on the circle S, or
if not then ϕ− λ winds non-trivially around the origin 0 ∈ C. Thus for (11.1) we
want a continuous function from S to S whose range is the whole of S, but which
does not wind round the origin. For a specific example we may take

(11.11) ϕ(eiθ) =
{

e2iθ, 0 6 θ 6 π,
e−2iθ, π 6 θ 6 2π.

We have been unable to decide whether or not int π0(T + K) = ∅ for every
Toeplitz operator T and every quasinilpotent K. Since ([5], Corollary 2.2)

(11.12) ωessp(Tϕ) = σ(Tp◦ϕ)

and by connectedness

(11.12) πleft
0 p(Tϕ) = ∅,

it is clear that Browder’s theorem for the operator p(Tϕ), with continuous ϕ and
polynomial p, will be no easier than Weyl’s theorem (cf. [5], Lemma 3.1).

The analogue of Problem 3 is liable to have a negative solution for polyno-
mials:

12. Example. If p = z2 and

(12.1) T =
(

u + 1 0
0 v − 1

)
then

(12.2) π0(T ) = ∅ 6= int π0p(T ) = {reiθ : r < 2(1 + cos θ)}.
Proof. As in Example 7 of [9].

From Theorem 5 of [9] we can see that on Hilbert space X there is equality

(12.3) pπ0(T ) = π0p(T ) for all polynomials p

iff T is “semi-quasitriangular”, in the sense that either T or T ∗ is quasitriangular
([12], Definition 4.8). The analogue of Problem 3 for direct sums can also have
negative solution:
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13. Example. If T = u and S = v then

(13.1) π0(S) = π0(T ) = ∅ 6= int π0(S ⊕ T ) = {|z| < 1}.

Proof. This calculation is part of Example 10.

This failure cannot occur if for example T is “bi-quasitriangular” ([12], Def-
inition 4.26) in the sense that T and T ∗ are both quasitriangular: for then ([12],
Theorem 6.1) σess(T ) = ωess(T ) and hence (4.2) applies.

We conclude with a converse of Problem 3. Halmos ([6], Problem 106) asks
whether if T,K ∈ BL(X, X) satisfy σ(T + nK) = σ(T ) for n = 0, 1, 2, . . ., the
operator K has to be quasinilpotent: the answer ([6], Solution 106), is yes if
dim X < ∞ and no otherwise.

14. Theorem. If T,K ∈ BL(X, X) satisfy

(14.1) σ(T + nK) = σ(T ) for n = 0, 1, 2, . . . with TK −KT compact

then K is quasinilpotent.

Proof. As in Solution 106 of [6], observe that

(14.2)
∣∣∣K +

1
n

T
∣∣∣
σ
→ 0,

where | · |σ denotes the spectral radius. The compactness of TK −KT says that
the cosets of T and K in the Calkin algebra commute, and hence Newburgh’s
spectral continuity theorem ([11], Theorem 4; [1], Theorem 3.4.1) applies:

(14.3) lim
n

σess

(
K +

1
n

T
)

= σess(K)

By (14.2) it follows that

(14.4) σess(K) = {0},

which says that K is a Riesz operator, therefore with totally disconnected spec-
trum σ(K). Now by another of Newburgh’s theorems ([11], Theorem 3; [1], Corol-
lary 3.4.5) the operator K is a point of continuity for the spectrum σ:

(14.5) lim
n

σ(K +
1
n

T ) = σ(K).

But now K must also be a continuity point for the spectral radius:

(14.6) |K|σ = lim
n

∣∣∣K +
1
n

T
∣∣∣
σ

= 0.
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