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Abstract. We prove that if (a, b) is an R-diagonal pair in some non-commu-
tative probability space (A,ϕ) then (ap, bp) is R-diagonal too and we compute
the determining series f(ap,bp) in terms of the distribution of ab. We give
estimates of the upper and lower bounds of the support of free multiplicative
convolution of probability measures compactly supported on [0,∞[, and use
the results to give norm estimates of powers of R-diagonal elements in finite
von Neumann algebras. Finally we compute norms, distributions and R-
transforms related to powers of the circular element.
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1. INTRODUCTION AND PRELIMINARIES

In the setup of Free Probability Theory we study certain random variables. By a

non-commutative probability space (A,ϕ) we mean a unital algebra A (over the

complex numbers) equipped with a unital functional ϕ. If A is a von Neumann al-

gebra and ϕ is normal we call (A,ϕ) a non-commutative W ∗-probability space. We

write (M, τ) for a non-commutative W ∗-probability space with a faithful normal

tracial state τ . Elements in A are called random variables, and the distribution µa

of a random variable in (A,ϕ) is the linear functional µa : C[X ] → C determined

by µa(P ) = ϕ(P (a)) for all P in C[X ]. We refer to [16] for the basic facts of Free

Probability Theory and record here for easy reference what we need in this paper.
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If a is a self-adjoint element in a non-commutative W ∗-probability space

there exists a unique compactly supported probability measure (also denoted µa)

such that

ϕ(ap) =

∫

R

tp dµa(t), p ∈ N.

In this case suppµa ⊆ sp a. We often view these measures as distributions in the

sense of [16]. In the following we introduce the R- and S-transforms of distribu-

tions, and the definitions carry over to measures.

The S-transform Sµ of a distribution with non-vanishing first moment is

defined as a formal power series in the following way (cf. [16]): define the moment

series ψµ as

ψµ(z) =

∞∑

n=1

µ(Xn)zn

and let χµ denote the unique inverse formal power series (with respect to compo-

sition) of ψµ. This series is of the form

χµ(z) =

∞∑

n=1

αnz
n

where α1 = µ(X)−1 6= 0. Then we define

Sµ(z) =
z + 1

z
χµ(z) = (z + 1)

∞∑

n=1

αnz
n−1

as a formal power series. (Note that Sµ(0) = µ(X)−1.) The S-transform converts

multiplicative free convolution into multiplication of formal power series in the

following way: Sµ � ν = Sµ · Sν whenever µ and ν are distributions with non-

vanishing first moments.

If µ is a compactly supported probability measure on [0,∞[ we let m(µ) =

min suppµ, r = r(µ) = max suppµ and we can view µ as the distribution of a

positive element in a suitably chosen non-commutative von Neumann probability

space. We have then

ψµ(z) =

∫

R

zs

1 − zs
dµ(s)

hence ψµ is analytic on {z ∈ C | z−1 /∈ suppµ}, and χµ, Sµ are analytic in a

neighbourhood of ψµ ([0, 1/r[), cf. [4]. We denote the moments of µ by µ(Xp) =
∫

R

tp dµ(t) for every natural number p.
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Pringsheim’s theorem shows that 1/r is a non-removable singularity for ψµ

and the behaviour of ψµ near 1/r can be classified into one of the following three

cases:

(i) ψµ is unbounded near 1/r : ψµ(t) → ∞ as t→ 1/r−;

(ii) ψµ is bounded and ψ′
µ is unbounded near 1/r: ψ′

µ(t) → ∞ as t→ 1/r−
and lim

t→1/r−
ψµ(t) exists and is finite;

(iii) ψµ and ψ′
µ are bounded near 1/r: lim

t→1/r−
ψµ(t) and lim

t→1/r−
ψ′

µ(t) exist

and are finite.

This makes it possible to determine r in terms of the function χµ:

(i) if χµ is analytic in a neighbourhood of [0,∞[ and χ′
µ > 0 on [0,∞[ then

1/r = lim
y→∞

χµ(y);

(ii) if χµ is analytic in a neighbourhood of [0, y0[, χ
′
µ > 0 on [0, y0[ and y0 is

the largest number with these properties then 1/r = lim
y→y0−

χµ(y).

Since χµ is increasing we can estimate r : 1/r > lim
y→y0−

χµ(y) whenever χµ is

analytic on a neighbourhood of [0, y0[ and χ′
µ > 0 on ]0, y0[.

By V (µ) we denote the variance of the measure µ : V (µ) = µ(X2) − µ(X)2,

and if µ(X) > 0 we can bound r(µ) from below:

µ(X2) =

∫

R

x2 dµ(x) 6 r(µ)µ(X)

hence V (µ)/µ(X) + µ(X) 6 r(µ).

For a measure µ we let µ−1 denote the image measure of µ induced by

the reciprocal map x 7→ 1/x, and let µsq denote the image measure induced by

the squaring function sq : z 7→ z2. Note that if µ is supported on ]0,∞[ then

r(µ−1) = m(µ)−1.

The R-transform Rµ of a distribution µ was introduced by Voiculescu in [14]

(see also [16]) as a formal power series obtained in the following way: Define

Gµ(z) =

∞∑

n=0

µ(Xn)z−n−1

as a formal Laurent series. (The symbol Gµ will be referred to as the Cauchy

transform of µ.) Then Gµ is invertible with respect to composition and the inverse

G−1
µ is of the form

G−1
µ (z) =

1

z
+

∞∑

n=0

αnz
n
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and Rµ is defined to be the power series part of G−1
µ :

Rµ(z) =

∞∑

n=0

αnz
n.

The R-transform converts additive free convolution of distributions into addition

of formal power series: Rµ � ν = Rµ + Rν for all distributions µ and ν.

In [7] the (1-dimensional) R-transform was generalized to multidimensional

distributions µ : C〈Xi | i ∈ I〉 → C and the R-transform of µ is then denoted Rµ.

In the 1-dimensional case we have the relation Rµ(z) = zRµ(z).

The circular element c (of norm 2) was introduced in [15] and the polar

decomposition c = uh was determined: u and h are ∗-free, u is a Haar unitary

(every non-trivial moment of u is 0) and h is quarter circular (of radius 2):

dµh =
1

π

√

4 − x2 · 1[0,2](x) dx.

A model for the circular element is the following: Let H be a Hilbert space with

orthonormal basis {ξ1, ξ2}, let T (H) = C Ω ⊕
∞⊕

n=1
H⊗n be the full Fock space

of H and let l1, l2 be the creation operators of ξ1 and ξ2 respectively. Then

c = (l1+l∗2)/
√

2 is a circular element in the finite non-commutativeW ∗-probability

space (W ∗(c, c∗), 〈 ·Ω,Ω〉).
The R-transforms of the ∗-distributions of c and u have similar forms, cf. [10]:

Rµ(c,c∗)
(z1, z2) = z1z2 + z2z1,(1.1)

Rµ(u,u∗)
(z1, z2) =

∞∑

n=1

(−1)n−1Cn−1(z1z2)
n +

∞∑

n=1

(−1)n−1Cn−1(z2z1)
n.(1.2)

The numbers Cn are the Catalan numbers (cf. [2] and [6]): C
(p)
n =

(
pn

n− 1

)

/n

is the n’th Fuss-Catalan number of parameter p and Cn = C
(2)
n =

(
2n

n− 1

)

/n,

n, p ∈ N. For convenience we let C0 = 1. In [10] Nica and Speicher (see also [8]

for a more general definition) introduced the class of R-diagonal pairs in non-

commutative probability spaces as those pairs (a, b) whose R-transform is of the

form

Rµ(a,b)
(z1, z2) =

∞∑

n=1

αn(z1z2)
n +

∞∑

n=1

αn(z2z1)
n

where αn ∈ C. The series fµ(a,b)
(z) =

∞∑

n=1
αnz

n is called the determining se-

ries of Rµ(a,b)
. An R-diagonal element is an element a (in a non-commutative

∗-probability space) such that (a, a∗) is an R-diagonal pair.
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The determining series fµ(a,b)
can be obtained from the moment series ψµab

using the �∗ -operation on formal power series, cf. [10]. In dimension 1 the oper-

ation �∗ satisfies (and can be defined by) Rµab
= Rµa �∗ Rµb

for arbitrary free

random variables a and b in some non-commutative probability space. Then

Rµa
= ψµa �∗ Möb where Möb is the series

Möb(z) =
∞∑

n=1

(−1)n−1Cn−1z
n,

and fµ(a,b)
= Rµab �∗ Möb. (If a and b are random variables in a tracial non-

commutative probability space then Rµab
= Rµba

.) The series ζ(z) =
∞∑

n=1
zn is the

inverse to Möb with respect to �∗ : Möb �∗ ζ(z) = ζ �∗ Möb(z) = z.

In the n-dimensional case we let Mµ denote the moment series of an n-

dimensional distribution µ : C〈X1, . . . , Xn〉 → C:

Mµ(z1, . . . , zn) =

∞∑

k=1

n∑

i1,...,ik=1

µ(Xi1 · · ·Xik
)zi1 · · · zik

.

Then Rµ = Mµ �∗ Möbn, Mµ = Rµ �∗ ζn, where Möbn and ζn are n-dimensional

analogues of Möb and ζ respectively, and likewise for �∗ , cf. [10].

We often simplify the notation and write R(a,b) in place of Rµ(a,b)
etc.

If a is a random variable in a non-commutative C∗-probability space the

R-transform of µa is analytic in a neighbourhood of 0, cf. [4].

The paper is organized as follows. In Section 2 we show that any power of

any R-diagonal element is R-diagonal. In Section 3 we derive some estimates on

the radius of the support of the free multiplicative convolution power of a measure

compactly supported in [0,∞[. In Section 4 we compute distributions and R-series

related to powers of the circular element.

2. POWERS OF R-DIAGONAL PAIRS

In the sequel we let M ′(R) denote the set of symmetric compactly supported

probability measures on R, and let rj(µ) denote the j’th coefficient in Rµ:

Rµ(z) =

∞∑

j=1

rj(µ)zj .

Proposition 5.2 in [11] shows that if µ ∈M ′(R) then r2j−1(µ) = 0 for all j in N.
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Lemma 2.1. The sets

{
(µ(X2), . . . , µ(X2n))

∣
∣ µ ∈M ′(R)

}
,

{
(r2(µ), . . . , r2n(µ))

∣
∣ µ ∈M ′(R)

}

have interior points for all natural numbers n.

Proof. The measure µ = 1
21[−1,1](x) dx is symmetric and the even moments

are µ(X2k) = (2k + 1)−1 (k ∈ N). Fix a natural number n and put

B1 =
{

(α1, . . . , αn) ∈ R
n

∣
∣
∣

n∑

j=1

|αj | < 1
}

.

Let P2j denote the normalized Legendre polynomial of order 2j, and for (α1, . . . , αn)

∈ B1 we define

dµ(α1,...,αn) =
1

2

(
P0(x) + α1P2(x) + · · · + αnP2n(x)

)
· 1[−1,1](x) dx.

Observe that P2j is an even polynomial, |P2j(x)| 6 1 for |x| 6 1 hence

∣
∣
∣

n∑

j=1

αjP2j(x)
∣
∣
∣ 6 1

on [−1, 1]. The orthogonality properties of the sequence (P2j)j∈N implies that

1∫

−1

x2iP2j(x) dx = 0,

1∫

−1

x2jP2j(x) dx 6= 0

whenever i = 0, . . . , j − 1, j ∈ N. In particular it follows that µ(α1,...,αn) ∈M ′(R)

(for (α1, . . . , αn) ∈ B1). Then

µ(α1,...,αn)(X
2k) =

1

2k + 1
+

1

2

n∑

j=1

αj

1∫

−1

x2kP2j(x) dx = µ(X2k) +
n∑

j=1

bkjαj ,

where bkj = 1
2

1∫

−1

x2kP2j(x) dx. Especially bjj 6= 0 (j = 1, . . . , n) and bkj = 0 if

k < j. Then

(2.1)






µ(α1,...,αn)(X
2)

...

µ(α1,...,αn)(X
2n)




−






µ(X2)
...

µ(X2n)




=






b11 · · · 0
...

. . .
...

bn1 · · · bnn











α1
...

αn




=B






α1
...

αn
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where B = (bij)
n
i,j=1. Since B is invertible Equation (2.1) shows that (µ(X2), . . . ,

µ(X2n)) is an interior point in {(ν(X2), . . . , ν(X2n)) | ν ∈M ′(R)}.
There exist (universal) continuous functions F,G : Cn → Cn such that






r2(ν)
...

r2n(ν)




 = F






ν(X2)
...

ν(X2n)




 ,






ν(X2)
...

ν(X2n)




 = G






r2(ν)
...

r2n(ν)




 , ν ∈ M ′(R)

and F ◦G = idCn = G ◦ F . In particular F is open and {(r2(ν), . . . , r2n(ν)) | ν ∈
M ′(R)} has an interior point.

Remark. Let (M, τ) = L(Z2) ∗
�

µ∈M ′(R)
(L∞(µ),

∫
· dµ). Then M is a finite

von Neumann algebra with a faithful normal trace τ . Let a be a generating

unitary in L(Z2). If T is an arbitrary element in some finite non-commutative W ∗-

probability space it follows from Corollary 3.2 in [5] that the element a · idL∞(µ̃|T |)

is an R-diagonal element in M and that it has the same ∗-distribution as T . Thus

M contains a representative of every R-diagonal element. Let

Sn =

{

(α1, . . . , αn)
∣
∣
∣ ∃T ∈ M : R(T,T∗)(z1, z2) =

∞∑

j=1

αj(z1z2)
j +

∞∑

j=1

αj(z2z1)
j

}

.

It follows from Proposition 5.2 in [11] that

Sn = {(r2(µ), . . . , r2n(µ)) | µ ∈M ′(R)},

thus Sn has an interior point according to Lemma 2.1.

Theorem 2.2. Let (a, b) be an R-diagonal pair in a non-commutative prob-

ability space (A,ϕ), and let p ∈ N. Then (ap, bp) is an R-diagonal pair with

determining series

f(ap,bp) = R�∗ p
ab �∗ Möb.

In particular Rapbp = R�∗ p
ab .

Proof. Let n ∈ N, i1, . . . , in ∈ {1, 2}. We first assume that (i1, . . . , in) de-

notes an index off the diagonal, i.e., (i1, . . . , in) 6= (1, 2, . . . , 1, 2) and (i1, . . . , in) 6=
(2, 1, . . . , 2, 1). We note the existence of a universal polynomial P such that

[coef(i1, . . . , in)]R(ap,bp) = P
(
[coef(1, 2)]R(a,b), . . . , [coef(1, 2, . . . , 1, 2

︸ ︷︷ ︸

2pn

)]R(a,b)

)
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whenever (a, b) is an R-diagonal pair in some non-commutative probability space.

Indeed, if R ∈ C〈z1, z2〉 is of the form

R(z1, z2) =

∞∑

j=1

αj(z1z2)
j +

∞∑

j=1

αj(z2z1)
j

we define M,M (p), R(p) ∈ C〈z1, z2〉 by

M = R�∗ ζ2, M (p)(z1, z2) = M(zp
1 , z

p
2), R(p) = M (p)

�∗ Möb2,

and it follows that there exists a polynomial P such that [coef(i1, . . . , in)]R(p) =

P (α1, . . . , αpn). If a and b are random variables in a non-commutative probability

space (A,ϕ) and (a, b) is an R-diagonal pair with determining series f(a,b)(z) =
∞∑

j=1

αjz
j , then

[coef(i1, . . . , in)]R(ap,bp) = P (α1, . . . , αpn).

If T is an R-diagonal element in (M, τ) it follows from Proposition 3.10

in [5] that T p is R-diagonal. This implies that P (α1, . . . , αpn) = 0 whenever

(α1, . . . , αpn) ∈ Spn. Since Spn has an interior point this implies that P = 0 hence

[coef(i1, . . . , in)]R(ap,bp) = 0.

We next assume that (i1, . . . , in) = (1, 2, . . . , 1, 2
︸ ︷︷ ︸

n

). Then a symmetry argu-

ment reveals that

[coef(1, 2, . . . , 1, 2
︸ ︷︷ ︸

n

)]R(ap,bp) = [coef(2, 1, . . . , 2, 1
︸ ︷︷ ︸

n

)]R(ap,bp).

Since n and i1, . . . , in are arbitrary we conclude that (ap, bp) is R-diagonal.

Finally we compute the determining series f(ap,bp) for (ap, bp). Note that for

given n there exists a universal polynomial P such that

[coef(n)]f(ap,bp) − [coef(n)]R�∗ p
ab �∗ Möb = P (α1, . . . , αpn)

where αj = [coef(j)]f(a,b). If (T, T ∗) is anR-diagonal pair in (M, τ) then f(T p,(T p)∗)

= RT p(T p)∗ �∗ Möb = R
µ� p

T T∗
�∗ Möb = R

µ�∗ p

T T∗
�∗ Möb (cf. Proposition 3.10 in [5])

whence P (Spn) = {0}. We conclude that P = 0 and thus f(ap,bp) = R�∗ p
ab �∗ Möb.
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3. NORM-ESTIMATES OF POWERS AND PRODUCTS OF R-DIAGONAL ELEMENTS

Theorem 3.1. Let p be a natural number, let µ, µ1, . . . , µp be compactly

supported probability measures on [0,∞[. Then:

(i) r(µ� p) 6 ep r(µ)µ(X)p−1;

(ii) if r(µj) > 0 for all j = 1, . . . , p then

r(µ1 � · · ·�µp) 6 ep max
j=1,...,p

r(µj)

µj(X)
· µ1(X) · · ·µp(X);

(iii) r(µ� p) > µ(X)p + pV (µ)µ(X)p−2;

(iv) if r(µj) > 0 for all j = 1, . . . , p then

r(µ1 � · · ·�µp) > µ1(X) · · ·µp(X)
(

1 +

p
∑

j=1

V (µj)

µj(X)2

)

.

Proof. The idea of the proof of (i) is to find an interval ]0, y0[ on which χ
µ� p

is analytic and χ′
µ� p > 0. Then r(µ� p)−1 > lim

y→y0−
χµ� p(y).

The statement holds trivially for p = 1 and for µ = δ0 so let p be a natural

number greater than 2 and assume that µ 6= δ0. Then

(3.1) χµ� p(z) =
(z + 1

z

)p−1

χµ(z)p

and it follows that χµ� p is analytic in a neighbourhood of ]0, y0[ if χµ is analytic

in a neighbourhood of ]0, y0[. It follows from (3.1) that χ′
µ� p > 0 on ]0, y0[ if and

only if

p− 1

p
< y(1 + y)

χ′
µ(y)

χµ(y)

for all y in ]0, y0[. Inserting y = ψµ(t) we infer that χ′
µ� p > 0 on ]0, y0[ if and only if

(3.2)
p− 1

p
<
ψµ(t)(1 + ψµ(t))

tψ′
µ(t)

for all t in ]0, t0[ where t0 = lim
y→y0−

χµ(y).

Choose t0 = (p r(µ))−1. Using the integral formula for ψµ we estimate:

ψµ(t)(1 + ψµ(t))

tψ′
µ(t)

>
ψµ(t)

∫

R

ts
(1−ts)2 dµ(s)

> 1 − tr(µ)
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hence (3.2) holds for all t in ]0, t0[. Then ψµ is analytic in a neighbourhood of

]0, t0] hence χµ is analytic in a neighbourhood of [0, y0] and we can estimate:

ψµ(t0)

t0
=

∫

R

s

1 − st0
dµ(s) 6

µ(X)

1 − r(µ)t0
,

χµ� p(ψµ(t0)) > (ψµ(t0) + 1)p−1
(1 − r(µ)t0

µ(X)

)p−1

t0 >
1

p r(µ)µ(X)p−1
(1 − p−1)p−1

whence

r(µ� p) 6 p r(µ)µ(X)p−1
(

1 +
1

p− 1

)p−1

6 ep r(µ)µ(X)p−1,

which shows (i).

Put α = (µ1(X) · · ·µp(X))1/p and let νj (j = 1, . . . , p) be the image measure

(µj)z 7→αz/µj (X). Then ν1 � · · ·� νp = µ1 � · · ·�µp and ν1(X) = · · · = νp(X) = α.

Due to the foregoing analysis we have that

(3.3)
p− 1

p
< y(y + 1)

χ′
νj

(y)

χνj
(y)

for all y in ]0, y
(j)
0 [ where y

(j)
0 = ψνj

(
(p r(νj))

−1
)
. Put r = max

j=1,...,p
r(νj) and

t0 = min
j=1,...,p

(p r(νj))
−1 = (p r)−1. Then (3.3) holds on ]0, y0,j [ where y0,j =

ψνj
(t0) hence the estimate (3.3) holds on ]0, y0[ where y0 = min

j=1,...,p
y0,j . We

assume without loss of generality that y0 = y0,1. Note that χνj
(y0) 6 χνj

(y0,j) =

χνj
(ψνj

(t0)) = t0. Then

(p− 1)
1

y(y + 1)
< p min

j=1,...,p

χ′
νj

(y)

χνj
(y)

for all y in ]0, y0[ and we conclude that

d

dy
logχν1 �···� νp

(y) =

p
∑

j=1

χ′
νj

(y)

χνj
(y)

− (p− 1)
1

y(y + 1)
> 0

for all y in ]0, y0[. Thus χ′
ν1 �···� νp

> 0 on ]0, y0[, and since p > 2 each χνj
is

analytic on a neighbourhood of ]0, y0], hence

r(ν1 � · · ·� νp)
−1

> χν1 �···� νp
(y0) =

(y0 + 1

y0

)p−1

χν1(y0) · · ·χνp
(y0)

> χν1(ψν1(t0))

p
∏

j=2

χνj
(y0)

y0
= t0

p
∏

j=2

χνj
(y0)

ψνj
(χνj

(y0))

> t0

p
∏

j=2

1 − r(νj)χνj
(y0)

νj(X)
> t0

p
∏

j=2

1 − rt0
νj(X)

= t0

(

1 − 1

p

)p−1
p

∏

j=2

1

νj(X)
.
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Therefore

r(µ1 � · · ·�µp) = r(ν1 � · · ·� νp) 6 pr
(

1 − 1

p− 1

)p−1

αp−1

6 ep max
j=1,...,p

αr(µj)

µj(X)
αp−1 = ep max

j=1,...,p

r(µj)

µj(X)
· µ1(X) · · ·µp(X)

and this proves (ii).

To prove (iv) we first note that if µ is a measure with non-vanishing first

moment the power series of Sµ is

Sµ(z) =
1

µ(X)
− V (µ)

µ(X)3
z + O(z2)

as z → 0. This implies that

Sµ1 �···� µp
(z) =

p
∏

j=1

1

µj(X)

(

1 − V (µj)

µj(X)2
z + O(z2)

)

=
1

µ1(X) · · ·µp(X)

(

1 −
p

∑

j=1

V (µj)

µj(X)2
z

)

+ O(z2)

hence
V (µ1 � · · ·�µp)

µ1 � · · ·�µp(X)3
=

1

µ1(X) · · ·µp(X)

p
∑

j=1

V (µj)

µj(X)2
,

and thus

r(µ1 � · · ·�µp) >
V (µ1 � · · ·�µp)

µ1 � · · ·�µp(X)
+ µ1 � · · ·�µp(X)

= µ1(X) · · ·µp(X)
(

1 +

p
∑

j=1

V (µj)

µj(X)2

)

.

This shows (iv).

If µ is a Dirac measure then r(µ� p) = µ(X)p, V (µ) = 0 and (iii) is fulfilled.

If µ is not a Dirac measure then (iii) follows from (iv).

Corollary 3.2. Let p ∈ N, T, T1, . . . , Tp be R-diagonal elements in a non-

commutative probability space (M, τ) with a faithful normal tracial state. Then

‖T p‖ 6
√

ep ‖T‖ ‖T‖p−1
2

for every natural number p, and if T1, . . . , Tp are ∗-free and T1, . . . , Tp 6= 0 then

‖T1 · · ·Tp‖ 6
√

ep max
j=1,...,p

‖Tj‖
‖Tj‖2

· ‖T1‖2 · · · ‖Tp‖2.
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Proof. It follows from Propositions 3.6 and 3.10 in [5] that T p and T1 · · ·Tp

are R-diagonal and that µ|T p|2 = µ� p
|T |2 , µ|T1···Tp|2 = µ|T1|2 � · · ·�µ|Tp|2 . Then we

estimate:

r(µ|T1 |2 � · · ·�µ|Tp|2) 6 ep max
j=1,...,p

r(µ|Tj |2)

µ|Tj |2(X)
· µ|T1|2(X) · · ·µ|Tp|2(X)

= ep max
j=1,...,p

‖Tj‖2

‖Tj‖2
2

· ‖T1‖2
2 · · · ‖Tp‖2

2

and the conclusion follows.

If µ is not a Dirac measure Theorem 3.1 (i) shows that r(µ� p) = O(pµ(X)p)

and (iii) shows that this is the best asymptotic estimate. Thus ‖T p‖ = O(
√
p ‖T‖p

2)

is the best asymptotic estimate for the norm of an R-diagonal element (compare

to the estimate ‖T p‖ 6 (1 + p)‖T‖ ‖T‖p−1
2 obtained in Corollary 4.2 in [5]).

Corollary 3.3. If p is a natural number, and µ, µ1, . . . , µp are compactly

supported probability measures on ]0,∞[, then

(3.4)
m(µ1 � · · ·�µp) >

1

ep
·

min
j=1,...,p

m(µj)µ
−1
j (X)

µ−1
1 (X) · · ·µ−1

p (X)
,

m(µ� p) >
1

ep
· m(µ)

(µ−1(X))p−1
.

Proof. In the finite non-commutative W ∗-probability space
p�

j=1

(
L∞(µj),

∫
· dµj

)
we can find a free family {a1, . . . , ap} of positive invertible elements such

that the distribution (as a measure) of aj is µj for all j. Then the distribution of

a1 · · · ap is µ1 � · · ·�µp and the distribution of (a1 · · ·ap)
−1 is

µ(a1···ap)−1 = µa−1
p ···a−1

1
= µa−1

p
� · · ·�µa−1

1
= µ−1

1 � · · ·�µ−1
p .

Then

m(µ1 � · · ·�µp)
−1 = r

(
(µ1 � · · ·�µp)

−1
)

= r(µ−1
1 � · · ·�µ−1

p )

6 ep max
j=1,...,p

r(µ−1
j )

µ−1
j (X)

· µ−1
1 (X) · · ·µ−1

p (X)

hence

m(µ1 � · · ·�µp) >
1

ep
·

min
j=1,...,p

m(µj)µ
−1
j (X)

µ−1
1 (X) · · ·µ−1

p (X)

and the conclusion follows.
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Let µ be a compactly supported probability measure on ]0,∞[. For the free

multiplicative convolution power µ� p of µ we have the obvious estimate

(3.5) m(µ� p) > m(µ)p.

If µ is a Dirac measure then m(µ� p) = m(µ)p. In the following we assume that µ

is not a Dirac measure. Then

m(µ)µ−1(X) = m(µ)

∫

R

t−1 dµ(t) < m(µ)

∫

R

m(µ)−1 dµ(t) = 1

and the estimate

m(µ)p

m(µ)
epµ−1(X)

= ep
(
m(µ)µ−1(X)

)p−1 → 0 as p→ ∞

shows that the estimate (3.4) is sharper than (3.5) for large p.

4. POWERS OF THE CIRCULAR ELEMENT

In this section we compute the norm of every power of the circular element c. Fur-

thermore we determine the distribution of |cp|2 and the R-transform of (cp, (cp)∗)

for any p in N. It is recently shown in [12] that powers of the circular element are

R-diagonal elements, and the coefficients in the R-transforms were computed.

Proposition 4.1. Let c be the circular element and let p be a natural num-

ber. Then:

(i) ‖cp‖2 = (p+ 1)p+1/pp;

(ii) the moments of |cp|2 are µ|cp|2(X
n) = C

(p+1)
n for all natural numbers p

and n;

(iii) the determining function f(cp,(cp)∗) for the R-diagonal element cp is

f(cp,(cp)∗)(z) =

∞∑

n=1

C(p−1)
n zn.

for every natural number p greater than 2.

Proof. Let µ = µ|c|2 . We first note that ‖cp‖2 = r(µ|cp|2) = r(µ� p). It is

shown in [5] that Sµ(z) = 1/(z+1) hence χµ(z) = z/(z+1)2 and χµ� p(z) = z/(z+

1)p+1 are analytic in a neighbourhood of [0,∞[. It is straightforward to verify

that χ′
µ� p > 0 on ]0, p−1[ and χ′

µ� p(p−1) = 0 hence 1/r(µ� p) = χµ� p(p−1) =

pp/(p+ 1)p+1 and (i) follows.
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For n, p natural numbers we find

µ|cp|2(X
n) = the coefficient of zn in ψµ|cp|2

(z)

(∗)
=

1

n
Res(χµ|cp|2

(z)−n, z = 0) =
1

n
Res(χµ� p(z)−n, z = 0)

=
1

n
Res

(
(z + 1)(p+1)n

zn
, z = 0

)

=
1

n

(
(p+ 1)n

n− 1

)

= C(p+1)
n .

At (∗) we use Lagranges Inversion Theorem, cf. Section 3.8 in [1], [3]. This

shows (ii).

To prove (iii) we first note that Rµ(z) = (1 − z)−1 hence Rµ(z) =
∞∑

j=1

zj =

ζ(z). Then

Rµcp(cp)∗
= Rµ(cp)∗cp = Rµ� p = Rµ �∗ · · ·�∗ Rµ

︸ ︷︷ ︸

p terms

= ζ�∗ p

hence

f(cp,(cp)∗) = Rµcp(cp)∗ �∗ Möb = ζ�∗ p
�∗ Möb = ζ�∗ (p−1).

If p = 2 then f(cp,(cp)∗)(z) = ζ(z) =
∞∑

n=1
zn and if p > 2 then

f(cp,(cp)∗) = ζ�∗ (p−1) = ζ �∗ Rµ�(p−2) = ζ �∗ Möb �∗ ψµ�(p−2) = ψµ�(p−2) ,

i.e., f(cp,(cp)∗)(z) =
∞∑

n=1
C

(p−1)
n zn.

In addition the computations show that

(4.1) ζ�∗ p(z) =
∞∑

n=1

C(p)
n zn

for every p > 2. Using the combinatorial Fourier Transform invented in [9] we

can also compute Möb�∗ p for any natural number p: let F denote the Fourier

transform on formal power series without constant terms and with non-vanishing

first coefficients defined as follows (cf. [9]):

zFf(z) = f−1(z)

(here f−1 denotes the inverse with respect to composition.) Then F(f �∗ g) = Ff ·
Fg for all power series f and g in the domain of F . Also Fζ(z) = 1/(1+ z) hence

F(ζ�∗ p)(z) = 1/(1 + z)p and F(Möb�∗ p)(z) = (1 + z)p. Thus Möb�∗ p(z) = (z(1 +
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z)p)〈−1〉, and Lagranges Inversion Formula applies to compute the coefficients in

Möb�∗ p: Let Möb�∗ p(z) =
∞∑

n=1
αnz

n, then

αn =
1

n
Res

(( 1

z(1 + z)p

)n

, z = 0
)

=
1

n
Res

(

z−n
∞∑

j=1

(−pn
j

)

zj , z = 0
)

=
1

n

( −pn
n− 1

)

=: C(−p)
n

and thus

(4.2) Möb�∗ p(z) =

∞∑

n=1

C(−p)
n zn.

Following formulas (4.1) and (4.2), we have Möb = ζ�∗ (−1) and Möb�∗ p = ζ�∗ (−p)

for all natural numbers p.

The coefficients in the series ζ�∗ p was also computed in [13].
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