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Abstract. In this paper, variants of the classical Toeplitz operators on
H2 are studied. A characterization is obtained for the bounded, harmonic
symbols giving rise to a bounded Toeplitz operator on a Dirichlet-type space.
The relationship between the characterizing condition and multipliers of the
holomorphic and harmonic Dirichlet spaces is examined.
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1. INTRODUCTION

In this paper, we study operators of the type f 7→ P (ϕf) on Dirichlet-type spaces
D(µ) (see Definition 2.2), where ϕ is a function on D or ∂D and P is a projection.
These operators are variants of the classical Toeplitz operators on H2, and will
be referred to as Toeplitz operators. The function ϕ is called the symbol of the
operator f 7→ P (ϕf), which will be denoted Tϕ.

In Section 2, two kinds of Dirichlet-type spaces are defined, and some of
their properties are given. In Section 3, one sort of Toeplitz operator is exam-
ined. A characterization is obtained for the bounded, harmonic symbols for which
this operator is bounded on the Dirichlet space. The characterizing condition is
compared with D. Stegenga’s characterization of the multipliers of the Dirichlet
space. In Section 4, another sort of Toeplitz operator is examined, and its bound-
edness on Dirichlet-type spaces is characterized. Connections with multipliers of
Dirichlet-type spaces are obtained.
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2. DIRICHLET-TYPE SPACES

Definition 2.1. The Bergman space L2
a is the subspace of holomorphic

functions in L2(D) (with respect to normalized Lebesgue measure). The Dirichlet
space D consists of those holomorphic functions f on D having f ′ ∈ L2

a; the norm is
given by ‖f‖2

D = ‖f‖2
H2 +‖f ′‖2

L2
a
. The quantity ‖f ′‖2

L2
a

=
∫
D
|f ′|2 dA =

∑
n|f̂(n)|2

is called the Dirichlet integral of f , denoted D(f). The formula for the Dirichlet
integral in terms of the power-series coefficients of f makes it clear that D ⊂ H2.
There is also a formula, due to J. Douglas ([3]), in terms of integrals over ∂D:

(2.1)
∫
D

|f ′|2 dA =
∫
∂D

∫
∂D

∣∣∣∣f(eiθ)− f(eit)
eiθ − eit

∣∣∣∣2 dt

2π

dθ

2π
.

The inner integral is the local Dirichlet integral of f at eiθ, denoted Deiθ (f), and
can be regarded as a function on ∂D.

Definition 2.2. Let µ be a finite, positive, Borel measure on ∂D. The
Dirichlet-type space D(µ) is the set of holomorphic functions on D having a local
Dirichlet integral that is integrable with respect to µ. Equation (2.1) says that
D = D( dθ

2π ). The norm is given by ‖f‖2
µ = ‖f‖2

H2 +
∫

Dλ(f) dµ(λ). That D(µ) ⊂
H2 is shown in [5] (also see Corollary 2.7).

The properties of a Toeplitz operator can depend both on its symbol and on
the projection P used in the definition of the operator. There are several possible
projections that can be used to define Toeplitz operators on D(µ).

Example 2.3. Let L2
a be the Bergman space, a subspace of L2(D). Let PB

be the orthogonal projection of L2(D) onto L2
a, known as the Bergman projection.

It can be expressed as an integral operator, or in terms of reproducing kernels:

(2.2) (PBf)(z) =
∫

f(w)
1

(1− zw)2
dA(w) = 〈f, kB

z 〉L2(D),

where dA denotes normalized Lebesgue measure on D.
If ϕ is a function on D such that ϕD(µ) ⊂ L2(D), then a Toeplitz operator

Tϕ can be defined on D(µ) by Tϕf = PB(ϕf).

Example 2.4. The Hardy space H2 can be identified with a subspace of
L2(∂D), with radial limits transforming an H2 function on D to its boundary
function, and the Poisson integral doing the reverse. The orthogonal projection
of L2(∂D) onto H2(D) is known as the Szegö projection, and will be denoted PH .
Like PB , the Szegö projection can be expressed as an integral operator or in terms
of reproducing kernels:

(PHf)(z) =
∫

f(eiθ)
1

1− ze−iθ

dθ

2π
= 〈f, kH2

z 〉L2(∂D).

Since D(µ) ⊂ H2, every element of D(µ) has a boundary function defined
almost everywhere on ∂D. So if ϕ is a function on ∂D such that ϕD(µ) ⊂ L2(∂D),
a Toeplitz operator Tϕ can be defined on D(µ) by Tϕf = PH(ϕf).
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Before proceeding with the next example, a harmonic analogue of D(µ) will
be defined.

In the sequel, if ν is a measure on ∂D, then Pν denotes the Poisson integral
of ν, the integral with respect to ν of the Poisson kernel: (Pν)(z) =

∫ 1−|z|2
|z−λ|2 dν(λ).

Note that the Poisson kernel itself is the Poisson integral of the point mass δλ. If
g is a function on ∂D, then Pg denotes the Poisson integral of the measure g dθ

2π .
If λ ∈ ∂D and δλ denotes the point mass at λ, then from Definition 2.2 it

follows that f ∈ D(δλ) iff f has a finite local Dirichlet integral at λ. The following
criterion of S. Richter and C. Sundberg ([6]) for Dλ(f) to be finite will be useful:

Proposition 2.5. Let λ ∈ ∂D, f a function on D. Then f ∈ D(δλ) iff
f = α + (z − λ)fλ for some constant α and function fλ ∈ H2. If this is the case,
then α is the radial limit f(λ) of f at λ, and Dλ(f) = ‖fλ‖2

2.

Remark 2.6. It is shown in [6] that in fact, if f ∈ D(δλ) then f(z) → f(λ)
as z approaches λ within any disc tangent to ∂D at λ. Also, P. Chernoff ([2])
showed that if Dλ(f) < ∞, then the Fourier series of f at λ converges to f(λ).

Corollary 2.7. D(µ) ⊂ H2.

Proof. Let f ∈ D(µ). Since
∫

Dλ(f) dµ(λ) is finite, there is at least one λ
such that f ∈ D(δλ). For any such λ, by the proposition there are α ∈ C and
fλ ∈ H2 such that f = α + (z − λ)fλ. Therefore f ∈ H2.

The following analogue of the Douglas formula (2.1) for the Dirichlet integral
will be used, and is proved by Richter and Sundberg in [6].

Proposition 2.8. If f ∈ H2, then

(2.3)
∫
∂D

Dλ(f) dµ(λ) =
∫
D

|f ′|2PµdA.

Like the Douglas formula, equation (2.3) can be extended to harmonic func-
tions.

Proposition 2.9. Let f be a harmonic function on D of the form f =
f+ + f−, where f+, f− ∈ D(µ) and f−(0) = 0. Then

(2.4)
∫
∂D

Dλ(f) dµ(λ) =
∫
D

(∣∣∣∣∂f

∂z

∣∣∣∣2 +
∣∣∣∣∂f

∂z

∣∣∣∣2)PµdA =
∫
D

(|f ′+|2 + |f−
′|2)PµdA.

Proof. For λ ∈ ∂D and functions g, h ∈ D(δλ), define

Dλ(g, h) =
∫
∂D

g(λ)− g(eit)
λ− eit

(
h(λ)− h(eit)

λ− eit

)
dt

2π
.

Then Dλ(· , ·) is a sesquilinear form, and Dλ(g) = Dλ(g, g). Hence

(2.5) Dλ(f) = Dλ(f+ + f−, f+ + f−) = Dλ(f+) + 2Re Dλ(f+, f−) + Dλ(f−).
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Since Dλ(f−) = Dλ(f−), the proposition will follow by integrating (2.5) with
respect to µ and applying Proposition 2.8, once it is shown that Dλ(f+, f−) = 0
for [µ]-almost every λ.

Since f+, f− ∈ D(µ), both belong to D(δλ) for [µ]-almost every λ; fix such a
λ. By Proposition 2.8, choose g+, g− ∈ H2 such that f+ = f+(λ) + (z − λ)g+ and
f− = f−(λ) + (z − λ)g−. Then

Dλ(f+, f−) =
∫
∂D

f+(λ)− f+(eit)
λ− eit

(
f−(λ)− f−(eit)

λ− eit

)
dt

2π

=
∫
∂D

f+(λ)− f+(eit)
λ− eit

f−(λ)− f−(eit)
λ− eit

λ− eit

λ− e−it

dt

2π

=
∫
∂D

g+(eit)g−(eit)(−λeit)
dt

2π
= 0.

Definition 2.10. The harmonic Dirichlet-type space D(µ) is the set of func-
tions f ∈ L2(∂D) such that Dλ(f) is integrable with respect to µ. For such an
f , the harmonic extension f(z) = (Pf)(z) to D satisfies (2.4); in the usual way,
elements of D(µ) can be regarded as functions on ∂D or as functions on D. Define
the norm by ‖f‖2 =

∫
Dλ(f) dµ(λ) + ‖f‖2

L2(∂D).

Proposition 2.11. D(µ) is a reproducing-kernel Hilbert space containing
D(µ) as a closed subspace.

Proof. Suppose f ∈ D(µ); write f = f+ + f−, with f+, f− ∈ D(µ) and
f−(0) = 0. If w ∈ D, then by the existence of H2 reproducing kernels,

|f(w)| = |f+(w) + f−(w)| 6 |f+(w)|+ |f−(w)| 6 ‖kH2

w ‖H2(‖f+‖H2 + ‖f−‖H2)

6 C‖f‖L2(∂D) 6 C‖f‖D(µ).

Thus, the functional of evaluation at w is bounded on D(µ), as was to be proved.
Similarly, for k ∈ N

|f̂(−k)| = |f̂−(−k)| = |f̂−(k)| = |f−
(k)

(0)|/k! 6 C‖f−‖H2 6 C‖f‖D(µ).

Therefore if {fn} is a sequence in D(µ) converging in D(µ) to f , then f̂(−k) = 0
for all k ∈ N. Thus D(µ) is closed in D(µ).

Example 2.12. If ϕ is a function on ∂D such that ϕD(µ) ⊂ D(µ), then a
Toeplitz operator Tϕ can be defined on D(µ) by Tϕf = Pµ(ϕf), where Pµ is the
orthogonal projection of D(µ) onto D(µ).

There are advantages to using each of the projections in Examples 2.3, 2.4,
and 2.12. The Bergman projection can be used for the largest collection of symbols,
as the requirement that ϕD(µ) ⊂ L2(D) is the weakest requirement among the
three. Using the Szegö projection has the advantage of giving rise to the best-
understood sort of Toeplitz operator. The theory of Toeplitz operators is most
often studied in settings where the range of the projection is the domain of the
operator; such is the case if P = Pµ.
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See R. Rochberg and Z. Wu ([7]) for results concerning a type of Toeplitz
operator on D different from that defined in Section 1.

3. BERGMAN TOEPLITZ OPERATORS ON D

The problem to be studied in this section is to determine the symbols ϕ for which
the Toeplitz operator Tϕf = PB(ϕf) is bounded on D. It will be assumed that ϕ
is a bounded, harmonic function on D.

The Bergman projection is one of a family of projections of L2(D) onto L2
a.

For α > −1, define the operator Pα by:

(Pαf)(z) = (α + 1)
∫

(1− |w|2)α

(1− zw)α+2
f(w) dA(w).

Clearly P0 = PB . If 1 6 p < ∞ and p(α + 1) > 1, then Pα is bounded on Lp(D)
and fixes the holomorphic functions in Lp(D), as shown in [10], Section 4.2.

The main result of this section hinges on the following lemma.

Lemma 3.1. For f ∈ D, (Tϕf)′ = ∂ϕ
∂z f + P1(ϕf ′).

Note that if ∂ϕ
∂z f ∈ L2(D), then the right side of the equation is P1

(
∂
∂z (ϕf)

)
.

Thus the lemma says that in a restricted sense, differentiation intertwines PB

and P1.

Proof. First, the lemma will be verified in the case of ϕ(z) = zm and
f(z) = zn:

(Tϕf)(z) = PB(ϕf)(z) =
∫

wmwn

(1− zw)2
dA(w) =

1
π

2π∫
0

1∫
0

rme−imθrneinθ

(1− zre−iθ)2
r dr dθ

=
1
π

1∫
0

rm+n+1

2π∫
0

ei(n−m+2)θ

(eiθ − rz)2
dθ dr =

1
πi

1∫
0

rm+n+1

∫
∂D

ζn−m+1

(ζ − rz)2
dζ dr.

A residue calculation shows that the contour integral
∫

∂D

ζn−m+1

(ζ−rz)2 dζ is zero if n −

m + 1 6 0, and is otherwise 2πi(n−m + 1)(rz)n−m. Hence

(3.1) (Tϕf)(z) = 2(n−m + 1)zn−m

∫
r2n+1 dr =

n−m + 1
n + 1

zn−m

if n−m > 0 and zero otherwise.
The derivative of Tϕf(z) is to be compared with:

P1(ϕf ′)(z) = 2
∫

1− |w|2

(1− zw)3
nwmwn−1 dA(w)

=
2n

πi

1∫
0

(1− r2)rm+n

∫
∂D

ζn−m+1

(ζ − rz)3
dζ dr.
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Since
∫

∂D

ζn−m+1

(ζ−rz)3 dζ = πi(n − m + 1)(n − m)(rz)n−m−1 if n − m > 1 and is zero

otherwise,

P1(ϕf ′)(z) = 2n(n−m + 1)(n−m)zn−m−1

∫
(r2n−1 − r2n+1) dr

=
(n−m + 1)(n−m)

n + 1
zn−m−1

for n − m > 1 and is otherwise zero. Comparing this with the derivative of the
right side of (3.1), we see that the lemma holds in this case.

Now let ϕ be any bounded, harmonic function on D, and f any element of

D. Define ϕ+ by ϕ+(z) =
∞∑

n=0
ϕ̂(n)zn; let ϕ− = ϕ− ϕ+. Both ϕ+ and ϕ− belong

to L2(D), but they need not be bounded functions.
Since ϕ is bounded and f ∈ D ⊂ L2, the sum ϕ

∑
f̂(n)zn converges in L2

norm. Then since PB is bounded on L2,

PB(ϕf) =
∑

f̂(n)PB(ϕzn) =
∑

f̂(n)(ϕ+zn + PB(ϕ−zn))

= ϕ+f +
∞∑

n=0

f̂(n)
∞∑

m=1

ϕ̂(−m)PB(zmzn).

Since ϕ is harmonic, ϕ′+ = ∂ϕ
∂z ; hence

(3.2) PB(ϕf)′ =
∂ϕ

∂z
f + ϕ+f ′ +

∞∑
n=0

f̂(n)
∞∑

m=1

ϕ̂(−m)PB(zmzn)′.

Similarly,

(3.3)

P1(ϕf ′) =
∑

nf̂(n)P1(zn−1ϕ)

=
∞∑

n=1

nf̂(n)(zn−1ϕ+ +
∞∑

m=1

ϕ̂(−m)P1(zmzn−1))

= ϕ+f ′ +
∞∑

n=1

f̂(n)
∞∑

m=1

ϕ̂(−m)P1(nzmzn−1).

Since PB(zmzn)′ = P1(nzmzn−1) for each m and n, the lemma follows by com-
paring (3.3) with (3.2), and observing that the n = 0 term of the sum in (3.2) is
zero, since PB(zm) = 0 for all m > 1.

Theorem 3.2. Let ϕ be a bounded, harmonic function on D. Then the
Toeplitz operator Tϕ is bounded on D iff

(3.4)
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 |f |2 dA 6 C‖f‖2
D

for all f ∈ D, for some constant C not depending on f .
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Proof. Suppose that (3.4) holds. Then since P1 is bounded on L2 and ϕ is a
bounded function,

D(Tϕf) =
∫
|(Tϕf)′|2 dA =

∫ ∣∣∣∣∂ϕ

∂z
f + P1(ϕf ′)

∣∣∣∣2 dA

6 2
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 |f |2 dA + 2‖P1‖2‖ϕ‖2
∞‖f ′‖2

L2

6 2(C + ‖P1‖2‖ϕ‖2
∞)‖f‖2

D.

Also,

|(Tϕf)(0)| =
∣∣∣∣∫ ϕf dA

∣∣∣∣ 6 ‖ϕ‖∞‖f‖L2 6 ‖ϕ‖∞‖f‖D.

Since

‖Tϕf‖2
H2 6 |(Tϕf)(0)|2 + D(Tϕf),

it follows that Tϕ is bounded on D.
Conversely, suppose that Tϕ is bounded. Then by the lemma,∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 |f |2 dA 6 2‖(Tϕf)′‖2
2 + 2‖P1(ϕf ′)‖2

2 6 2‖Tϕf‖2
D + 2‖P1‖2‖ϕ‖2

∞‖f ′‖2
2

6 2‖Tϕ‖2‖f‖2
D + 2‖P1‖2‖ϕ‖2

∞‖f‖2
D = C‖f‖2

D.

The condition of Theorem 3.2 is equivalent to that of ∂ϕ
∂z being a multiplier

of D into L2
a; that is, ∂ϕ

∂z D ⊂ L2
a. The condition also says that

∣∣∣∂ϕ
∂z

∣∣∣2 dA is a D-
Carleson measure on D. Compare with the following theorem of D. Stegenga ([9]):

Theorem 3.3. A function g is a multiplier of D (into itself) iff g ∈ H∞

and |g′|2 dA is a D-Carleson measure.

Stegenga also gives a geometric characterization of D-Carleson measures
in [9].

Since ∂ϕ
∂z = ϕ′+, from Theorems 3.2 and 3.3 it follows that if Tϕ is bounded

on D and ϕ+ is a bounded function, then ϕ+ is a multiplier of D. However, it is
possible for Tϕ to be bounded without ϕ+ being bounded:

Example 3.4. Define the function g on D by g(z) =
∑

zn

n log n log log n . Since∑
n|ĝ(n)|2 is finite, g ∈ D. Since D ⊂ BMOA, the space of analytic functions hav-

ing bounded mean oscillation on ∂D (see [8]), it follows from Fefferman’s Theorem
that we can choose a bounded, harmonic function ϕ such that g = PBϕ = ϕ+.
Since g is unbounded, ϕ+ is not a multiplier of D. However, by a result of S. Axler
and A. Shields ([1]), g′ is a multiplier of D into L2

a. Therefore Tϕ is bounded on D.
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4. HARDY TOEPLITZ OPERATORS ON D(µ)

Let µ be a positive, finite Borel measure on ∂D. In this section, the symbols
ϕ ∈ L∞(∂D) for which the Toeplitz operator Tϕf = PH(ϕf) is bounded on D(µ)
will be determined.

Remark 4.1. Recall that ‖f‖2
µ = ‖f‖2

2 +
∫

Dλ(f) dµ(λ). Since the projec-
tion PH has norm one as an operator on L2(∂D),

‖Tϕf‖2 = ‖PH(ϕf)‖2 6 ‖ϕf‖2 6 ‖ϕ‖L∞(∂D)‖f‖2 6 ‖ϕ‖∞‖f‖µ.

Therefore Tϕ is bounded on D(µ) iff
∫

Dλ(Tϕf) dµ(λ) 6 C‖f‖2
µ for f ∈ D(µ) and

some C not depending on f .

Fix f ∈ D(µ). Then Dλ(f) < ∞ for [µ]-almost every λ ∈ ∂D. For each such
λ define fλ ∈ H2 as in Proposition 2.5.

Lemma 4.2.
∫

Dλ(Tϕ((z − λ)fλ)) dµ(λ) 6 ‖ϕ‖2
∞‖f‖2

µ.

Proof. The result hinges on a commutation relation obtained by following
Tϕ((z − λ)fλ) by Tz, and using composition properties of H2 Toeplitz operators:

TzTϕ((z − λ)fλ) = TzTϕTz−λfλ = Tzϕ(z−λ)fλ = T(1−zλ)ϕfλ = Tz(z − λ)Tϕfλ.

Subtracting the end from the beginning, we see that if g = Tϕ((z − λ)fλ)−
(z − λ)Tϕfλ, then Tzg = 0. Since

Tzg = PH

(
e−iθ

∞∑
n=0

ĝ(n)einθ

)
= PH

( ∞∑
n=−1

ĝ(n + 1)einθ

)
=

∞∑
n=0

ĝ(n + 1)einθ = 0,

it follows that ĝ(n + 1) = 0 for all n > 0. Thus g is constant, say with constant
value α. Hence

Tϕ((z − λ)fλ) = α + (z − λ)Tϕfλ.

Then by Proposition 2.5, Tϕ((z − λ)fλ) ∈ D(δλ), and

Dλ(Tϕ((z − λ)fλ)) = ‖Tϕfλ‖2
2 6 ‖ϕ‖2

∞‖fλ‖2
2 = ‖ϕ‖2

∞Dλ(f).

Therefore∫
Dλ(Tϕ((z − λ)fλ)) dµ(λ) 6 ‖ϕ‖2

∞

∫
Dλ(f) dµ(λ) 6 ‖ϕ‖2

∞‖f‖2
µ.

Remark 4.3. For each λ ∈ ∂D, Dλ(·)1/2 is a seminorm on D(δλ), and hence
satisfies the triangle inequality. Thus it follows from the lemma and the previous
remark that Tϕ is bounded on D(µ) iff

∫
Dλ(Tϕ(f(λ))) dµ(λ) 6 C‖f‖2

µ, for some
C not depending on f .

Theorem 4.7. Let ϕ ∈ L∞(∂D). Then Tϕ is bounded on D(µ) iff∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 P (|f |2µ) dA 6 C‖f‖2
µ,

for f ∈ D(µ) and some constant C not depending on f .

If ϕ satisfies the condition of the theorem, the measure
∣∣∣∂ϕ

∂z

∣∣∣2 dA will be
called a µ-Carleson measure.
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Proof. Following the previous remark, we fix λ ∈ ∂D and calculate the local
Dirichlet integral at λ of Tϕ(f(λ)):

Dλ(Tϕ(f(λ))) =
∫

Dζ(Tϕ(f(λ))) dδλ(ζ) =
∫
|(PH(ϕf(λ)))′|2Pδλ dA

= |f(λ)|2
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 Pδλ dA,

where the last occurrence of ϕ denotes the harmonic extension of ϕ to D.
Integrating with respect to µ gives∫

Dλ(Tϕ(f(λ))) dµ(λ) =
∫
|f(λ)|2

∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 1− |z|2

|z − λ|2
dA(z) dµ(λ)

=
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 ∫
|f(λ)|2 1− |z|2

|z − λ|2
dµ(λ) dA(z)

=
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 P (|f |2µ) dA.

The theorem now follows from the previous remark.

In the case of the Dirichlet space D = D( dθ
2π ), the theorem says that the

Hardy Toeplitz operator Tϕ is bounded on D iff

(4.1)
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 P (|f |2) dA 6 C‖f‖2
D.

Compare this with Theorem 3.2, which says that the Bergman Toeplitz operator
Tϕ is bounded on D iff

(4.2)
∫ ∣∣∣∣∂ϕ

∂z

∣∣∣∣2 |f |2 dA 6 C‖f‖2
D.

However,
‖ |f |2 − P (|f |2)‖∞ 6 C1‖f‖2

BMO 6 C2‖f‖2
D,

the first inequality being due to A. Garsia (see [4], p. 221), the second to Ste-
genga ([8]). Therefore the two conditions (4.1) and (4.2) are equivalent.

Stegenga’s Theorem 3.3 characterizing the multipliers of D can be generalized
to the harmonic Dirichlet-type space D(µ):

Theorem 4.8. A bounded function ϕ on ∂D is a multiplier of D(µ) iff∣∣∣∂ϕ
∂z

∣∣∣2 dA and
∣∣∣∂ϕ

∂z

∣∣∣2 dA are µ-Carleson measures.

Proof. Suppose that ϕ is a multiplier of D(µ). Since ‖ · ‖L2(∂D) 6 ‖ · ‖D(µ),
norm convergence of a sequence in D(µ) implies almost-everywhere pointwise con-
vergence on ∂D of a subsequence. It then follows from the closed-graph theorem
that the operator Mϕ of multiplication by ϕ is bounded on D(µ).

Let f ∈ D(µ). Then

(4.3)
ϕ(λ)f(λ)− ϕ(eit)f(eit)

λ− eit
= f(λ)

ϕ(λ)− ϕ(eit)
λ− eit

+ ϕ(eit)
f(λ)− f(eit)

λ− eit
.
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Hence∫
|f(λ)|2Dλ(ϕ) dµ(λ) 6 2‖ϕ‖2

∞

∫
Dλ(f) dµ(λ) + 2

∫
Dλ(ϕf) dµ(λ)

6 2(‖ϕ‖2
∞ + ‖Mϕ‖2)‖f‖2

D(µ).

Since ϕ = ϕ · 1 ∈ D(µ), by Proposition 2.9∫
|f(λ)|2Dλ(ϕ) dµ(λ) =

∫
|f(λ)|2

∫
D

(∣∣∣∣∂ϕ

∂z

∣∣∣∣2 +
∣∣∣∣∂ϕ

∂z

∣∣∣∣2)Pδλ dA(z) dµ(λ)

=
∫ (∣∣∣∣∂ϕ

∂z

∣∣∣∣2 +
∣∣∣∣∂ϕ

∂z

∣∣∣∣2)P (|f |2µ) dA.

Therefore
∣∣∣∂ϕ

∂z

∣∣∣2 dA and
∣∣∣∂ϕ

∂z

∣∣∣2 dA are µ-Carleson measures.

Conversely, suppose that
∣∣∣∂ϕ

∂z

∣∣∣2 dA and
∣∣∣∂ϕ

∂z

∣∣∣2 dA are µ-Carleson measures.

Since ∂ϕ
∂z = ϕ′+ and ∂ϕ

∂z = ϕ−
′, applying the µ-Carleson condition with f = 1 gives

that ϕ+, ϕ− ∈ D(µ). Thus ϕ ∈ D(µ). Then by (4.3) and Proposition 2.9,∫
Dλ(ϕf) dµ(λ) 6 2

∫
|f(λ)|2Dλ(ϕ) dµ(λ) + 2‖ϕ‖2

∞

∫
Dλ(f) dµ(λ)

=
∫ (∣∣∣∣∂ϕ

∂z

∣∣∣∣2 +
∣∣∣∣∂ϕ

∂z

∣∣∣∣2)P (|f |2µ) dA + 2‖ϕ‖2
∞

∫
Dλ(f) dµ(λ)

6 C‖f‖2
D(µ).

Therefore ϕ is a multiplier of D(µ).

Corollary 4.9. A holomorphic function ϕ on D is a multiplier of D(µ) iff
ϕ is bounded and |ϕ′|2 dA is a µ-Carleson measure.

Proof. Suppose ϕ is a multiplier of D(µ). That |ϕ′|2 dA is a µ-Carleson
measure follows as in the proof of the theorem, with D(µ) replaced with D(µ), and
noting that ∂ϕ

∂z = 0. That ϕ is bounded follows from the existence of reproducing
kernels in D(µ): as above, Mϕ is bounded on D(µ). Then

|ϕ(w)| ‖kw‖2 = |ϕ(w)kw(w)| = |〈ϕkw, kw〉| 6 ‖ϕkw‖ ‖kw‖ 6 ‖Mϕ‖ ‖kw‖2;

thus |ϕ| is bounded by ‖Mϕ‖ on D.
If ϕ is bounded and |ϕ′|2 dA is a µ-Carleson measure, then since ∂ϕ

∂z = 0 and
ϕ′ = ∂ϕ

∂z , the theorem gives that ϕ is a multiplier of D(µ). Since ϕ is holomorphic,
ϕ is a multiplier of D(µ).

The following connection between bounded Toeplitz operators and multipli-
ers of D(µ) is an immediate consequence of Theorems 4.7 and 4.8.
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Corollary 4.10. A function ϕ ∈ L∞(∂D) is a multiplier of D(µ) iff Tϕ

and Tϕ are bounded on D(µ).
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