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Abstract. It is well known that for every von Neumann Algebra a, every
ultrapower of its predual a∗ is isometric to the predual of a von Neumann
Algebra A. We study the modular automorphism groups associated with
states of A in terms of those for a. As an application we show that the
ultrapower of the Haagerup Lp(a) spaces are isometrically identifiable with
the corresponding Lp(A) spaces (for every 0 < p < ∞).
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INTRODUCTION

Since their introduction in Banach Space Theory by [2], ultrapowers (and ultra-
products) proved to be a somewhat useful tool, especially in the study of the
qualitative aspects of local theory, due to their close connection to finite repre-
sentability (see also [9] for an equivalent theory). However, although the definition
of the ultrapowers of an abstract Banach space X is quite simple, it is generally
not a simple task to describe the ultrapowers of concrete spaces (i.e. classical Ba-
nach spaces), and the class of those spaces for which such a description is known
is quite small. Roughly speaking, this class contains essentially Banach lattices,
in fact Lebesgue spaces and the spaces obtained from them by simple operations
like latticial tensorization (i.e. the operation (L,X) 7→ L(X), where L is a Banach
lattice and X a Banach space) or latticial interpolation. Outside of this frame
are essentially the C∗-algebras and the preduals of von Neumann algebras (or W ∗

algebras), which are the non commutative analogues of, respectively, C(K) spaces
and L1 spaces. While the case of C∗-algebras is simple and its treatment goes
back to [2], that of preduals of von Neumann algebras’s is a little more involved
and is a by-product of [5].

The aim of the present paper is to give a description of the ultrapowers of
non-commutative Lp spaces. Since their introduction by Haagerup ([7]), these
spaces have been given several other equivalent constructions (see [16], [25], [12]),
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but we shall follow Haagerup’s construction as developed in the first chapters of
[24]. An appeal to these generalized Lp spaces is unavoidable even when dealing
with the ultrapowers of Schatten classes Sp(H) (in other words, the class of Lp
spaces associated with a normal semifinite trace is not closed under ultrapowers).
The question of the representation of ultrapowers (or, equivalently, of nonstandard
hulls) of Sp(H) was asked as Problem 16 in [10].

Before to do this, we revisit (in Section 1 below) the case p = 1, giving
another proof of the representation theorem of [5], starting with an appropriate
representation of the given von Neumann algebra (VNA)a as subalgebra of B(H).
In this description, the ultrapower of the predual a∗ coincides with the predual of
the VNA A generated by the ultrapower of a, when this last ultrapower is realized
as a sub-C∗-algebra of B(H̃), where H̃ is the ultrapower of H. The commutant
of A is then generated as VNA by the ultrapower of the commutant of a. These
facts (which of course also takes place for ultraproducts) permit us to elucidate (in
Section 2) the local modular structure of A in terms of that of a. More precisely,
if (ϕi) is a family of normal states of a and ϕ̃ is the corresponding normal state of
A, the modular automorphism σϕ̃t (of the reduced Aϕ̃ obtained by reduction to the

support of ϕ̃) is the “ultrapower map” of the family σϕ̃i

t of modular automorphisms
of the reduced VNA’s aϕi . An analogous result takes place for relative modular
theory (relative to two normal states ϕ̃1, ϕ̃2 of A).

In Section 3 we pass to the study of ultrapowers of Lp(a) space. Using
Haagerup’s formalism, we introduce the Mazur maps Lp(a) → L1(a): these non-
linear locally uniform homeomorphisms are the analogues of the classical Mazur
maps f 7→ f |f |p−1 in the commutative case. Then, like in commutative case, the
vector space Lp appears as L1 equipped with new vector space operations and the
philosophy of the Section 3 is that these operations “pass to ultrapower”. Finally,
we recover the ultrapowers of Lp(a) as Lp(A) spaces, isometrically and as bimod-
ules (relative to the action of the ultrapower of a); by the construction itself,
the Mazur map for Lp(A) is the ultrapower of the corresponding Mazur map of
Lp(a). These results are valid in the case 0 < p < 1 too, but this requiers a
special argument developed in Section 4. Finally, in Section 5 we show that the
identifications of the ultrapowers of Lp(a) with spaces Lp(A) for various values of
p are compatible with the multiplication maps Lp(a)×Lq(a) → Lr(a) given by
the noncommutative Hölder theorem. We remark also that these identifications
preserve the natural operator space structures in the sense of Effros-Ruan.

It should be emphasized that all the results of this paper are valid for ul-
traproducts of a family of Lp spaces (for a fixed p) as well. The proofs are the
same as for ultrapowers, and it is only for convenience of writing that the results
are stated and the proofs are given only for ultrapowers. (In facts, the results of
Section 2 rely on the ultraproduct version of certain results of Section 1.)

The results concerning the cases p = 1 and p = 2 were announced in the
seminar notes [20].
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DEFINITIONS AND NOTATION

If X is a Banach space and U an ultrafilter over some set of indices I, let `∞(I;X)

be the space of bounded X-valued families indexed by I, equipped with the sup
norm; the ultrapower XI/U (also frequently denoted by XU in the literature),

is the quotient space `∞(I;X)/N , where N is the (closed) subspace of `∞(I;X)

consisting of those families (xi) ∈ `∞(I;X) such that lim
i,U

‖xi‖ = 0. The element

of XI/U represented by (xi) will be denoted by (xi)•. Recall that the quotient

norm is simply given by ‖(xi)•‖ = lim
i,U

‖xi‖. If we consider a family of Banach

spaces (Xi)i∈I and the space
( ⊕
i∈I

Xi

)
∞

(of bounded families (xi) ∈
∏
i∈I

Xi) in

place of `∞(I;X), we obtain the ultraproduct
∏
i∈I

Xi/U . We refer to [8], [22] for

basic facts about ultrapowers and ultraproducts of Banach spaces. In this paper

the set I and the ultrafilter U are fixed once for all (except for the end of Section
1: see Lemmas 1.13 and 1.16) and we shall generally denote by X̃ the ultrapower
XI/U . A bounded linear map T from the Banach spaceX into the Banach space Y
induces naturally a bounded linear map T̃ : X̃ → Ỹ defined for x̃ = (xi)•i∈I ∈ X̃ as
T̃ (x̃) = (Txi)•i∈I (note that changing of representing family for x̃ does not change
T̃ (x̃)); we shall speak of T̃ as the ultrapower map of T . More generally, we can

consider a bounded family (Ti) in the space B(X,Y ) of bounded linear operators
from X to Y and define the ultraproduct map T̃ : (xi)•i∈I 7→ (Tixi)•i∈I ; this provides
a natural (linear, isometric) embedding from B(X,Y )I/U into B(X̃, Ỹ ). The

linearity of T is in fact not required by this construction, and, more generally, we
can define the ultrapower map F̃ of a map F : X → Y which is locally uniformly

continuous (i.e. uniformly continuous on every ball of X).

In the following, H will be a Hilbert space and B(H) the space of bounded

linear operators on H. We shall denote by a a von Neumann algebra (shortly,

VNA) over H and a∗ its predual (the space of normal bounded linear forms over

a). We refer to [3] and [21] for the basic facts on VNA and to [15] and [23] for

the facts on modular theory. The basic facts about Lp(a) spaces will be recalled
in due time (Section 3).

We denote by a+
∗ the set of positive elements of a∗; if ξ ∈ H, we denote as

usual by ωξ the positive normal linear form defined by:

∀x ∈ a, ωξ(x) = (xξ, ξ)H .
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1. ULTRAPOWERS OF PREDUALS OF VON NEUMANN ALGEBRAS REVISITED

Since by Sakai’s theorem ([21], Corollary 1.13.3) the predual a∗ of the VNA a
depends only on the isometry class of a, we have the choice of an appropriate
representation for identifying the ultrapowers ã∗.

We shall consider a representation of a over the Hilbert space H verifying
the condition:

(R) For every ϕ ∈ a+
∗ , there exists a vector ξ in H such that ϕ = ωξ.

For a general representation (for example if a = B(H)), we only have that
there exists a sequence (ξn) in H such that ϕ =

∑
n
ωξn ([3], I, Section 4, Theorem

1). But given a representation a (over H) there is an amplification of a verifying
property (R) (this is simply the algebra a ⊗ CI acting on the Hilbert tensor
product H ⊗ `2). Another important case is when there exists a separating vector
in H for a (see [15], Theorem 7.2.3).

From now on, we consider a VNA a satisfying property (R).
The inclusion a ⊂ B(H) induces a natural inclusion ã ⊂ B̃(H) (i.e. ã is a

sub-C∗-algebra of the C∗-algebra B̃(H)). On the other hand, we have an isometric
embedding j : B̃(H) ↪→ B(H̃) defined by:

∀ T̃ = (Ti)• ∈ B̃(H), ∀ x̃ = (xi)• ∈ H̃, j(T̃ )(x̃) = (Ti(xi))•i∈I .

The map j is a unital injective ∗-homomorphism. Hence, we may consider B̃(H)
(and so ã) as a sub-C∗-algebra of B(H̃).

Let A be the VNA generated by ã in B(H̃) (A is simply the weak operator
closure of ã; it coincides also with the bicommutant ã′′ of ã).

Theorem 1.1. The ultrapower (̃a∗) identifies with the predual A∗ of the
VNA A.

Before proving Theorem 1.1, we recall a well known fact of the theory of
ultrapowers ([22], Section 11):

Fact 1.2. For every Banach space X there is a natural isometric inclusion
iX : ˜(X∗) → (X̃)∗ defined by:

〈iX((x∗i )
•), (xi)•〉 = lim

i,U
〈x∗i , xi〉.

Moreover, the image of iX is w∗-dense in (X̃)∗, and even the image of the unit
ball of X̃∗ is w∗-dense in the unit ball of (X̃)∗.

Let us denote by L the ultrapower (̃a∗). By applying Fact 1.2 with X = a∗,
we obtain an isometric embedding i : ã→ L∗.
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Lemma 1.3. The embedding i : ã→ L∗ is weak-operator to w∗-continuous.
Proof. For every ϕ̃ ∈ L we have to prove that the map x̃ 7→ 〈i(x̃), ϕ̃〉 is

weak-operator continuous on ã. We have ϕ̃ = (ϕi)•, and we can suppose that
every ϕi belongs to a+

∗ (every element of the predual is a linear combination with
coefficients ±1, ±i of four positive elements with smaller or equal norms). By (R),
for every i we have ϕi = ωξi for some ξi ∈ H, and since ‖ξi‖2 = ωξi(I) = ‖ϕi‖,
the family (ξi) is bounded in H, and represents an element ξ̃ of H̃. We have then:

∀ x̃ ∈ ã, 〈i(x̃), ϕ̃〉 = lim
i,U
〈xi, ϕi〉 = lim

i,U
〈xiξi, ξi〉 = 〈x̃ξ̃, ξ̃〉 = ω

ξ̃
(x̃).

The right member is clearly weak-operator continuous as a function of x̃.

Proof of Theorem 1.1. Since by Kaplansky’s Theorem the unit ball Bã of ã
is weak-operator dense in BA and i(Bã) ⊂ BL∗ is relatively w∗-compact, we see
that the map i has a unique extension to a weak-operator to w∗-continuous map
BA → BL∗ , and then by homogeneity to ı̂ : A → L∗ (for every x ∈ BA, ı̂(x) is
the unique w∗-clusterpoint of the set i(x̃) when x̃ ∈ Bã weak-operator converges
to x). It is clear that ı̂ is linear with norm less than 1.

We prove first that the map ı̂ is isometric. For, if x ∈ A and ε > 0, we can
find ξ̃ and η̃ in H̃ with ‖ξ̃‖, ‖η̃‖ 6 1 and ‖x‖ 6 (1 + ε)(xξ̃, η̃) = ωξ̃,η̃(x). Let (ξi),

(ηi) be representing families for ξ̃, respectively η̃, and let ϕi = ωξi,ηi
(an element

of a∗). We have ‖ϕi‖ 6 ‖ξi‖ · ‖ηi‖, hence sup
i
‖ϕi‖ < ∞, and the family (ϕi)

represents an element ϕ̃ of L (with ‖ϕ̃‖ = lim
i,U

‖ξi‖ ‖ηi‖ 6 1). We have then:

∀ ã = (ai)• ∈ ã, 〈i(ã), ϕ̃〉 = lim
i,U
〈ai, ϕi〉 = lim

i,U
〈aiξi, ηi〉 = 〈ãξ̃, η̃〉.

Letting ã weak-operator converge to x, we deduce (by weak-operator to w∗-
continuity of ı̂) that 〈̂ı(x), ϕ̃〉 = 〈xξ̃, η̃〉, hence ‖̂ı(x)‖ > |〈̂ı(x), ϕ̃〉| > (1 + ε)−1‖x‖.
Then let ε→ 0.

Now we prove that the map ı̂ is surjective. For, ı̂(BA) is w∗-closed (since BA
is weak-operator compact) and contains the set i(Bã) which is w∗-dense in BL∗ ;
thus ı̂(BA) contains BL∗ .

Remark 1.4. Let A1 be another realization of L∗ as VNA. By Fact 1.2 the
C∗-algebra ã is isometrically embedded in A1 as a w∗-dense subspace. We have
a linear isometry ρ of A onto A1 (preserving the subalgebra ã). This isometry ρ
is a priori a Jordan isomorphism ([14]), but if the product in A1 restricts to that
of ã, the isometry ρ (which is w∗-continuous) must preserve the products and is
thus an isomorphism of VNA.

The identification map between ã∗ and A∗. From now on we write i in
place of ı̂. Since this map is weak-operator to w∗-continuous, and a fortiori w∗

to w∗-continuous (when A is considered as the dual of A∗), we have i∗(L) ⊂ A∗
(where i∗ : L∗∗ → A∗ is the conjugate map). Since i is injective, i∗(L) is dense in
A∗, and since i is an onto isometry, so is i∗; in particular, i∗(L) is closed and thus
i∗(L) = A∗. Let i∗ be the restriction of i to L; this is the desired identification of
L with A∗.

We list now some “good” properties of the map i∗.



46 Yves Raynaud

Proposition 1.5. The identification map i∗ preserves the natural ã bimod-
ule structures of ã∗ and A∗, as well as the natural conjugation maps.

Proof. (a) i∗ preserves the actions of ã.
The natural right and left actions of a on a∗, i.e. the maps a×a∗ → a∗,

(x, ϕ) 7→ x ·ϕ = ϕ( ·x) and (x, ϕ) 7→ ϕ · x = ϕ(x · ) induce right and left actions of
ã on L = ã∗ (the ultrapower maps); on the other hand, the right and left actions
of A on A∗ = i∗(L) restrict to actions of ã on A∗.

The map i∗ is compatible with these actions of ã:

∀ ϕ̃ ∈ L,∀ x̃ ∈ ã, i∗(x̃ · ϕ̃) = x̃ · i∗(ϕ̃) and i∗(ϕ̃ · x̃) = i∗(ϕ̃) · x̃.

For, if ỹ is an arbitrary element of ã, we have for example:

〈ỹ, i∗(x̃ · ϕ̃)〉 = 〈i(ỹ), x̃ · ϕ̃〉 = lim
i,U
〈yi, xi · ϕi〉 = lim

i,U
〈yi · xi, ϕi〉

= 〈i(ỹ · x̃), ϕ̃〉 = 〈ỹ · x̃, i∗(ϕ̃)〉 = 〈ỹ, x̃ · i∗(ϕ̃)〉.

By w∗-density of ã in A we deduce the first equality i∗(x̃ · ϕ̃) = x̃ · i∗(ϕ̃).
(b) i∗ preserves the conjugation map.
On a∗ the conjugation map is defined as usual by

∀ϕ ∈ a∗,∀x ∈ a, ϕ∗(x) = ϕ(x∗).

Then ϕ 7→ ϕ∗ is an antilinear isometric involution of a∗. By passing to the ultra-
power, we deduce an antilinear isometric involution of L: ϕ̃ = (ϕi)• 7→ (ϕ∗i )

• =:
(ϕ̃)∗. On the other hand, A∗ is equipped with the conjugation map induced by
that of A. It is straightforward to verify the compatibility of i∗ with these two
conjugation maps:

∀ ϕ̃ ∈ L, i∗(ϕ̃∗) = i∗(ϕ̃)∗

(again the two members coincide on ã, hence are equal).

The space L is ordered by the mean of the cone ultrapower of the positive
cone a+

∗ :
L+ = {(ϕi)• ∈ L : ϕi > 0, ∀ i ∈ I}.

Note that an element of L+ is characterized by the existence of a positive repre-
senting family (not every representing family is positive).

Proposition 1.6. We have i∗(L+) = A+
∗ , i.e. the maps i∗ and (i∗)−1 are

positivity preserving.

Proof. If ϕ̃ ∈ L+ it is clear that 〈x̃, i∗(ϕ̃)〉 > 0 for every x̃ ∈ ã+ since such
an element x̃ has a representing family (xi) with xi > 0 for every i ∈ I (note that
x̃ = ỹ∗ỹ for some ỹ = (yi)• ∈ ã, then set xi = y∗i · yi). But ã+ is w∗-dense in A+

(this follows easily from the strong-operator density of ã in A and the fact that
A+ = {y∗y : y ∈ A}). Hence 〈y, i∗(ϕ̃)〉 > 0 for every y ∈ A+, i.e. i∗(ϕ̃) ∈ A+

∗ . So
i∗ is positivity preserving.

Conversely, if i∗(ϕ̃) > 0 then in particular i∗(ϕ̃) is hermitian:

i∗(ϕ̃) =
i∗(ϕ̃) + i∗(ϕ̃)∗

2
= i∗

(
ϕ̃+ ϕ̃∗

2

)
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hence ϕ̃ = ϕ̃+ϕ̃∗

2 , i.e. ϕ̃ has an hermitian representing family (ϕi) (ϕi = ϕ∗i for each
i ∈ I). Let ϕi = ϕ+

i −ϕ
−
i be the decomposition of ϕi in positive and negative part,

we have ϕ+
i , ϕ

−
i > 0 and ‖ϕi‖ = ‖ϕ+

i ‖ + ‖ϕ−i ‖ ([21], Theorem 1.14.3). Let ϕ̃+ =
(ϕ+
i )• and ϕ̃− = (ϕ−i )•. Then ϕ̃ = ϕ̃+− ϕ̃−, ϕ̃+, ϕ̃− > 0 and ‖ϕ̃‖ = ‖ϕ̃+‖+‖ϕ̃−‖.

We have i∗(ϕ̃) = i∗(ϕ̃+) − i∗(ϕ̃−) and since i∗(ϕ̃−) > 0 because i∗ preserves
positivity, we see that 0 6 i∗(ϕ̃) 6 i∗(ϕ̃+), which implies ‖i∗(ϕ̃)‖ 6 ‖i∗(ϕ̃+)‖. But
‖i∗(ϕ̃)‖ = ‖i∗(ϕ̃+)‖ + ‖i∗(ϕ̃−)‖ since i∗ is an isometry, hence ‖i∗(ϕ̃−)‖ = 0, and
ϕ̃− = 0. This means that (ϕ+

i ) is a representing family for ϕ̃, which belongs thus
to the cone L+.

Proposition 1.7. The absolute value map V : a∗ → a+
∗ , ϕ → |ϕ| is

locally uniformly continuous and induces an ultrapower map Ṽ : L → L+, which
is transformed by i∗ in the absolute value map of A∗:

∀ ϕ̃ ∈ L, i∗(Ṽ ϕ̃) = |i∗(ϕ̃)|.

Proof. If ϕ ∈ a∗, its absolute value |ϕ| is characterized by the conditions:
(1) |ϕ| > 0;
(2) there exists a partial isometry v ∈ a such that ϕ = v|ϕ| and |ϕ| = v∗ϕ.
(Note that the polar decomposition ϕ = u|ϕ| is then given by u = vp|ϕ|,

where p|ϕ| is the support of |ϕ|, i.e. the least projection p in a such that |ϕ| =
p · |ϕ|.)

These conditions pass to ultrapowers by Proposition 1.5 and 1.6, hence:

ϕ̃ ∈ L, ϕ̃ = (ϕ̃i)• ⇒ |i∗(ϕ̃)| = i∗[(|ϕi|)•].

By a standard reasoning, this implies that the map V is locally uniformly contin-
uous (in fact, it is well known that V is 1

2 -Hölder; see [18]).

The commutant of A. Let a′ be the commutant of a in B(H). Like for
a, the ultrapower ã′ identifies with a unital C∗-algebra over H̃. Let B be the
VNA generated by ã′ in B(H̃). We have the following general result (where no
assumption is made on the VNA a; so A is simply the VNA generated by ã in
B(H̃), which is perhaps not identifiable with the dual of ã∗).

Theorem 1.8. The VNA B coincides with the commutant A′ of A in B(H̃).

We shall use the following lemma:

Lemma 1.9. Let ξ, η ∈ H and ψ ∈ a+
∗ such that ωη 6 ωξ + ψ. Then there

exist x′ ∈ a′ and ζ ∈ H with ‖x′‖ 6 1 and ‖ζ‖ 6 ‖ψ‖1/2 such that η = x′ξ + ζ.

Proof. We can find a sequence (ξn)n inH such that ψ =
∑
n
ωξn

. We interpret

the equation ωη 6 ωξ+
∑
n
ωξn in the predual of the amplification a⊗C·I ofa over

H⊗`2 = `2(H). Let η̂ = (η, 0, . . . , 0, . . .) and ξ̂ = (ξ, ξ1, . . . , ξn, . . .). We have ωη̂ 6
ωξ̂; hence ([3], I, Section 4, Lemma 1) there exists x̂′ ∈ (a ⊗ C · I)′ = a′⊗B(`2)

such that ‖x̂′‖ 6 1 and x̂′ξ̂ = η̂. Writing x̂′ as an infinite matrix (x′mn)mn with
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entries in a′ we obtain η = x′00ξ+
∑
n
x′0nξn with ‖x′00‖ 6 1 and ‖

∑
n
x′0nx

′∗
0n‖ 6 1.

Set x′ = x′00, ζ =
∑
n
x′0nξn, we have ‖ζ‖ 6

∑
n

(‖ξn‖2)1/2 = ‖ψ‖.

Proof of Theorem 1.8. It is clear that ã′ ⊂ (ã)′ = A′, hence B ⊂ A′.
Conversely, let T ∈ A′.

We show that for every finite family ξ̃1, . . . , ξ̃N ∈ H̃ there exists x̃′ ∈ ã′ such
that x̃′ξ̃l = T ξ̃l, for each l = 1, . . . , N . We start with the case N = 1.

Let η̃ = T ξ̃, we have for every x ∈ A+

ωη̃(x) = ‖x1/2T ξ̃‖2 = ‖Tx1/2ξ̃‖2 6 ‖T‖2‖x1/2ξ̃‖2 = ‖T‖2ωξ̃(x),

i.e. ωη̃ 6 ‖T‖2ωξ̃. Let (ξi)i and (ηi)i be representing families for ξ̃, respectively η̃.
For every i ∈ I, the form ψi = ωηi−‖T‖2ωξi is hermitian; it can be decomposed as
ψi = ψ+

i −ψ
−
i , where ψ+

i , ψ
−
i ∈ a+

∗ have disjoint supports p+
i , p−i . Let p̃+ = (p+

i )•i .
We have 0 6 ‖ψ+

i ‖ = 〈ψi, p+
i 〉 and lim

i,U
〈ψi, p+

i 〉 = 〈ωη̃ − ‖T‖2ωξ̃, p̃+〉 6 0 , hence

lim
i,U

‖ψ+
i ‖ = 0. Since

∀ i ∈ I, ωηi 6 ω‖T‖ξi
+ ψ+

i ,

there exists by Lemma 1.9 an element a′i ∈ a′ and a ζi ∈ H such that ‖a′i‖ 6 1,
‖ζi‖ 6 ‖ψ+

i ‖1/2 and
ηi = ‖T‖a′iξi + ζi.

Let x̃′ = ‖T‖(a′i)•i ; we have x̃′ ∈ ã′, and η̃ = x′ξ̃.
For the general case N > 1, we consider the spatial tensor product a(N) =

a ⊗ MN (C), acting on the Hilbert tensor product H(N) = H ⊗ `N2 . We have

(a(N))′ = a′ ⊗ C · IN , H̃(N) = H̃(N), and ã(N) = (ã)(N), whose commutant
in B(H̃(N)) is A′ ⊗ C · IN . Applying the preceding result to the element ξ̂ =
(ξ̃1, . . . , ξ̃N ) of H̃(N) and the element T ⊗IN of A′⊗C ·IN gives an element x̃′⊗IN
of ã′ ⊗ C · IN (the ultrapower of (a(N))′) such that (T ⊗ IN )(ξ̂) = (x̃′ ⊗ IN )(ξ̂),
i.e. T ξ̃l = x′ξ̃l, l = 1, . . . , N .

Remark 1.10. Exchanging the roles of a and a′, we see that for every
x ∈ A and every finite family ξ̃1, . . . , ξ̃N in H̃, there is an element x̃ ∈ ã such
that ‖x̃‖ 6 ‖x‖ and x̃ξ̃l = xξ̃l, l = 1, . . . , N . Let s(ξ̃1, . . . , ξ̃N ) be the A-support of
the family ξ̃1, . . . , ξ̃N (the least projection in A preserving the vectors ξ̃1, . . . , ξ̃N ,
which is also the projection on the closure of A′ξ̃1 + · · · + A′ξ̃N ), then x and x̃

coincide on the range of s(ξ̃1, . . . , ξ̃N ).

Corollary 1.11. Let A = ã∗. For each ϕ̃ ∈ A+
∗ and x ∈ A there is an

x̃ ∈ ã such that ‖x̃‖ 6 ‖x‖ and xpϕ̃ = x̃pϕ̃, where pϕ̃ is the support of the normal
functional ϕ̃.

Proof. Suppose that the realization of a in B(H) verifies the condition (R),
so A coincides with the VNA generated by ã in B(H̃); moreover, the realization
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of A in B(H̃) verifies the condition (R) too. Hence ϕ̃ = ωξ̃ for some ξ̃ ∈ H̃, so

pϕ̃ = s(ξ̃). Then Remark 1.10 implies the result.

On the type of A. The ultrapower and ultraproduct procedures for VNA-
preduals do not preserve semifiniteness for the dual VNA’s. We show this for
the case of B(H) (ultrapowers) and of finite matrix spaces Mn (ultraproducts).
The first lemma is probably a matter of folklore; we give a proof for the reader’s
convenience.

Lemma 1.12. B(H)∗∗ is not semifinite.

Proof. Let M be a type III hyperfinite factor. Then M is injective, hence if
M⊂ B(H) is a realization of M there exists a contractive projection P : B(H) →
M. Passing to the biconjugate we obtain a normal contractive projection P ∗∗

from B(H)∗∗ onto its sub VNA M∗∗. Then P ∗∗ is a conditional expectation by
Tomiyama’s theorem. By a result of Sakai, if B(H)∗∗ is semifinite, so is M∗∗ (see
the proof of Lemma 2.6.5 of [21]). But there is a central projection z of M∗∗ such
that M≈ zM∗∗ (∗-isomorphically). If M∗∗ is semifinite, so is zM∗∗ (and M), a
contradiction.

Lemma 1.13. Let a be a VNA. There exist a set I, a ultrafilter U on I
and a w∗-continuous isometric ∗-embedding ρ : a∗∗ ↪→ A = [(a∗)U ]∗ whose
range ρ(a∗∗) is the range of a w∗-continuous contractive projection preserving the
identity.

Proof. Let j : a∗ ↪→ (a∗)U be an embedding given by the local reflexivity
theorem (for appropriate I and U , see e.g. [8]) and i : a ↪→ aU be the natural
isometric embedding. In particular, we have 〈ϕ, x〉a∗×a = 〈j(ϕ), i(x)〉a∗

U×aU for
every ϕ ∈ a∗ and x ∈ a. Define a linear contraction P : (a∗)U → a∗ by:

〈Pϕ̃, x〉 = lim
α,U
〈ϕα, x〉 = 〈ϕ̃, i(x)〉

for every ϕ̃ = (ϕα)• ∈ (a∗)U and x ∈ a. In particular, 〈Pj(ϕ), x〉 = 〈j(ϕ), i(x)〉 =
〈ϕ, x〉, so Pj = ida∗ .

Consider the conjugate maps ρ = P ∗ : a∗∗ → (a∗)∗U = A and Q = j∗ :
A → a∗∗; then ρ,Q are w∗-continuous contractions and Qρ = ida∗∗ , so ρ is an
isometry and ρQ is a projection from A onto ρ(a∗∗).

If x ∈ a and ϕ̃ = (ϕα)• ∈ (a∗)U , we have:

〈ρ(x), ϕ̃〉A×A∗ = 〈x, P ϕ̃〉 = 〈i(x), ϕ̃〉aU×(a∗)U ,

hence the restriction ρ|a identifies with the map i : a→ aU (when this last C∗-
algebra is considered as embedded in A). In particular, ρ|a preserves the product
of a. Since ρ is w∗-w∗-continuous and the product is separately w∗-continuous,
we obtain that ρ(xy) = ρ(x)ρ(y) for every x, y ∈ a∗∗. Since P is positive, so is ρ,
which is thus a ∗-embedding.

Let S1(H) be the trace class over H.



50 Yves Raynaud

Proposition 1.14. For a suitable ultrafilter U , [S1(H)U ]∗ is not semifinite.

Proof. By the Lemma 1.13 witha = B(H), the VNAB(H)∗∗ is ∗-isomorphic
to a sub-VNA of A = (S1(H)U )∗ which is complemented in A by a normal contrac-
tive projection (hence a normal conditional expectation by Tomiyama’s theorem).
Since B(H)∗∗ is not semifinite, A cannot be semifinite.

For every natural number n, let Sn1 = S1(`n2 ) be the trace class over the
n-dimensional Hilbert space `n2 . Similarly, let S1 := S1(`2).

Lemma 1.15. For every ultrafilter U , the VNA (S1)∗U is ∗-isomorphic to

a contractively w∗-complemented sub-VNA of some ultraproduct
( ∏
k

S
n(k)
1 /W

)∗
(for suitable ultrafilter W and map k 7→ n(k), N → N).

Proof. Let us identify Sn1 with the subspace pnS1pn of S1, where pn is the
natural orthogonal projection `2 → `n2 . Let V be any free ultrafilter over N; we
have a natural isometric embedding j : S1 ↪→

∏
n
Sn1 /V defined by x 7→ (pnxpn)•.

Let P :
∏
n
Sn1 /V → S1 be defined by

P ((xn)•) = w∗ lim
n,U

xn

(the w∗-topology is relative to the duality of S1(`2) with K(`2)). Then P is a
contraction and Pj = idS1 , so j(S1) is 1-complemented in

∏
n
Sn1 /V.

Passing to the ultrapowers along any ultrafilter U we obtain an isomet-
ric embedding jU : (S1)U ↪→

( ∏
n
Sn1 /V

)
U

and a surjective contraction PU :( ∏
n
Sn1 /V

)
U
→ (S1)U such that PUjU is the identity of (S1)U .

Note that
( ∏
n
Sn1 /V

)
U

=
∏

(n,l)

Sn1 /V × U =
∏
k

S
n(k)
1 /W where V × U is the

product ultrafilter and W is its image by some bijection from N× N onto N.
By dualizing, we deduce a w∗-continuous isometric embedding ρ = P ∗U of

A = (S1)∗U into B =
( ∏
k

S
n(k)
1 /W

)∗
, and a w∗-continuous contractive surjection

Q = j∗U from B onto A such that QP = idA.
Let us show that ρ is multiplicative. We make this map explicit over the sub-

C∗-algebra K(H)U of A. If x̃ = (xk)• ∈ K(H)U and ϕ̃ = (ϕn,l)• ∈
∏
n,l

Sn1 /V × U ,

we have:
〈ρ(x̃), ϕ̃〉 = 〈x̃, PU ϕ̃〉 = lim

l,U
lim
n,V
〈xl, ϕn,l〉 = lim

l,U
lim
n,V
〈pnxlpn, ϕn,l〉 = 〈i(x̃), ϕ̃〉

where i : (xl)• 7→ (pnxlpn)• is the natural isometric embedding B(H)U →( ∏
n
B(ln2 )/V

)
U

(which is a subalgebra of B). This last embedding preserve prod-

ucts on K(H)U (but of course not on the whole of B(H)U ). Using the w∗-density
of K(H) in B(H) and that of B(H)U in A, one easily sees that K(H)U is w∗-dense
in A; so by w∗-continuity of ρ and separate w∗-continuity of the product, we see
that ρ preserves the product. Since ρ is positive, it is a ∗-embedding. Its image is
complemented by the contractive w∗-continuous projection ρQ.
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Lemma 1.16.
( ∏
k

S
n(k)
1 /W

)∗
is isomorphic to a contractively w∗-comple-

mented sub-VNA of some
( ∏
m
Sm1 /V

)∗
(with same identity).

Proof. One can find a strictly increasing function m 7→ m(k), N → N such

that n(k) divides m(k) for every k (note that k 7→ n(k) has no reason to be
increasing). We have then S

m(k)
1 ≈ S

n(k)
1 ⊗ S

p(k)
1 (linearly) for some p(k) ∈ N.

We have isometric embeddings ik : Sn(k)
1 → S

m(k)
1 and contractive surjections

Qk : Sm(k)
1 → S

n(k)
1 defined by:

ik(x) =
1

p(k)
x⊗ Ip(k), ∀x ∈ Sn(k)

1

Qk = id
S

n(k)
1

⊗ Trp(k)

where Ip(k) is the identity operator on l
p(k)
2 and Trp(k) is the normalized trace

S
p(k)
1 → C. Passing to ultraproducts, we obtain an isometric embedding i = (ik)•

from
∏
k

S
n(k)
1 /W into

∏
k

S
m(k)
1 /W and a contractive surjection Q = (Qk)• from∏

k

S
m(k)
1 /W onto

∏
k

S
n(k)
1 /W with Qi = id. Dualizing, we obtain an isometric

embedding ρ = Q∗ of
( ∏
k

S
n(k)
1 /W

)∗
into

( ∏
k

S
m(k)
1 /W

)∗
and a contractive sur-

jection P = i∗ from
( ∏
k

S
m(k)
1 /W

)∗
onto

( ∏
k

S
n(k)
1 /W

)∗
, both w∗-continuous,

with Pρ = id. Again ρ coincides with the trivial ∗-embeding (xk)• 7→ (xk⊗ Ip(k))•

on the w∗-dense subalgebra
∏
k

B(`n(k)
2 )/W, so it is a ∗-embedding of VNA’s. Fi-

nally, it is immediate that
∏
k

S
m(k)
1 /W is equal to

∏
k

Sn1 /V for a suitable ultrafilter

containing the sequence {n(k) : k ∈ N}.

Proposition 1.17. For a suitable ultrafilter V over N, the VNA (
∏
Sn1 /V)∗

is not semifinite.

Proof. By Lemmas 1.15 and 1.16 this VNA contains (S1)∗U as weak*-1-

complemented sub-VNA, for some ultrafilter U for which this last VNA is not

semifinite.
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2. ELEMENTS OF MODULAR THEORY FOR A

2.a. Local modular automorphism groups. If ϕ is a normal positive linear
form on a, let pϕ be the support of ϕ. The local modular automorphism group
(σϕt )t∈R will simply be the usual automorphism group of the VNA aϕ := pϕapϕ
with respect to the restriction of ϕ. We denote by ∆ϕ the modular operator
associated with ϕ: it is a positive selfadjoint unbounded operator on the Hilbert
space Hϕ = L2(ϕ), completion of aϕ for the scalar product (· , ·)ϕ associated with
ϕ (defined as usual by (x, y)ϕ = ϕ(y∗x)).

Let Φ = (ϕi)i∈I be a bounded family ina+
∗ and ϕ̃ be the element represented

by Φ in the ultrapower ã∗, which we identify with the predual of a VNA A in
which ã embeds as C∗-subalgebra. Let p̃Φ = (pϕi

)• and AΦ := p̃ΦA p̃Φ. Since
ϕ̃(p̃⊥Φ) = lim

i,U
〈ϕi, p⊥ϕi

〉 = 0, we have pϕ̃ 6 p̃Φ, hence Aϕ̃ = pϕ̃AΦpϕ̃. Note that

(AΦ)∗ = p̃ΦA∗p̃Φ identifies with
∏
i∈I

(aϕi∗)/U ; following Section 1 (which is valid in

the case of ultraproducts as well as in the case of ultrapowers) we may identify AΦ

with the VNA generated by the C∗-algebra ãΦ in B(H̃Φ), where H̃Φ =
∏
i∈I
Hϕi

/U .

(Note that since each space Hϕi
has a vector which is cyclic and separating for

aϕi , it verifies condition (R).) We may consider:
– the local modular automorphism group (σϕ̃t )t∈R acting on the VNA Aϕ̃ =

pϕ̃Apϕ̃;
– the group of ∗-automorphisms (σ̃Φ

t )t∈R acting on the C∗-algebra ãΦ :=

p̃Φãp̃Φ, where σ̃Φ
t is the ultrapower map associated with the family (σϕ̃i

t )i. This
group of automorphisms extends naturally to a group of ∗-automorphisms of AΦ

since it is implemented by a group of unitary operators (Ut)t∈R on H̃Φ: Ut is
simply the ultrapower map associated with the family (∆it

ϕj
)j∈I . We still denote

by (σ̃Φ
t ) these extensions to AΦ.

Theorem 2.1. For every element ϕ̃ ∈ A+
∗ and every representing family

Φ = (ϕi)i∈I ⊂ a+
∗ of ϕ̃, the reduced VNA Aϕ̃ = pϕ̃Apϕ̃ is preserved by the auto-

morphims σ̃Φ
t of AΦ := p̃ΦA p̃Φ and the restrictions to Aϕ̃ of these automorphisms

coincide with the local modular automorphisms σϕ̃t associated with ϕ̃.

Proof. For every i ∈ I, there is a natural separating cyclic vector ξϕi
∈ Hϕi

for aϕi
; we have ϕi = ωξi

. Let ξ̃Φ be the vector of H̃Φ represented by (ξϕi
)i∈I ;

then ϕ̃ = ωξ̃. Let a′ϕi
denote the commutant of aϕi

in B(Hϕi
). Then ã′Φ :=∏

i∈I
a′ϕi

/U generates the commutant A′Φ of AΦ in B(H̃Φ) (see Theorem 1.8). As a

consequence, pϕ̃ · H̃Φ is the closure of ã′Φ · ξ̃.
(i) We show first that Aϕ̃ is preserved by each σ̃Φ

t . If x̃′ = (x′i)
• ∈ ã′Φ we

have:
Utx̃

′ξ̃Φ = (∆it
ϕj
x′jξj)

•
j = (τ

ϕ′j
−t (x

′
j)ξj)

•
j ∈ ã′Φ · ξ̃
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where (τ
ϕ′j
t )t is the modular automorphism group of a′ϕj

relative to the normal

semifinite (n.s.f.) linear form ϕ′j = ωξj
. Hence Utx̃′ξ̃Φ ∈ pϕ̃H̃Φ, and so Ut(pϕ̃H̃Φ) ⊂

pϕ̃H̃Φ. Since U−1
t = U−t we have in fact Ut(pϕ̃H̃Φ) = pϕ̃H̃Φ, hence σ̃Φ

t (pϕ̃) =
Utpϕ̃U

∗
t = pϕ̃.
(ii) We show now that the group (σ̃Φ

t ) (of ∗-automorphisms of Aϕ̃) veri-
fies the KMS modular condition relative to ϕ̃ ([15], Definition 9.2.10). This will
imply that (σ̃Φ

t ) coincides with the modular automorphism group (σϕ̃t ) ([15], The-
orems 9.2.13 and 9.2.16).

Let x, y ∈ pϕ̃ãpϕ̃ (= pϕ̃Apϕ̃, see Corollary 1.11), i.e. x = pϕ̃x̃pϕ̃, y = pϕ̃ỹpϕ̃,
with x̃ = (xi)•, ỹ = (yi)•i , and xi, yi ∈ aϕi

. We have:

ϕ̃(σ̃Φ
t (x)y) = ϕ̃(σ̃Φ

t (pϕ̃x̃pϕ̃)pϕ̃ỹpϕ̃) = ϕ̃(pϕ̃σ̃Φ
t (x̃)pϕ̃ỹpϕ̃)

= ϕ̃(σ̃Φ
t (x̃)pϕ̃ỹ) = (pϕ̃ỹξ̃, σ̃Φ

t (x̃)∗ξ̃)H̃Φ

and similarly

ϕ̃(yσ̃Φ
t (x)) = ϕ̃(ỹpϕ̃σ̃Φ

t (x̃)) = (σ̃Φ
t (x̃)ξ̃, pϕ̃ỹ∗ξ̃)H̃Φ

.

Since the unit ball of ãΦ is ∗-strongly dense in that of AΦ, there exists a sequence
(z̃n)n in ãΦ such that:

‖z̃n‖ãΦ 6 ‖pϕ̃ỹpϕ̃‖AΦ , z̃nξ̃−→
n
pϕ̃ỹpϕ̃ξ̃ = pϕ̃ỹξ̃, z̃∗nξ̃−→

n
pϕ̃ỹ

∗pϕ̃ξ̃ = pϕ̃ỹ
∗ξ̃.

Then:

ϕ̃(σ̃Φ
t (x)y) = lim

n
(z̃nξ̃, σ̃Φ

t (x̃)∗ξ̃) = lim
n

lim
j,U

(zn,jξj , σ
ϕj

t (xj)∗ξj)

= lim
n

lim
j,U

ϕj(σ
ϕj

t (xj)zn,j)

and similarly:

ϕ̃(yσ̃Φ
t (x)) = lim

n
lim
j,U

(σϕj

t (xj)ξj , z∗n,j ξ̃j) = lim
n

lim
j,U

ϕj(zn,jσ
ϕj

t (xj)) .

For every j ∈ I, the KMS condition for the group (σϕj

t )t relatively to ϕj yields a
bounded continuous C-valued function Fn,j defined on the closed strip S = {z ∈
C : 0 6 Im z 6 1}, analytic on the open strip

◦
S, such that:

∀ t ∈ R,
{
Fn,j(t) = ϕj(σ

ϕj

t (xj)zn,j)
Fn,j(t+ i) = ϕj(zn,jσ

ϕj

t (xj)).

Since

max{|Fn,j(t)|, |Fn,j(t+ i)|} 6 ‖ϕj‖ ‖σ
ϕj

t (xj)‖ ‖zn,j‖ = ‖ϕj‖ ‖xj‖ ‖zn,j‖,

the functions Fn,j are actually uniformly bounded on S by the maximum principle
(Phragmen-Lindelöf). We shall prove that the limits lim

n
lim
j,U

Fn,j(t) = ϕ̃(σ̃Φ
t (x)ỹ)

lim
n

lim
j,U

Fn,j(t+ i) = ϕ̃(ỹσ̃Φ
t (x))
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are locally uniform with respect to t (i.e. uniformly for t ∈ [−M,+M ], for every
M > 0). Since, by the maximum principle and the usual device of multiplication
by the analytic fonctions Gε(z) = e−εz

2
, the locally uniform Cauchy condition on

the boundary of S for the Fn,j implies a locally uniform Cauchy condition on the
whole of S, we shall obtain that the Fn,j converge uniformly on compact sets of
S to a bounded continuous function F , which will be of course analytic on the
interior of S, and such that:

∀ t ∈ R,
{
F (t) = ϕ̃(σ̃Φ

t (x)y)
F (t+ i) = ϕ̃(yσ̃Φ

t (x)).

We treat only the convergence of the Fn,j on R; the case of the convergence on
R + i can be done similarly. We have:

∀ t ∈ R, Fn,j(t) = (zn,jξj ,∆it
ϕj
x∗jξj).

Consider the following spectral projectors of the selfadjoint operator ∆ϕj
:

e
(1)
j = 1l[0,1](∆ϕj ) and e

(2)
j = 1l]1,∞)(∆ϕj ) = I − e

(1)
j ;

then we obtain a decomposition Fn,j(t) = g
(1)
n,j(t) + g

(2)
n,j(t) where for l = 1, 2:

g
(l)
n,j(t) = (zn,jξj , e

(l)
j ∆it

ϕj
x∗jξj).

We show now that the functions g(2)
n,j , n ∈ N, j ∈ I are equicontinuous on R, while

the functions g(1)
n,j are asymptotically equicontinuous in the sense that for every

ε > 0 there exist n0 ∈ N and for every n > n0 a set Un ∈ U and an equicontinuous
family of functions hn,j such that sup

n>n0, j∈Un

‖g(1)
n,j−hn,j‖∞ < ε. Then the functions

Fn,j (restricted to R) are also asymptotically equicontinuous, which implies by a
variant of Ascoli’s theorem that their convergence is uniform on compact sets.

For every t, s ∈ R and λ > 0 we have the elementary inequality

(2.1) |λi(t+s) − λit| 6 |s|| log λ| 6 2|s|max (λ1/2, λ−1/2)

from which we infer that:

‖(∆i(t+s)
ϕj

−∆it
ϕj

)e(2)j x∗jξj‖ 6 2|s| ‖∆1/2
ϕj
x∗jξj‖ = 2|s| ‖xjξj‖ 6 2C|s|

with C = sup
j
‖xjξj‖, which clearly shows that the family (g(2)

n,j)n∈N, j∈I is equicon-

tinuous, in fact equi-Lipschitz.
For the functions g(1)

n,j , we note that since lim
n
z̃nξ̃ = pϕ̃ỹξ̃ belongs to the

closure of ã′Φ · ξ̃, there exist for every ε > 0 an integer n0 and an element z̃′ε =
(z′εj )•j∈I of ã′Φ such that

∀n > n0, ∃Un ∈ U such that ∀ j ∈ Un, ‖zn,jξj − z′εj ξj‖ < ε.

Set
gεj (t) = (z′εj ξj , e

(1)
j ∆it

ϕj
x∗jξj) = (e(1)j ∆−it

ϕj
z′εj ξj , x

∗
jξj);
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from inequality (2.1) we have:

‖(∆−i(t+s)
ϕj

−∆−it
ϕj

)e(1)j z′εj ξj‖ 6 2|s| ‖∆−1/2
ϕj

z′εj ξj‖ = 2|s| ‖z′ε∗j ξj‖ 6 2C ′ε|s|

where C ′ε = sup
j
‖z′εj ‖ · ‖ξj‖; so for each ε > 0 the family (gεj )j is equi-Lipschitz.

Moreover:
∀n > n0, ∀ j ∈ Un, ‖g(1)

n,j − gεj‖∞ 6 Bε

where B = sup
j
‖x∗jξj‖.

2.b. Relative modular theory. Given a VNA a and two normal positive
linear forms ϕ1 and ϕ2 with same support p, we consider (following the classical
construction of A. Connes, see Section 1.2 of [1]) the (spatial) tensor product
a(2) = a⊗M2(C) of a with the algebra of 2×2 complex matrices and the normal
positive form ψ on a(2) defined by ψ(

∑
xkl ⊗ ekl) = ϕ1(x11) + ϕ2(x22) (the ek,l,

k, l = 1, 2 are the elementary matrices of M2). Identifying the predual a(2)
∗ with

the (algebraic) tensor product a∗ ⊗M2, we have ψ = ϕ1 ⊗ e11 + ϕ2 ⊗ e22. The
support of ψ is p(2) = p ⊗ e11 + p ⊗ e22. Then the modular automorphisms
σψt of p(2)a(2)p(2) = (pap)(2) relative to ψ preserve the subspaces pap ⊗ ek,l of
p(2)a(2)p(2); in particular, for every x ∈ pap, σψt (x ⊗ e12) = σϕ1ϕ2

t (x) ⊗ e12. We
have:

σϕ1ϕ2
t (x) = σϕ1

t (x)(Dϕ1 : Dϕ2)t = (Dϕ1 : Dϕ2)tσ
ϕ2
t (x)

where the family of elements (Dϕ1 : Dϕ2)t = σϕ1ϕ2
t (p) ∈ pap is the Radon-

Nikodym cocycle of ϕ1 with respect to ϕ2.
Using the KMS condition for the modular automorphism group (σψt )t∈R,

we obtain for each couple (x, y) ∈ pap a (unique) bounded continuous function

Fx,y : S → C, analytic on
◦
S, verifying the boundary conditions:

∀ t ∈ R,
{
ϕ1(σ

ϕ1ϕ2
t (x)y) = Fx,y(t)

ϕ2(yσ
ϕ1ϕ2
t (x)) = Fx,y(t+ i).

Set (ϕ1−θ
1 · ϕθ2)(x) = Fp,x(iθ). Then ϕ1−θ

1 · ϕθ2 is clearly a bounded linear form on
pap, in general not hermitian; it is in fact w∗-continuous, as can easily be seen

using the Poisson integral representation formula for Fx,p(z), z ∈
◦
S); hence it is

an element of (pap)∗ which extends naturally to an element of pa∗p. It is easy
to see (using the three lines theorem) that ‖ϕ1−θ

1 · ϕθ2‖ 6 ‖ϕ1‖1−θ‖ϕ2‖θ.
We study now the behaviour of these constructions under ultraproducts. If

a is represented as a VNA over the Hilbert space H, then a(2) is represented as
a VNA over the Hilbert space H ⊕ H = H ⊗2 `

2
2. Identifying ã with a sub C∗-

algebra C of B(H̃), we can identify ã(2) with the C∗-algebra C(2) of B(H̃⊕ H̃) =
B(H̃)⊗M2. Let A be the dual of ã∗. We have:

(a∗ ⊗M2)̃ = ã∗ ⊗M2 = A∗ ⊗M2 = (A⊗M2)∗
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where the identifications are algebraic ones (i.e. the norms of the first and last
member are a priori only equivalent). But the duals of these spaces admit respec-

tively 1-norming subspaces ã(2) and (ã)(2) which isometrically identifies, so the

identification (a∗⊗M2)̃ = (A⊗M2)∗ is isometric. Moreover, the C∗-algebra ã(2)

is a sub-C∗-algebra of A(2), so A(2) identifies (as VNA) with the dual VNA of ã(2)
∗

(see Remark 1.4).

Proposition 2.2. Let ϕ̃1, ϕ̃2 be two positive elements of A∗ with the same
support p. We can choose representing families (ϕ1,i)i∈I and (ϕ2,i)i∈I in a+

∗ such
that for every i ∈ I, the normal forms have the same support pi. Then:

(i) p ((Dϕ1,i : Dϕ2,i)t)•i = ((Dϕ1,i : Dϕ2,i)t)•i p = (Dϕ̃1 : Dϕ̃2)t (for every
t ∈ R);

(ii) (ϕ(1−θ)
1,i · ϕθ2,i)•i = ϕ̃

(1−θ)
1 · ϕ̃θ2 (for every θ ∈ [0, 1]).

Proof. Let (ϕ1,i)i∈I and (ϕ2,i)i∈I be two arbitrary representing families for
ϕ̃1, ϕ̃2. If the ultrafilter U is countably incomplete we can find a family of positive
real numbers (εi)i∈I converging to zero along U . Put{

ϕ0
1,i = ϕ1,i + εiϕ2,i

ϕ0
2,i = εiϕ1,i + ϕ2,i.

Then ϕ0
1,i, ϕ

0
2,i have the same support and (ϕ0

1,i)i∈I , (ϕ0
2,i)i∈I represent also the

elements ϕ̃1, respectively ϕ̃2. The case where U is not countably incomplete is
essentially the trivial one (in this case the supports p1,i and p2,i of ϕ1,i, respectively
ϕ2,i, coincide for every i belonging to some element U of the ultrafilter, since
lim
i,U
〈ϕ1,i, p

⊥
2,i〉 = 〈ϕ̃1, (p2,i)•⊥〉 6 〈ϕ̃1, p

⊥〉 = 0 implies the equality 〈ϕ1,i, p
⊥
2,i〉 =

0, i.e. p1,i 6 p2,i, for every i in some U1 ∈ U ; and similarly for the converse
inequality).

Proof of (i). Set ψi = ϕ1,i ⊗ e11 + ϕ2,i ⊗ e22 and apply Theorem 2.1 to
ψ̃ = ϕ̃1 ⊗ e11 + ϕ̃2 ⊗ e22 = (ψi)•i ; considering the action of σψ̃t on p ⊗ e1,2, we
obtain:

p ((Dϕ1,i : Dϕ2,i)t)•i p = (Dϕ̃1 : Dϕ̃2)t.

Let pi be the common support of ϕ1,i and ϕ2,i; then p
(2)
i = pi ⊗ e11 + pi ⊗ e22

is the support of ψi. Let p̃ = (pi)•i , and p̃(2) = p̃ ⊗ e11 + p̃ ⊗ e22 = (p(2)
i )•i . Let

σ̃Ψ
t be the extension to (p̃Ap̃)(2) of the ultrapower map of the family (σψi

t )•i ; by
Theorem 2.1 we have σ̃Ψ

t (p(2)) = p(2). Since clearly p̃ ⊗ e12 commutes with p(2),
so does σ̃Ψ

t (p̃⊗ e12) which means exactly that

p ((Dϕ1,i : Dϕ2,i)t)•i = ((Dϕ1,i : Dϕ2,i)t)•i p.

To prove the point (ii), note that if x̃ ∈ p̃ãp̃, we have by the preceding:

ϕ̃1((Dϕ̃1 : Dϕ̃2)tpx̃p)) = 〈ϕ̃1, p(Dϕ1,i : Dϕ2,i)t)•i (xi)
•
i 〉

= lim
i,U

ϕ1,i ((Dϕ1,i : Dϕ2,i)txi)
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and similarly

ϕ̃2(px̃p(Dϕ̃1 : Dϕ̃2)t) = lim
i,U

ϕ2,i (xi(Dϕ1,i : Dϕ2,i)t).

The proof of Theorem 2.1 shows that these limits are uniform with respect
to t varying in compact sets of R. Consequently,

Fp,px̃p(z) = lim
i,U

Fpi,xi
(z)

for every z ∈ S. In particular, for z = iθ we obtain

ϕ̃
(1−θ)
1 · ϕ̃θ2(px̃p) = lim

i,U
ϕ

(1−θ)
1,i · ϕθ2,i(xi) = 〈(ϕ(1−θ)

1,i · ϕθ2,i)•i , x̃〉

which shows that (ϕ(1−θ)
1,i ·ϕθ2,i)•i has right and left supports equal to p and coincides

with ϕ̃(1−θ)
1 · ϕ̃θ2.

3. ULTRAPOWERS OF Lp SPACES

The main result of this section is the following

Theorem 3.1. Let a be a von Neumann algebra, 0 < p < ∞ and U an
ultrafilter on the set I. The ultrapower Lp(a)I/U is isometric to the Lp(A) space
associated with the VNA A = (L1(a)I/U)∗.

Before proving this theorem we recall a few elements of the construction of
Haagerup’s Lp(a) spaces associated with a von Neumann algebra a (see [6], [24]).

There is a semifinite VNA M containing a (the crossed product a o R of
a by its modular automorphism group) and a strongly continuous one-parameter
group (θs)s∈R of automorphisms of M, such that a is the space of fixed points of
this automorphism group:

a = {h ∈M : θs(h) = h, ∀ s ∈ R}

where M is equipped with a n.s.f. trace τ such that τ◦θs = e−sτ for every s ∈ R.
Let L0(M, τ) be the involutive algebra of τ -measurable (unbounded) operators
affiliated with M: h ∈ L0(M) iff h is affiliated with M and for each ε > 0 there
exists a projection p ∈ M such that hp is bounded and τ(p⊥) < ε. A basis of
neighborhoods of zero in L0(M, τ) consists of the sets

Nε,δ = {h ∈ L0(M, τ) : ∃p ∈M projection such that ‖hp‖ < δ and τ(p⊥) < ε}

and provides L0(M, τ) with a structure of linear topological ∗-algebra.
There is a linear homeomorphism ϕ → hϕ from a∗ onto the closed linear

subspace L1(a) of L0(M) whose elements are those operators h ∈ L0(M) for
which

∀ s ∈ R, θs(h) = e−sh.

This homeomorphism preserves the natural structures of a-bimodule of a∗ and
L1(a), as well as the conjugation map and the absolute value map.
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For every p ∈ (0,∞], the space Lp(a) is defined as the closed subspace of
L0(M) consisting of the operators h for which

∀ s ∈ R, θs(h) = e−s/ph.

Then Lp(a) is an a-bimodule, closed under conjugation and absolute value. If
p = ∞, it turns out that L∞(a) = a while if p <∞, Lp(a) is characterized by

for h ∈ L0(M), h ∈ Lp(a) ⇐⇒ |h|p ∈ L1(a).

The norm on Lp(a) is defined by ‖h‖p = ‖ |h|p‖1/p (which equals also ‖h∗‖p).
This is indeed a norm when p > 1, and a p-norm when 0 < p 6 1 (see [17]). We
shall denote by Lp(a)+ the cone L0(M)+ ∩ Lp(a).

If 1
p + 1

q = 1
r , there is a natural bilinear map

Lp(a)× Lq(a) → Lr(a), (h, k) 7→ h · k

which satisfies Hölder inequality ‖h · k‖r 6 ‖h‖p‖k‖q (see [24] for r > 1 and [17]
for the general case). Conversely, we have:

‖h‖p = sup{‖h · k‖r : k ∈ Lq(a), ‖k‖q 6 1}.

The case p = 2 is special, since the norm on L2(a) derives from a hermitian
scalar product (h, k) := Tr(k∗ · h) where Tr is the distinguished positive linear
form on L1(a) identified with the element I ∈ a (when L1(a) is identified with
a∗). There is a natural left action π of a on L2(a): π(x) · h = x · h for every
x ∈ a and h ∈ L2(a) and a natural antilinear isometric involution J of L2(a),
namely Jx = x∗. Then π is an injective normal ∗-representation of a on L2(a),
and (π(a), L2(a), J, L2(a)+) a standard form for a in the sense of [7].

The Mazur maps. Let 0 < p < ∞. We define a Mazur map Sp: L0(M) →
L0(M) in the following way: if h ∈ L0(M) has polar decomposition h = u|h| we
set Sp(h) = u|h|p. This formula gives also the polar decomposition of Sp(h), since
the range projection of |h|p coincides with that of |h| so |Sp(h)| = |h|p. Note that
if h ∈ Lp(a) then u ∈ L∞(a) and |h|p ∈ L1(a), hence Sp(h) ∈ L1(a); we have
then ‖Sp(h)‖1 = ‖ |h|p‖1 = ‖h‖pp.

Lemma 3.2. The map Sp is a locally uniform homeomorphism between the
spaces Lp(a) and L1(a).

Proof. It is clear that the map Sp is bijective, with inverse map S−1
p = S1/p.

So it suffices to prove that Sp is locally uniformly continuous for the uniform
structure of L0(M). Note first that the square map h 7→ |h|2 = h∗ · h is locally
uniformly continuous in L0(M) since the conjugation map h 7→ h∗ and the bilinear
map (h, k) 7→ h · k are. The next step is to prove that for every α > 0 the map
h 7→ hα is locally uniformly continuous from L0(M)+ into L0(M)+. This map is
indeed locally uniformly continuous from M+ into M+ (approximate the function
t 7→ tα by polynomials, uniformly on compact sets of R+); let ωA be its modulus of
continuity on the ball of radius A in M. Let B be a bounded set of L0(M)+. Let δ
be a positive real number. For every h, k ∈ B we can find spectral projections p, q
(of h, respectively k) with τ(p⊥) < δ, τ(q⊥) < δ and ‖hp‖ < CB(δ), ‖kq‖ < CB(δ);
then ‖hαp − kαq‖ = ‖(hp)α − (kq)α‖ 6 ωCB(δ)(‖hp − kq‖). If moreover there is
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a projection r ∈ M such that τ(r⊥) < δ and ‖(h − k)r‖ < ε, then s = p ∧ q ∧ r
verifies τ(s⊥) < 3δ and ‖(hα − kα)s‖ 6 ωCB(δ)(ε) < δ for sufficiently small ε.

Now for every p > 1 we may write Sph = h|h|p−1. From the preceding, the
map h 7→ |h|p−1 is locally uniformly continuous in L0(M); so is the product map,
hence Sp is. When p < 1 consider the maps Sp,ε defined by Sp,ε(h) = h(ε+|h|)p−1.
The same reasoning proves that for each ε > 0 the map Sp,ε is locally uniformly
continuous in L0(M). But for every h ∈ L0(M) we have Sp,ε(h) − Sp(h) ∈ M
and ‖Sp,ε(h) − Sp(h)‖M 6 εp (for positive autoadjoint h this comes from the
spectral calculus and the elementary inequality |t(ε + |t|)p−1 − tp| 6 εp valid for
every positive real t). This uniform approximation shows that Sp is also locally
uniformly continuous.

Remark 3.3. It is not hard to see that the modulus of continuity of Sp over
a ball of radius R depends only on R and p (not on a); this would be important
when dealing with ultraproducts in place of ultrapowers.

Remark 3.4. Several results close to Lemma 3.2 do exist in the literature.
Theorem 4.2 of [17] states that the restriction of Sp to the positive cone is an home-
omorphism when p > 1. In fact, using a generalized Power-Størmer inequality due
to Kosaki too (see the Appendix of [17]) one can easily show that this homeo-
morphism is locally uniform, and obtain an Hölder estimate for the modulus of
continuity, namely:

‖a− b‖pp 6 ‖ap − bp‖1 6 Mk‖a− b‖p−kp + kMp−1‖a− b‖p
for every a, b ∈ Lp(a)+ with max (‖a‖p, ‖b‖p) 6 M ; here k is the greatest integer
strictly less than p. Analogous estimates can be given for the case p < 1. Writing
Sp(a) = a|a|p−1 one can deduce that Sp is locally uniformly continuous for p > 1,
but to deduce the local uniform continuity of the inverse S−1

p does not seem so
immediate.

Remark 3.5. The map Sp preserves conjugation: Sp(h∗) = Sp(h)∗ for every
h ∈ Lp(a).

Proof. If h = u|h| is the polar decomposition of h then h∗ = u∗|h∗| is that
of h∗. Then Sp(h) = u|h|p and Sp(h∗) = u∗|h∗|p. Moreover |h∗| = u|h|u∗ implies
easily that |h∗|p = u|h|pu∗, hence Sp(h∗) = u∗u|h|pu∗ = |h|pu∗ = Sp(h)∗.

Now we can give a more precise version of Theorem 3.1:

Theorem 3.6. Let a be a VNA and identify ã∗ with A∗ like in Section 1.
Identifying preduals of VNA’s with the corresponding Haagerup L1 spaces we get
an identification map Λ1 : L1(a)U → L1(A). Let Sap : Lp(a) → L1(a) and
SAp : Lp(A) → L1(A) be the Mazur maps. Let S̃p : Lp(a)U → L1(a)U be the
ultrapower map of Sap . Then Λp := (SAp )−1◦Λ1◦S̃p is a linear bijective isometry
between Lp(a)U and Lp(A). Moreover, this map preserves conjugation, positivity
and the natural ã bimodule stuctures of Lp(a)U and Lp(A).

The non trivial point in this statement is the fact that Λp is linear and a
bi-module homomorphism. The cases p > 1 is treated in this section, the proof
of Theorem 3.6 in the case 0 < p < 1 is postponed to Section 4 (the method for
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treating the first case does not extends to the second one). In the following we
omit generally the map Λ1 (considered as the identity).

The p > 1 case. Let q be the conjugate exponent to p. We shall prove that

(3.1) ∀ h̃ ∈ Lp(a)U , ∀ k̃ ∈ Lq(a)U , Λp(h̃) · Λq(k̃) = h̃ · k̃

where in the left member the product is the natural bilinear map Lp(A)×Lq(A) →
L1(A), while in the right member the product means the ultrapower of the bilinear
map Lp(a)× Lq(a) → L1(a).

If (3.1) is true, then for every h̃1, h̃2 ∈ Lp(a)U and k̃ ∈ Lq(a)U :

Λp(h̃1 + h̃2) · Λq(k̃) = (h̃1 + h̃2) · k̃ = h̃1 · k̃ + h̃2 · k̃ = (Λp(h̃1) + Λp(h̃2)) · Λq(k̃).

But if the elements f̃1, f̃2 of Lq(A) verify the equalities f̃1 · ã = f̃2 · ã for every
ã ∈ Lq(A), then f̃1 = f̃2 (by the converse of Hölder inequality); so we conclude
that Λp(h̃1 + h̃2) = Λp(h̃1) + Λp(h̃2).

Similarly, we have for every x̃ ∈ ã, h̃ ∈ ˜Lp(a), k̃ ∈ ˜Lq(a):

Λp(x̃ · h̃) · Λq(k̃) = (x̃ · h̃) · k̃ = x̃ · (h̃ · k̃) = x̃ · (Λp(h̃) · Λq(k̃)) = (x̃ · Λp(h̃)) · Λq(k̃)

were we implicitely used the fact that the left actions of ã are preserved by the
identification of L1(a)U with L1(A). By the same argument we conclude that
Λp(x̃ · h̃) = x̃ · Λp(h̃) and the conclusion of Theorem 3.6 holds.

To prove the relations (3.1), we consider the map Gap : L1(a) × L1(a) →
L1(a), defined by Gap (h, k) = S1/ph · S1/qk. This map is locally uniformly con-

tinuous, so we can define its ultrapower map G̃ap . Then (3.1) is equivalent to the
relation

G̃ap = GAp

so we have reduced the proof of the theorem to that of:

Proposition 3.7. For every p > 1, G̃ap = GAp .

We shall use the following lemma, which is essentially classical (see [16],
Section 8).

Lemma 3.8. If ϕ1, ϕ2 ∈ a+
∗ have the same support then Gap (hϕ1 , hϕ2) =

h(ϕ1−θ·
1 ϕθ

2), where θ = 1− 1/p.

Proof. Note first that if ϕ ∈ (a∗)+ and pϕ is the support of ϕ, the closures
in L2(M) of the subspaces aϕh1/2

ϕ and h1/2
ϕ aϕ coincide with pϕ ·L2(a) · pϕ: for,

if k ∈ pϕ ·L2(a) · pϕ is orthogonal to aϕ ·h1/2
ϕ then Tr(xh1/2

ϕ k∗) = Tr(k∗xh1/2
ϕ ) =

〈pϕxh1/2
ϕ , k〉 = 0 for every x ∈ a, hence h1/2

ϕ k∗ = 0 as an element of L1(a), so k∗

has range included in kerh1/2
ϕ = p⊥ϕ ; since k∗ = pϕk

∗ this means that k∗ = 0, i.e.
k = 0.

For every x, y ∈ aϕ, the equation Fx,y(z) = Tr(h1+iz
ϕ xh−iz

ϕ y) defines a con-
tinuous function over the strip S and analytic in the interior. The analyticity is
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due to the fact that the L0(M)-valued map ζ 7→ hζϕ is analytic over the open
half-plane {Re ζ > 0}, see [24]; for the continuity of Fx,y at the boundary R of
S, note that approximating yh1/2

ϕ by h1/2
ϕ y′ in L2(a) one gets an approximation

of Fx,y by functions Gx,y′ of the form Gx,y′(z) = Tr(h1/2+iz
ϕ xh

1/2−iz
ϕ y′) which is

uniform on a neighborhood of R in S; the treatment of the continuity of Fx,y at
the boundary R + i is analogous (approximating now xh

1/2
ϕ by some h1/2

ϕ x′).
For every x ∈ aϕ set: αt(x) = hit

ϕxh
−it
ϕ ; then (αt) is a one parameter group of

∗-isomorphisms of aϕ which by the preceding verifies the KMS condition relative
to ϕ; so (αt) coincides with the modular automorphism group (σϕt )t of ϕ.

Similarly, if ϕ1, ϕ2 are elements of (a∗)+ with same support p, and ϕ̂ =
ϕ1 ⊗ e11 + ϕ2 ⊗ e22 is the associated normal form on a(2) = a⊗M2, consider in
L0(M)⊗M2 = L0(M⊗M2) the operator h

ϕ̂
= hϕ1 ⊗ e11 + hϕ2 ⊗ e22. The same

reasoning proves that σϕ̂t (x̂) = hit
ϕ̂x̂h

−it
ϕ̂ for every x̂ ∈ (pap)(2), from which one

deduces easily that σϕ1ϕ2
t (x) = hit

ϕ1
· x · h−it

ϕ2
for every x ∈ pap.

Let F (z) = Tr(h1+iz
ϕ1

·h−iz
ϕ2

x) for z ∈ S: this function is bounded continuous on

S, analytic on
◦
S, and F (t) = ϕ1((Dϕ1 : Dϕ2)t x), F (t+i) = ϕ2(x(Dϕ1 : Dϕ2)t), so

we obtain 〈ϕ1−θ
1 · ϕθ2, x〉 = F (iθ) = Tr(h1−θ

ϕ1
hθϕ2

·x). Hence h(ϕ1−θ
1 ·ϕθ

2) = h1−θ
ϕ1

·hθϕ2
=

Gap (hϕ1 , hϕ2).

Proof of Proposition 3.7. By the preceding Lemma 3.8 and Proposition 2.2,
if ϕ̃1, ϕ̃2 ∈ A+

∗ have the same supports and have representing families (ϕ1,i)i
and (ϕ2,i)i such that for each i ∈ I, ϕ1,i and ϕ2,i have the same supports, then
(Ga

p(ϕ1,i, ϕ2,i))•i = GAp (ϕ̃1, ϕ̃2), which means G̃a
p(ϕ̃1, ϕ̃2) = GAp (ϕ̃1, ϕ̃2). One can

easily get rid of the support conditions by approximating ϕ̃1, ϕ̃2 by ϕ̃ε1 = ϕ̃1+εϕ̃2,
ϕ̃ε2 = εϕ̃1 + ϕ̃2, ε > 0, and letting ε → 0 using the locally uniform continuity of
Ga
p and GAp (note that ϕ̃ε1, ϕ̃

ε
2 have the same support pϕ̃1 ∨ pϕ̃2).

If now the elements ϕ̃1 = (ϕ1,i)•, ϕ̃2 = (ϕ2,i)• are no more supposed to be
positive, consider the polar decompositions ϕ1,i = u1,i|ϕ1,i|, ϕ∗2,i = v2,i|ϕ∗2,i| and
set ũ1 = (u1,i)•i , ṽ2 = (v2,i)•i ; we know that |ϕ̃1| = (|ϕ1,i|)•i , |ϕ̃∗2| = (|ϕ∗2,i|)•i and
that, setting u1 = ũ1p|ϕ̃1|, v2 = ṽ2p|ϕ̃∗2 |, then ϕ̃1 = u1|ϕ̃1|, ϕ̃∗2 = v2|ϕ̃∗2| are the
polar decompositions of ϕ̃1, respectively ϕ̃∗2. Then

GAp (ϕ̃1, ϕ̃2) = u1G
A
p (|ϕ̃1|, |ϕ̃∗2|)v∗2 = ũ1G

A
p (|ϕ̃1|, |ϕ̃∗2|)ṽ∗2

since it is clear from the definition that p|ϕ̃1|G
A
p (|ϕ̃1|, |ϕ̃∗2|)p|ϕ̃∗2 | = Gap (|ϕ̃1|, |ϕ̃∗2|).

So by the preceding:

GAp (ϕ̃1, ϕ̃2) = (u1,iG
a
p (|ϕ1,i|, |ϕ∗2,i|)v∗2,i)•i = (Gap (ϕ1,i, ϕ2,i))•i = G̃ap (ϕ̃1, ϕ̃2).

Standard forms. If P is a cone in H, we denote by P̃ the ultrapower cone,
i.e.:

P̃ = {(xi)•i ∈ H̃ : xi ∈ P, ∀ i ∈ I}.
The following corollary was announced in [20]; it has now a straightforward proof,
but it could also be easily deduced directly from Theorem 1.8:
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Corollary 3.9. If (a,H, J,P) is a standard form for a then (A, H̃, J̃ , P̃)
is a standard form for A.

Proof. Since all standard forms are spatially equivalent, we can assume that
(a,H, J,P) = (a, L2(a), J, L2(a)+), where J is the conjugation map on L2(a).
The map Λ2 permits to identify (L2(a)U , J̃ , L2(a)U+) with (L2(A), J, L2(A)+)
and the action of ã on ˜L2(a) with the restriction of the action of A on L2(A).
Finally, (A, H̃, J̃ , P̃) is spatially equivalent to the standard form (A, L2(A), J,
L2(A)+).

4. THE CASE 0 < p < 1

In this section we prove the case 0 < p < 1 of Theorem 3.6. This is done by
induction, by proving that if Theorem 3.6 is true for p and every VNA a, it is
true for p/2 and every VNA. We shall make repeatedly use of the following remark.

Consider the VNA’s a(2) = a ⊗M2 and A(2) = A ⊗M2. Then (a(2))∗ =
a∗ ⊗ (M2)∗ and (A(2))∗ = A∗ ⊗ (M2)∗ identifies with (a(2)∗)U = (a∗)U ⊗ (M2)∗
(see Section 1). On the other hand, Lp(a(2)) identifies linearly with (Lp(a))(2) =
M2(Lp(a)) (see [24]). This proceeds from an identification of the crossed product
a(2) o R with M2(a(2) o R) = M(2) when the weight over a(2) is correctly
choosen; then L0(M(2)) identifies with M2(L0(M)) and the dual automorphism
group over M(2) takes simply the form (θs ⊗ IdM2). In these identifications the
bilinear multiplication map Lp(a(2))×Lq(a(2)) → Lr(a(2)) (where 1

p+ 1
q = 1

r ) cor-
responds to the matricial multiplication M2(Lp(a))×M2(Lq(a)) →M2(Lr(a)).

Lemma 4.1. Let 0 < p <∞ and h̃ ∈ Lp(a)U . Then:
(i) Λp(λh̃) = λΛp(h̃) for every λ ∈ C;
(ii) Λp(ṽh̃) = ṽΛp(h̃) for every unitary ṽ ∈ aU ;
(iii) Λp/2(h̃∗ · h̃) = (Λph̃)∗ · (Λph̃).

Proof. The point (i) is trivial. For the point (ii), note simply that if h = u|h|
is the polar decomposition of h ∈ Lp(a)) and v is an unitary ofa then vh = (vu)|h|
is the polar decomposition of vh; hence Sp(v · h) = v · Sph. For the point (iii) we
have:

Λp/2(h̃∗ · h̃) = Λp/2(|h̃|2) = S2/pΛ1S̃p/2(|h̃|2) = S2/pΛ1S̃p(|h̃|)

= S2Λp(|h̃|) = Λp(|h̃|)2.

By the definition of Λp and the properties of Sp, we have Λp(|h̃|) = |Λp(h̃)|, and
the lemma follows.

Lemma 4.2. For every 0 < p < ∞ and every self-adjoint element h̃ of
Lp(a)U , we have

Λp(h̃+) = (Λph̃)+, Λp(h̃−) = (Λph̃)−

where h̃+, respectively −h̃− denotes the positive (respectively negative) part of the
self-adjoint element h̃.
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Proof. We have Sp(h+) = (Sph)+ and similarly Sp(h−) = (Sph)−for every
self-adjoint element h of Lp(a) or Lp(A). For, if h = (e+ − e−)|h| is the polar
decomposition of h, then Sph = (e+ − e−)Sp|h| is that of Sph, so

(Sph)+ = e+Sp|h| = e+|h|p = (e+h)p = Sph+

and similarly for the negative parts.

Lemma 4.3. If the map Λp is linear for a(2) then Λp/2 is positively additive,
i.e.:

∀ h̃, k̃ ∈ Lp/2(a)+U , Λp/2(h̃+ k̃) = Λp/2(h̃) + Λp/2(k̃).

Proof. Note that for every 0 < p <∞ and x ∈ Lp(a)) ve have Sp(x⊗ eij) =
(Sp(x)⊗ eij), for every i, j ∈ {1, 2}, since x⊗ eij = (u⊗ eij)(|x| ⊗ ejj) is the polar
decomposition of x⊗ eij if x = u|x| is that of x. So we obtain

Λp(x̃⊗ eij) = Λp(x̃)⊗ eij

for every 0 < p < ∞, x̃ ∈ Lp(a)U and i, j ∈ {1, 2}. If moreover Λp is linear on
Lp(a(2))U , we obtain Λp([x̃ij ]) = [Λp(xij)] for every X̃ = [x̃ij ] ∈M2(Lp(a))U .

Now we apply Lemma 4.1 to Lp(a(2)). Let h̃, k̃ ∈ Lp(a)U and X̃ =[
h̃ 0
k̃ 0

]
∈M2(Lp(a)U ). Then X̃∗ · X̃ =

[
h̃∗ · h̃+ k̃∗ · k̃ 0

0 0

]
, so Λp/2(X̃∗ · X̃) =[

Λp/2(h̃∗ · h̃+ k̃∗ · k̃) 0
0 0

]
.

If Λp is linear, we have Λp(X̃) =
[

Λp(h̃) 0
Λp(k̃) 0

]
, so the equality Λp/2(X̃∗ ·X̃) =

Λp(X̃)∗ · Λp(X̃) reads Λp/2(h̃∗h̃ + k̃∗k̃) = Λp(h̃)∗ · Λp(h̃) + Λp(k̃)∗ · Λp(k̃), which
equals Λp/2(h̃∗h̃) + Λp/2(k̃∗k̃) by Lemma 4.1 again.

Lemma 4.4. If Λp is linear for a(2), then Λp/2 is additive (hence real linear)
on the selfadjoint part of Lp(a)U .

Proof. Assume that h̃, k̃ ∈ Lp(a)+U . From

h̃+ (h̃− k̃)− = k̃ + (h̃− k̃)+

we deduce using Lemma 4.3 that

Λp/2h̃+ Λp/2[(h̃− k̃)−] = Λp/2k̃ + Λp/2[(h̃− k̃)+].

Hence, using Lemma 4.2:

Λp/2h̃− Λp/2k̃ = (Λp/2(h̃− k̃))+ − (Λp/2(h̃− k̃))− = Λp/2(h̃− k̃).

So Λp/2 preserves differences as well as sums of positive elements. Since every
selfadjoint element of Lp(a)U is a difference of two positive elements, we are
done.
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Lemma 4.5. If Λp is linear in the case of a(4), then for every h̃, k̃ ∈ Lp(a)U
we have

Λp/2(h̃∗ · k̃) = (Λph̃)∗ · (Λpk̃).

Proof. (a) From the equality

h̃∗ · k̃ + k̃∗ · h̃ =
1
2
[(h̃+ k̃)∗ · (h̃+ k̃)− (h̃− k̃)∗ · (h̃− k̃)]

we easily deduce using Lemma 4.4, Lemma 4.1 and the linearity of Λp that

2Λp/2(h̃∗ · k̃ + k̃∗ · h̃)

= Λp/2[(h̃+ k̃)∗ · (h̃+ k̃)]− Λp/2[(h̃− k̃)∗ · (h̃− k̃)]

= (Λp(h̃+ k̃))∗ · Λp(h̃+ k̃)− (Λp(h̃− k̃))∗ · Λp(h̃− k̃)

= (Λph̃+ Λpk̃))∗ · (Λph̃+ Λpk̃))− (Λph̃− Λpk̃))∗ · (Λph̃− Λpk̃))

= 2[(Λph̃)∗ · (Λpk̃) + (Λpk̃)∗ · (Λph̃)].

(b) We shall use the following observation: for every 0 < r <∞, and h, k ∈
Lr(a)

Sr

([
h 0
0 k

])
=

[
Srh 0
0 Srk

]
from which we infer that

Λr

([
h̃ 0
0 k̃

])
=

[
Λrh̃ 0
0 Λrk̃

]
for every 0 < r < ∞, and h̃, k̃ ∈ Lr(a)U . We apply now the point (a) above to
the following elements of Lp(a(2))U :

Ã =
[
h̃ 0
0 0

]
and B̃ =

[
0 k̃
k̃ 0

]
.

We have

Ã∗ · B̃ + B̃∗ · Ã =
[

0 h̃∗ · k̃
k̃∗ · h̃ 0

]
.

Since
[

0 h̃∗ · k̃
k̃∗ · h̃ 0

]
=

[
0 I
I 0

] [
h̃∗ · k̃ 0

0 k̃∗ · h̃

]
and the matrix

[
0 I
I 0

]
is uni-

tary, we have

(4.1)

Λp/2

([
0 h̃∗ · k̃

k̃∗ · h̃ 0

])
=

[
0 I
I 0

]
Λp/2

([
h̃∗ · k̃ 0

0 k̃∗ · h̃

])
=

[
0 I
I 0

][
Λp/2(h̃∗ · k̃) 0

0 Λp/2(k̃∗ · h̃)

]

=

[
0 Λp/2(h̃∗ · k̃)

Λp/2(k̃∗ · h̃) 0

]
.
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On the other hand,

ΛpÃ =
[

Λph̃ 0
0 0

]
and ΛpB̃ =

[
0 Λpk̃

Λpk̃ 0

]
hence

(4.2) ΛpÃ∗ · ΛpB̃ + ΛpB̃∗ · ΛpÃ =
[

0 Λph̃∗ · Λpk̃
Λpk̃∗ · Λph̃ 0

]
.

By the point (a) above and the comparison of formulas (4.1) and (4.2) we are
done.

Lemma 4.6. If Λp is linear and a bimodule homomorphism (“modular” in
brief) in the case of a(4), so is Λp/2 (in the case of a).

Proof. (a) We show first the aU -modularity.
Let h̃ ∈ Lp/2(a)U and x̃ ∈ aU . We decompose h̃ = S̃1/2h̃ · S̃1/2|h̃|, where

S̃1/2 = (S1/2)U : Lp/2(a)U → Lp(a)U . Using Lemma 4.5, the left modularity of
Λp and Lemma 4.5 again, we have:

Λp/2(x̃ · h̃) = Λp(x̃ · S̃1/2h̃) ·Λp(S̃1/2|h̃|) = x̃ ·Λp(S̃1/2h̃) ·Λp(S̃1/2|h̃|) = x̃ ·Λp/2(h̃)

and similarly for the right modularity.

(b) We deduce the linearity.
If h̃, k̃ ∈ Lp/2(a)U , with h̃ = (hi)•, k̃ = (ki)•, set li = (h∗i · hi + k∗i · ki)1/2.

For p 6 4, we have ‖li‖p/2 6 (‖hi‖p/2p/2 + ‖ki‖p/2p/2)
2/p, so the family (li) represents

an element (li)• of Lp/2(a)U . Since h∗i · hi 6 l∗i · li and k∗i · ki 6 l∗i · li, there exist
ui, vi in the unit ball of M such that

hi = uili and ki = vili;

ui and vi are uniquely determined if we ask that their right support is included
in the support of li. Since the support of li is θs-invariant, it is easy to see that
θs(ui) = ui, θs(vi) = vi for every s ∈ R, so in fact ui, vi ∈ a.

Set ũ = (ui)• and ṽ = (vi)•, we have h̃ = ũ · l̃ and k̃ = ṽ · l̃, whence by the
point (a):

Λp/2(h̃+ k̃) = Λp/2((ũ+ ṽ) · l̃) = (ũ+ ṽ) · Λp/2(l̃)

= ũ · Λp/2(l̃) + ṽ · Λp/2(l̃) = Λp/2(ũ · l̃) + Λp/2(ṽ · l̃)

= Λp/2(h̃) + Λp/2(k̃).
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5. FINAL REMARKS

5.a. The product map Lp × Lq → Lr and its ultrapowers. We prove
now (following [13]) that the identification of Lp(a)U with Lp(A) for various p is
compatible with the natural product from Lp × Lq into Lr.

Theorem 5.1. Let 0 < p, q, r < ∞ with 1
p + 1

q = 1
r . Then for every h̃ ∈

Lp(a)U , k̃ ∈ Lq(a)U we have:

Λp(h̃) · Λq(k̃) = Λr(h̃ · k̃)
(where in the left-hand side the dot denotes the natural product Lp(A)×Lq(A) →
Lr(A) while in the right-hand side it refers to the ultrapower map of the operation
Lp(a)× Lq(a) → Lr(a)).

Proof. Let h̃ = (hi)•, k̃ = (ki)•. For every i ∈ I set
ai = S1/2(S2p/r|hi|+ S2q/r|k∗i |) ∈ Lr(a)+

(in other terms ai = (|hi|2p/r + |k∗i |2q/r)1/2). Since p
r > 1 we have

|hi|2p/r 6 a2
i =⇒ |hi|2 6 a

2r/p
i ⇐⇒ hi = uia

r/p
i with ui ∈ a, ‖ui‖ 6 1

and similarly ki = a
r/q
i vi with vi ∈ a, ‖vi‖ 6 1. Setting now ã = (ai)•, ũ = (ui)•,

ṽ = (vi)•, we have

h̃ · k̃ = [ũ · (S̃r/pã)] · [(S̃r/qã) · ṽ] = ũ · [(S̃r/pã) · (S̃r/qã)] · ṽ = ũ · ã · ṽ.
Hence, since Λr preserves right and left actions of aU :

Λr(h̃ · k̃) = Λr(ũ · ã · ṽ) = ũ · Λrã · ṽ;
on the other hand

Λph̃ = Λp(ũ · (S̃r/pã)) = ũ · Λp(S̃r/pã) = ũ · Sr/p(Λrã)
and similarly

Λqk̃ = Sr/q(Λrã) · ṽ
so finally:

Λp(h̃) · Λq(k̃) = ũ · Sr/p(Λrã) · Sr/q(Λrã) · ṽ = ũ · Λrã · ṽ = Λr(h̃ · k̃).

5.b. The operator space structure of Lp(a)U . If E is an operator space,
its ultrapower EU is equipped with a natural structure of operator space given by
the equality:

Mn(EU ) = (Mn(E))U
(this definition verifies Ruan’s axioms, see Section 3 of [19]).

The spaces Lp(a) are equipped with a natural operator space structure given
by interpolation between the operator spaces structure of a and that of a∗ (the
dual operator space structure) (see [19]).

In fact, the norms on the spaces Mn(Lp(a)) can be given an intrinsic defi-
nition, see Theorem 9 of [4]:

‖x‖Mn(Lp(a)) = sup
a,b∈Sn

2p

‖a‖p61, ‖b‖p61

{ ‖axb‖Lp(Mn(a)) if 2 6 p <∞,
‖atxb‖Lp(Mn(a)) if 1 6 p 6 2;

where Sn2p denotes the Schatten class of exponent 2p over the space ln2 while tx =
[xji] is the transposed matrix of x = [xij ].
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Proposition 5.2. For every 1 6 p <∞ the identification map Λp : Lp(a)U
→ Lp(A) constructed in Section 3 is a complete isometry.

Proof. As for n = 2, we have for any n:

Mn(a)∗U = Mn(A)∗.

It results (as in the case n = 2, see the proof of Lemma 4.3) that Λ(n)
p = Idn ⊗Λp

is the identification map Lp(Mn(a))U → Lp(Mn(A)). Since clearly Λ(n)
p (ax̃b) =

aΛ(n)
p (x̃)b for every x̃ in Lp(Mn(A))U and a, b ∈ Sn2p, and Λ(n)

p commutes with
transposition, we obtain easily that:

‖x̃‖Mn(Lp(a)U ) = ‖Λ(n)
p (x̃)‖Mn(Lp(A)).
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