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1. INTRODUCTION

Let V be a bounded linear operator on a Banach space X (in brief, V ∈ B(X)). Let
N(V ) and R(V ) denote the null-space and the range of V , respectively. Recall that
the ascent of V is the smallest nonnegative integer n such that N(V n) = N(V n+1);
if no such n exists, we write asc V = ∞. Similarly, the descent of V is the smallest
nonnegative integer n such that R(V n) = R(V n+1); if there is no such n, we write
des V = ∞. (See e.g. [6], p. 10.)

It may be instructive to remark that one may have des V = d < ∞ without
R(V d) being closed in norm (see Example 5 from [22], or another example at the
end of this paper). On the other hand, asc V < ∞ is equivalent to the closedness
of the union of all the null-spaces N(V n) (see Lemma 1 from [9]). However, if
both asc V and des V are finite, then they are equal (see Lemma 1.4.2 from [6]),
and the common value d gives a splitting of X into the direct sum of the closed
subspaces N(V d) and R(V d) (see Proposition 1.4.3 and Lemma 3.2.4 from [6]). In
other words (see Lemma 3.4.2 from [6] or p. 330 from [27]), this means that 0 is
a pole of order d of the resolvent of V . This, in turn, is relevant to the behaviour
of the powers of I − V and their various means (see, for instance, [21] and [5]).

We shall need the following, apparently less well-known, characterization of
finite ascent and descent considered separately.
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Lemma 1.1. Given a nonnegative integer d and V ∈ B(X), we have:
(i) asc V 6 d if and only if R(V d)∩N(V m) = 0 for some (equivalently, all)

m > 1;
(ii) des V 6 d if and only if R(V m) + N(V d) = X for some (equivalently,

all) m > 1.

Proof. The easiest proof comes from the following simple formulas (cf. Lem-
ma 2.1 from [12]), which we shall need repeatedly. Whenever A and B are linear
operators on a vector space, we have

A(N(BA)) = R(A) ∩N(B),(1.1a)
A−1(R(AB)) = R(B) + N(A).(1.1b)

By (1.1a), we get V d(N(V d+m)) = R(V d)∩N(V m), and since also V −d(R(V d)∩
N(V m)) = N(V d+m), we see that N(V d) = N(V d+m) if and only if R(V d) ∩
N(V m) = 0. This proves (i). Similarly, V −d(R(V d+m)) = R(V m) + N(V d) and
V d(R(V m) + N(V d)) = R(V d+m) imply (ii). An alternate proof can be found in
Theorems V.6.3 and V.6.4 from [27].

Ascent, descent, Fredholm properties, and their generalizations have been
vigorously studied for many years and have been applied widely in analysis.

In this paper we are motivated partly by applications to the ergodic theory of
linear operators on Banach spaces. Ergodic theory is concerned with the existence
of limits, in various operator topologies, of the Cesàro means

An(T ) =
I + T + T 2 + · · ·+ Tn−1

n
,

where T is a bounded operator on a Banach space, and n = 1, 2, . . .. Frequent use
is made of the following simple formulas (see Chapter 2 in [16], [21] and [23]):

Tn

n
=

n + 1
n

An+1(T )−An(T ),(1.2a)

(I − T )An(T ) =
I − Tn

n
,(1.2b)

I −An(T ) = (I − T )
Tn−2 + 2Tn−3 + · · ·+ (n− 2)T + (n− 1)I

n
.(1.2c)

If the sequence {An(T )} converges in some operator topology then, by the
Banach-Steinhaus principle, it is bounded in the operator norm. Moreover, it
follows from (1.2a) that {n−1Tn} converges to 0 in the same operator topology.
Much of operator ergodic theory is concerned with determining when, conversely,
the convergence to 0 of {n−1Tn} and/or the boundedness of {An(T )} implies the
convergence of {An(T )} in the operator topology considered. The following main
result, which will be proved in Section 3, clarifies the relationship between the
equivalent conditions in the uniform ergodic theorem (Théorème 1 from [23]), and
shows their role in the other operator topologies. See also Theorem 3.4 from [5].
Our proof relies on Theorem 2.1, which seems to be of independent interest.
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Theorem 1.2. Let T ∈ B(X). Suppose that either
(i) {An(T )} is bounded, or
(ii) {n−1Tn} converges to 0 in some operator topology.

If either
(iii) R((I − T )n) is closed for some n > 2, or
(iv) R((I − T )n) + N(I − T ) is closed for some n > 1,

then X is the direct sum of the closed subspaces R(I−T ) and N(I−T ). Moreover,
in this case, the sequence {An(T )} converges in some operator topology if and only
if (ii) holds in the same operator topology; the limit P is the projection of X onto
N(I − T ) along R(I − T ) or, in other words,

P = − 1
2πi

∫
(T − λI)−1 dλ,

the Riesz projection corresponding to the at most simple pole 1 of the resolvent
of T .

Remark 1.3. If the convergence in (ii) is uniform (in the operator norm),
it is well-known ([20]) that also n = 1 may be allowed in (iii) to get the same
conclusion. It is not so in the case of weak or strong operator topology. Indeed,
Laura Burlando (Example 3.8 from [5]) constructs an operator T (= A in her
notation) satisfying condition (ii) above, in the strong operator topology, with
R(I − T ) closed, and with the spectrum of T being [0, 1]. Therefore, 1 is not a
pole of the resolvent of T , consequently, by Theorem 4.4 below, {An(T )} cannot
be bounded.

Moreover, such an example with spectrum equal to {1} (as originally asked
for in [28], p. 376) is provided by the operator

T (x, y) = ((I − V )x, y − x)

defined for (x, y) ∈ L2(0, 1)× L2(0, 1), where V is the Volterra operator

(V x)(t) =

t∫
0

x(s) ds.

Note that
Tn(x, y) = ((I − V )nx, y − nAn(I − V )x)

for n = 1, 2, . . .. Since I − V is power-bounded (see [28], p. 370 and [1], p. 15),
it follows, from Theorem 2.1.2 of [16], that {An(I − V )x} converges. The limit is
actually zero, by Theorem 2.1.3 from [16], because N(V ) = 0. Thus, T satisfies
condition (ii) above, in the strong operator topology. The definition of T guaran-
tees that R(I − T ) is closed, while R((I − T )n) is not for n > 2. Consequently,
by Theorem 1.2, the sum R(I − T ) + N(I − T ) is not closed, and the point 1 is
not a pole of the resolvent of T . By Theorem 4.4, the sequence {‖An(T )‖} is not
even bounded. It also follows from the definition of T that I−T is quasinilpotent,
hence the spectrum of T is {1}. This example is a modification of Example 3.5
from [5]. In view of [14], p. 247, one can also use the space L1(0, 1) in place of
L2(0, 1).

Further examples in this direction will be given in Section 4.
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Remark 1.4. If (i) or (ii) holds, then the spectral radius of T is no more
than 1. Moreover, the arguments in [21], p. 94 or Lemme from [23] show that
each of the assumptions (i) or (ii) alone implies that

(1.3) N(I − T ) ∩R(I − T ) = 0,

which in turn yields asc(I −T ) 6 1 (and similarly asc(I −T ∗) 6 1). Thus, each of
the conditions (iii) or (iv) in Theorem 1.2 just ensures that des(I − T ) < ∞. We
shall analyze this step in Section 2.

It would be interesting to know if (i) or (ii) can be replaced by (1.3), or by the
still weaker condition asc(I − T ) < ∞. Property (1.3) together with (iv) implies
(iii), for the same n, by Lemma 3.2.4 from [6] or Theorem IV.5.10 from [27].

Remark 1.5. For the weak or strong convergence of {An(T )}, neither (iii)
nor (iv) is necessary (see Theorem 11 from [14]). However, both assumptions (i)
and (ii) together imply that N(I − T ) ∩ (R(I − T ))− = 0 (see [16], p. 74), and
the sum N(I − T ) ⊕ (R(I − T ))− is precisely the closed set where {An(T )} is
weakly or strongly convergent (see Theorem 2.1.3 from [16]). Thus, the point is
when N(I − T )⊕ (R(I − T ))− = X (see also p. 59 in [10] for another role of this
condition). This, however, does not suffice for the uniform convergence, as the
standard backward shift shows. In other words, Theorem 1.2 explains when the
closure can be omitted in the preceding important condition, as it has to be in the
uniform case.

Remark 1.6. Finite-dimensional examples showing that (i) does not imply
(ii) can be derived from Theorem 8 of [28] (see, for instance, Example 3 from [21]).
Conversely, Example 2 from [26] shows that (ii) does not imply (i).

2. OPERATORS WITH FINITE ASCENT

Let V ∈ B(X) with asc V 6 d < ∞. In this section we determine which additional
hypotheses let us conclude that certain R(V n) or R(V j) + N(V k) are closed, or
that X = R(V d)⊕N(V d). The closed subspace result below is related to Lemmas 7
and 10 from [22], Théorème 1 from [23], and, in particular, Theorem 3.2 from [12].
See also Lemma 3.1 and Theorem 3.4 from [5].

Theorem 2.1. Let V ∈ B(X) with asc V 6 d < ∞. If there is an n > d
such that R(V n) is closed, or R(V j) + N(V k) is closed for some positive integers
with j + k = n, then R(V n) is closed for all n > d, and R(V j) + N(V k) is closed
for all j + k > d.

Notice that the hypotheses of the above theorem require that n > d, while
the conclusions hold for all n > d. We shall construct examples in Theorem 4.2
with R(V d) closed and R(V j) + N(V k) closed for all j + k = d, but with R(V n)
not closed for any n > d, and R(V j) + N(V k) not closed for any positive integers
j, k with j + k > d.

Proof of Theorem 2.1. We shall need two simple observations. Firstly, by
formula (1.1b), V −kR(V j+k) = R(V j) + N(V k), so that, for every V ∈ B(X), we
have the following.

(i) If R(V n) is closed, so is R(V j) + N(V k) whenever j + k = n.
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Thus, it is enough to prove that R(V n) is closed for all n > d.
Secondly, if n > d and m > 1, it follows from Lemma 1.1 (i) that R(V n) ∩

N(V m) ⊂ R(V d) ∩N(V m) = 0. Thus Lemma 3.2.4 from [6] or Theorem IV.5.10
from [27] gives the following.

(ii) If (asc V 6 d and) n > d, then R(V n) is closed whenever R(V n)+N(V m)
is closed for some m > 1.

We now separate the hypotheses of the theorem into several cases.
Case 1. Suppose R(V n) is closed for some n > d. For this case, we need

only show that R(V n−1) and R(V n+1) are both closed. It follows from (i) that
R(V n−1) + N(V ) is closed, and then from (ii) that R(V n−1) is closed. Next, the
restriction of V to the closed invariant subspace R(V n−1) is one-to-one because,
as noted above, R(V n−1) ∩ N(V ) = 0. Thus this restriction is a Banach space
isomorphism from the closed subspace R(V n−1) onto the closed subspace R(V n).
It carries the closed subspace R(V n) onto R(V n+1), which must therefore also be
closed.

Case 2. Suppose R(V n) + N(V m) is closed for some n > d and m > 1.
Then (ii) implies that R(V n) is closed, reducing this case to Case 1.

Case 3. Suppose R(V j) + N(V m) is closed for some j > 1 and m > d.
By Theorem 3.2 from [12], which is applicable by Theorem 3.1 from [12] since
asc V 6 d, we conclude that

(iii) R(V j) + N(V m) is closed for all j > 1.
Now we can assume that j > d, reducing this case to Case 2.
Case 4. Suppose, finally, that R(V j) + N(V k) is closed for some arbitrary

positive integers with j + k > d. Since k > d was considered in Case 3, we can
assume that k < d < j + k. Using formula (1.1b) we find that

R(V j+k−d) + N(V d) = V −dR(V j+k) = V −(d−k)V −kR(V j+k)

= V −(d−k)(R(V j) + N(V k)).

Thus R(V j+k−d)+N(V d) is closed. This reduces Case 4 to Case 3, and completes
the proof of the theorem.

We can also give a direct elementary proof, avoiding Theorem 3.2 from [12],
of Theorem 2.1 in the case that R(V d) + N(V d) is assumed closed. When d = 1,
which is the situation in Theorem 1.2, this is the only remaining case after Cases 1
and 2 are done. When R(V d) + N(V d) is closed, it follows from (ii) that R(V d) is
closed. Since N(V 2d) = N(V d), we see that the Kato minimum modulus of V 2d

is also positive, hence R(V 2d) is closed. Thus we are again in Case 1.

Corollary 2.2. If, in addition to the hypotheses of Theorem 2.1, also
asc V ∗ < ∞, then X = R(V d)⊕N(V d).

Proof. By Theorem 2.1, the ranges R(V n) are closed for all n > d. Hence,
by Lemma 6.4.8 from [2] or Theorem 1.2.4 from [6], we have R(V n) = ⊥N(V ∗n)
for these n. Thus, asc V ∗ < ∞ implies des V < ∞, so that X = R(V d) ⊕N(V d)
as mentioned at the beginning of Section 1.
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Let us also mention the following related result, which is just Theorem 5.4
from [11], or a special case of Corollary 4.9 from [12]; when asc V 6 d, the result
follows from Theorem 2.7 in [19] and Theorem 2.1. See also Lemma 5.1 and
Theorem 5.4 below.

Theorem 2.3. Let T ∈ B(X) and let V = T −λI. Suppose that N(V d) has
finite codimension in N(V d+1) and that there is an n > d such that either R(V n)
is closed, or R(V j) + N(V k) is closed for some positive integers with j + k = n.

If λ belongs to the boundary of the spectrum of T , then it is a pole of the
resolvent of T .

3. ERGODIC RESULTS

In this section we prove Theorem 1.2 and some related results in operator ergodic
theory. We start with a lemma that characterizes exactly when I − T has ascent
no more than 1 in terms of properties of the sequences {An(T )} and {n−1Tn}.

Lemma 3.1. If T ∈ B(X), then the following are equivalent:
(i) asc(I − T ) 6 1;
(ii) {n−1Tnz} converges to 0 in norm (or, equivalently, is any designated

weaker linear space topology) for each z in N((I − T )2);
(iii) {An(T )z} is bounded for each z in N((I − T )2).

Proof. Let x = (I − T )z with z ∈ N((I − T )2). Since

x = An(T )x = An(T )(I − T )z = n−1z − n−1Tnz,

we see that {n−1Tnz} converges to 0 if and only if x = 0. In view of Lemma 1.1 (i),
this proves the equivalence of (i) and (ii).

Next, denote

(3.1) Bn(T ) =
Tn−2 + 2Tn−3 + · · ·+ (n− 2)T + (n− 1)I

n
,

an expression occurring in formula (1.2c). By (1.2c), with z and x as above, we
have

z −An(T )z = Bn(T )(I − T )z = Bn(T )x =
(n− 1)x

2
(cf. [21], p. 94). Thus, we see that {An(T )z} is bounded if and only if x = 0, which
proves the equivalence of (i) and (iii), and completes the proof of the lemma.

Proof of Theorem 1.2. Combining Remark 1.4 with Corollary 2.2, we obtain
X = R(I − T ) ⊕ N(I − T ). If x ∈ N(I − T ), then An(T )x = x, which certainly
converges. On the other hand, if x = (I−T )y belongs to R(I−T ), it follows from
formula (1.2b) that

An(T )x = n−1y − n−1Tny,

so that {An(T )x} and {n−1Tny} converge simultaneously, to the same limit be-
longing to N(I − T ). This completes the proof of Theorem 1.2.
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The authors of [18] consider operators for which there is a positive integer d
with lim

n→∞
(I − T )dAn(T ) = 0 in the uniform operator topology. They show that

asc(I − T ) 6 d, and they give conditions under which X = R((I − T )d)⊕N((I −
T )d). This is further developed in [5]. Our Theorem 1.2 motivates the following
counterpart for the weak operator topology.

Theorem 3.2. Let T ∈ B(X) and let d be a nonnegative integer. If {(I −
T )dAn(T )} converges to 0 in the weak operator topology, then both I−T and I−T ∗

have ascent no more than d.
Moreover, if there is an n > d such that either R((I − T )n) is closed, or

R((I−T )j)+N((I−T )k) is closed for some positive integers with j +k = n, then
X is the direct sum of the closed subspaces R((I − T )d) and N((I − T )d).

Proof. Suppose that x belongs to R((I −T )d)∩N(I −T ). Since x ∈ R((I −
T )d), our hypothesis implies that An(T )x → 0 weakly. Then x ∈ N(I − T ) forces
x = An(T )x = 0. Thus R((I − T )d) ∩ N(I − T ) = 0 and so, by Lemma 1.1 (i),
asc(I − T ) 6 d. Since (I − T ∗)dAn(T ∗) → 0 in the weak*-operator topology, also
asc(I−T ∗) 6 d. The rest of the theorem follows immediately from Corollary 2.2.

4. QUASICOMPLEMENTED OPERATOR RANGES

Recall that two closed subspaces E and F of the Banach space X are quasicom-
plements of each other provided that E ∩ F = 0 and E + F is dense in X. Many
constructions of quasicomplements which are not complements are known (see, for
instance, [15] or [25]). The recent papers [3] and [4] might be useful for under-
standing this phenomenon. Some general conditions equivalent to the closedness
of the sum of two closed subspaces can be found in Theorem III.3.9 from [7] and
Theorem 8 from [24].

The preceding results on ascent and their applications to ergodic theory
show that if V is an operator with finite ascent d which satisfies some auxiliary
conditions, such as V ∗ also having finite ascent, then R(V d) and N(V d) are com-
plementary closed subspaces, provided that R(V n) is closed for some n strictly
greater than d.

In this section we show that if we just assume that R(V d) is closed, then all
we can conclude is that R(V d) and N(V d) are quasicomplements (Theorem 4.1),
and we give an example in which they are not complements (Theorem 4.2). We
then consider when additional ergodic hypotheses, which means in particular that
d = 1, allow us to get complements.

Theorem 4.1. Supppose that V is an operator on a Banach space such that
R(V d) is closed. Then R(V d) and N(V d) are quasicomplements if and only if both
V and V ∗ have ascent no more than d.

Proof. We know from Lemma 1.1 (i) that R(V d) ∩ N(V d) = 0 if and only
if asc V 6 d. Similarly, asc V ∗ 6 d is equivalent to R(V ∗d) ∩ N(V ∗d) = 0. Note
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that R(V d)⊥ = N(V ∗d), by definition of the adjoint. Also N(V d)⊥ = R(V ∗d), by
Theorem 1.2.3 from [6]. Hence

(R(V d) + N(V d))⊥ = R(V d)⊥ ∩N(V d)⊥ = N(V ∗d) ∩R(V ∗d).

Consequently, R(V d) + N(V d) is dense if and only if asc V ∗ 6 d. This completes
the proof.

Theorem 4.2. For each positive integer d, there is a bounded operator V

on a Banach space, with the following properties:
(i) both V and V ∗ have ascent no more than d;
(ii) R(V n) is closed as are all R(V j) + N(V k) with j + k = n when n 6 d;
(iii) R(V n) and R(V j) + N(V k) are not closed if n > d and j + k = n;
(iv) R(V d) and N(V d) are quasicomplements but not complements.

The following lemma essentially gives the construction of V when d = 1.

Lemma 4.3. Suppose that E and F are closed subspaces of the Banach space
X. There is a V ∈ B(X) with N(V ) = E and R(V ) = F if and only if X/E and
F are isomorphic Banach spaces.

Proof. If N(V ) = E and R(V ) = F , then V induces an isomorphism from
X/E onto F . Conversely, if S is a linear isomorphism from X/E onto F , and if π

is the canonical projection from X onto X/E, then V = Sπ has N(V ) = E and
R(V ) = F .

Proof of Theorem 4.2. First notice that it is enough to prove (iv) and to
prove that R(V n) is closed for all n 6 d. Then part (i) follows from Theorem 4.1,
part (ii) follows from (i) in the proof of Theorem 2.1, and part (iii) follows from
Corollary 2.2.

We start by considering the basic case where d = 1. By Lemma 4.3, we
just have to find closed subspaces E and F of a Banach space X, which are
quasicomplementary but not complementary, and such that X/E is isomorphic
to F .

Since all infinite-dimensional quotient spaces and closed subspaces of a sep-
arable Hilbert space are isomorphic, in this case one need only use the simple
well-known construction (see [13], p. 28–29, for instance) of two closed subspaces
whose sum is not a closed subspace. See also [15] or Proposition 4.8 from [25].

Now suppose that d > 1, and let S be a bounded operator on a Banach
space Y with R(S) and N(S) closed quasicomplementary but not complementary
subspaces. On X = Y d we define V by V (x1, x2, . . . , xd) = (Sx1+x2, x3, . . . , xd, 0).
One can easily verify that R(V d) and N(V d) are closed subspaces of X which are
quasicomplementary but not complementary, and that R(V n) is closed for all n6d.
This completes the proof.
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When T satisfies appropriate ergodic hypotheses, then both I−T and I−T ∗

have ascent no more than 1 (cf. Remark 1.4). It is therefore natural to ask when
these added hypotheses let us conclude that des(I−T ) < ∞, if we assume R(I−T )
closed rather than the stronger and always sufficient hypothesis that R((I − T )n)
is closed for some n > 1. When n−1‖Tn‖ → 0, it is known (see [20] and [16], p. 87)
that the closedness of R(I − T ) implies that the restriction of I − T to R(I − T )
is invertible so that R((I − T )2) = R(I − T ). As mentioned in Remark 1.3, the
latter conclusion cannot be derived under the weaker assumption that n−1Tn → 0
in the weak- or strong-operator topology.

However, if we assume both of the alternate ergodic hypotheses in Theo-
rem 1.2, a variation of a standard argument yields the following result.

Theorem 4.4. Let T ∈ B(X). Suppose that {‖An(T )‖} is bounded, and
that n−1Tn → 0 in the weak-operator topology. If R(I − T ) is closed, then X =
R(I − T )⊕N(I − T ).

Proof. The boundedness of {‖An(T )‖} implies that {x∈X : weak-lim
n→∞

An(T )x

exists} is a closed subspace. Moreover, this subspace is equal to N(I−T )⊕(R(I−
T ))−, by Theorem 2.1.3 from [16], because the corresponding argument also holds
for the weak-convergence n−1Tn → 0. Thus, in our case, R(I − T )⊕N(I − T ) is
closed. By Theorem 4.1 and Remark 1.4 we know that R(I − T ) and N(I − T )
are quasicomplementary. This completes the proof.

If the spectral radius of T is less than 1, then (I − T )−1 = I + T + T 2 + · · ·.
We conclude this section by noting that (1.2c) and (3.1) suggest a formula for
(I − T )−1 under the weaker assumption that An(T )x → 0 for all x ∈ X.

Proposition 4.5. Suppose that An(T )x → 0 for all x ∈ X. Then (R(I −
T ))− = X, and the following are equivalent:

(i) R(I − T ) = X;

(ii) I − T is invertible;

(iii) {‖Bn(T )‖} is bounded;

(iv) {Bn(T )x} converges for all x ∈ X.
In this case, Bn(T )x → (I − T )−1x for all x ∈ X.

Proof. Our assumption implies that N(I−T ) = 0. Hence, by Theorem 2.1.3
from [16], we have (R(I − T ))− = X, and the rest follows from formula (1.2c).

Remark 4.6. It follows that 1 is an at most simple pole of (the resolvent
of) a strongly or weakly ergodic operator T , if and only if the corresponding
convergence in Proposition 4.5 (iv) holds for all x in (R(I − T ))−, or if and only
if Proposition 4.5 (iii) holds for the norms of the restrictions to (R(I − T ))−.



78 Sandy Grabiner and Jaroslav Zemánek

5. FINITE ESSENTIAL ASCENT

In this section we shall extend some of the preceding results about operators with fi-
nite ascent to operators for which some N(V n) has finite codimension in N(V n+1).
Following [22] we shall say that such operators have finite essential ascent . Sim-
ilarly, V has finite essential descent if some R(V n+1) has finite codimension in
R(V n). Operators with finite essential ascent or descent seem to have been first
studied in [11] where a part of Theorem 2.3 above and its analogue for finite
essential descent (Theorem 5.2 from [11]) are proven. These operators play an im-
portant role in more general studies in [12] and [22]. Also some recent papers have
considered operators with R(V ) ∩N(V ) finite-dimensional which, by Lemma 5.1
below, is equivalent to N(V ) having finite codimension in N(V 2). Notice that the
sequences {dim(N(V n+1)/N(V n))} and {dim(R(V n)/R(V n+1))} are nonincreas-
ing, so that N(V n) has finite codimension in N(V n+1) if and only if it has finite
codimension in N(V n+m) for some (equivalently, all) m > 1; and the analogous
observation holds for the ranges. This lets us easily prove characterizations of finite
essential ascent and descent which are analogous to the characterizations of finite
ascent and descent given in Lemma 1.1. We include proofs for the convenience of
the reader.

Lemma 5.1. If V ∈ B(X) and d is a nonnegative integer, then:
(i) N(V d) has finite codimension in N(V d+1) if and only if for some (equiv-

alently, all) m > 1 the space R(V d) ∩N(V m) is finite-dimensional.
(ii) R(V d+1) has finite codimension in R(V d) if and only if for some (equiv-

alently, all) m > 1 the space R(V m) + N(V d) has finite codimension in X.

Proof. From formula (1.1a), we have V dN(V d+m) = R(V d)∩N(V m) so that
V d induces an isomorphism from N(V d+m)/N(V d) onto R(V d) ∩ N(V m). This
proves (i).

Part (ii) follows analogously from the fact that V d induces an isomorphism
from X/(R(V m) + N(V d)) onto R(V d)/R(V d+m).

We say that the subspace E of the Banach space X is an operator range
if it is the range of a bounded operator from some Banach space to X. For
characterizations and elementary properties of operator ranges see, for instance,
Section 3 of [11] and [8].

We have been already using several times the simple consequence of the
closed graph theorem, saying that if E and F are operator ranges in X with E +F

closed, then E and F are both closed when E ∩ F = 0 (cf. Lemma 3.2.4 from [6]
or Theorem IV.5.10 from [27]). For our results on closed ranges for operators with
finite essential ascent we shall need the following, presumably known, extension of
this result (see also Proposition 2.1.1 from [17]).
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Lemma 5.2. Suppose that E and F are operator ranges in the Banach space
X, and that E + F is a closed subspace. If E ∩F is closed (in particular, if E ∩F
is finite-dimensional), then E and F are both closed.

Proof. Let M be the closed subspace E ∩F . Since E + F is closed in X, we
must have (E +F )/M closed in X/M . But (E +F )/M is the algebraic direct sum
of the operator ranges E/M and F/M .

Hence E/M and F/M are closed in X/M , so that E and F are closed in X.
This completes the proof.

Every Fredholm operator V has finite essential ascent and descent but, in
contrast to operators with finite ascent and descent, we need not have some R(V d)
and N(V d) as complementary closed subspaces. The best we can expect seems to
be the following.

Theorem 5.3. If V ∈ B(X) has both finite essential ascent and finite es-
sential descent, then we have:

(i) for every n > 0, N(V n) has finite codimension in N(V n+1) if and only
if R(V n+1) has finite codimension in R(V n);

(ii) whenever R(V n+1) has finite codimension in R(V n), then R(V n) is
closed.

Proof. By hypothesis, both N(V n+1)/N(V n) and R(V n)/R(V n+1) are
finite-dimensional for all sufficiently large n. For each of these n, it follows from
Lemma 2.3 of [12] that

dim(N(V n)/N(V n−1))− dim(N(V n+1)/N(V n))

= dim(R(V n−1)/R(V n))− dim(R(V n)/R(V n+1)).

This proves (i).
When R(V n+1) has finite codimension in R(V n), it follows from part (i) that

N(V n) also has finite codimension in N(V n+1). Hence it follows from Lemma 5.1
that the operator range R(V n)+N(V n) has finite codimension, and must therefore
be closed, and that R(V n) ∩ N(V n) is finite-dimensional, so also closed. Thus
Lemma 5.2 guarantees that R(V n) is closed, completing the proof.

Next, we show that Theorem 2.1 above on closed ranges for operators with
finite ascent carries over, with essentially the same proof, for operators with finite
essential ascent (see also Lemmas 7 and 10 from [22]).

Theorem 5.4. Let V ∈ B(X). Suppose that N(V d) has finite codimension
in N(V d+1). If there is an n > d such that R(V n) is closed, or R(V j) + N(V k)
is closed for some positive integers with j + k = n, then R(V n) is closed for all
n > d, and R(V j) + N(V k) is closed for all j + k > d.

Proof. It is enough to show that observations (i), (ii) and (iii) in the proof
of Theorem 2.1 hold when we assume only that N(V d) has finite codimension
in N(V d+1), instead of assuming these spaces are equal. As we pointed out in
the proof of Theorem 2.1, (i) holds for all bounded operators. Observation (ii)
follows from Lemma 5.1 (i) together with Lemma 5.2. Observation (iii) follows
from Lemma 2.4 of [12] in the same way as Theorem 3.2 in [12]. This completes
the proof.
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If R(V d+1) has finite codimension in R(V d), then R(V j) + N(V k) is closed
for all j > 1 and k > d or, which is the same, R(V j+k) is closed in the operator
range topology of R(V k). One proves this by using Lemma 2.4 from [12] exactly
in the way it is used in proving Theorem 3.2 from [12].

It is also clear that R(V d) is closed, in this case, if and only if R(V m) is
closed for some (equivalently, all) m > d.

On the other hand, it is easy to construct examples with R(V d) not closed.
For instance, if S is an operator on a Banach space Y with R(S) not closed, we
can let X = l1(Y ) and define V as the backward shift given by V (x1, x2, x3, . . .) =
(Sx2, x3, x4, . . .). Then R(V ) = R(V 2) is not closed.

Fortunately if V = T − λI has R(V d)/R(V d+1) finite-dimensional, and λ
is in the boundary of the spectrum of T , then we conclude that λ is a pole of
the resolvent of T , by Theorem 5.2 from [11] or Corollary 4.9 from [12], without
knowing ahead of time that R(V d) is closed. This complements Theorem 2.3.

Acknowledgements. We are grateful to Laura Burlando for her comments on an
earlier version of this paper, especially for the examples cited in Remark 1.3. Moreover,
the case p = 2 of Proposition 3.9 and Theorem 3.4 from [5] provides an improvement of
our Theorem 4.4 (the assumption n−1T n → 0 is superfluous).

The paper was initiated during the semester Linear Operators held at the Stefan
Banach International Mathematical Center in Warsaw, February-May 1994, and com-
pleted during the conference Banach Algebras 1999 held at the Pomona College in Clare-
mont, California, July-August 1999.
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28. J. Zemánek, On the Gelfand-Hille theorems, in Functional Analysis and Operator
Theory , Banach Center Publ., vol. 30, Polish Acad. Sci., Warszawa 1994, pp.
369–385.

SANDY GRABINER JAROSLAV ZEMÁNEK
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