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1. INTRODUCTION

A classical Hankel operator is a bounded linear operator Γ in `2 whose matrix with
respect to the standard basis in `2 is constant on the diagonals perpendicular to
the main one. In other words, the matrix entries depend only on the sum of the
indices; i.e.

Γ = (γj+k)∞j,k=0 .

Hankel operators play an important role in analysis, operator theory, prob-
ability, control theory, etc.; see, for example, [4].

A significant interest in Hankel operators can be also explained by the fact
that they serve as a bridge between operator theory and function theory. For
example, the classical Kronecker Theorem asserts that the Hankel operator Γ has

finite rank if and only if the function
∞∑

k=0

γkz−k−1 is rational and, moreover, the

rank of Γ is exactly the number of poles (counting multiplicities) of this function
in the open unit disc D := {z ∈ C : |z| < 1}.

In this note we will prove that, given any compact subset of the complex plane
containing zero, there exists a Hankel operator having this set as its spectrum. The
main ideas can be traced back to [11], which deals with the case of the spectrum
of the Hermitian square Γ∗Γ. The precise statement is:
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Theorem 1.1. Let σ be any compact subset of the complex plane containing
zero. Then there exists a Hankel operator Γ such that σ(Γ) = σ.

Let us mention that a Hankel operator Γ is never invertible, so 0 ∈ σ(Γ).
Indeed, let {ek}∞k=0 be the standard basis in `2. Then Γen = {γn, γn+1, γn+2, . . .}.
Since Γe0 = {γ0, γ1, γ2, . . .} ∈ `2, one can conclude that

‖Γen‖2 =
∞∑

k=n

|γk|2 → 0 as n → 0,

and so 0 ∈ σ(Γ).
Before moving further, let us discuss some related results. In some particular

cases, the spectral structure of Hankel operators is very well understood. For
example, a complete unitary invariant description of self-adjoint Hankel operators
(all γk are real) was obtained in [6].

In the general case, the situation is far from clear. Although our theorem
says that there are no constraints on the spectrum of Γ, except the trivial 0 ∈
σ(Γ), there are constraints on finer spectral properties of Hankel operators. For
example, (see [6]), the spectrum of a Hankel operator is almost symmetric: namely,
|dim ker(Γ−λI)−dim ker(Γ+λI)| 6 1. In particular, this implies: if λ is a multiple
eigenvalue of a Hankel operator Γ (dim ker(Γ − λI) > 1), then the point −λ has
to be an eigenvalue.

It is interesting to compare this to a result by E. Abakumov ([1]), which
states that given a finite number of non-zero points λ1, λ2, . . . , λn and multiplicities
k1, k2, . . . , kn, there exists a finite rank Hankel operator Γ such that its non-zero
eigenvalues are exactly λ1, λ2, . . . , λn and the corresponding algebraic multiplicities
are exactly k1, k2, . . . , kn with 0 an eigenvalue of infinite multiplicity (The algebraic
multiplicity of an eigenvalue λ is the dimension of the space of all generalized
eigenvectors; namely, the dimension of the space

⋃
n>1

ker(Γ− λI)n.).

Let us mention two other interesting results. First of all, it was shown by
S. Power ([9]) that there exist no non-trivial nilpotent (Γn = 0 for some n > 0)
Hankel operators. On the other hand, answering a question of S. Power, A. Megret-
skĭı ([5]) constructed an example of a nontrivial quasinilpotent Hankel operator;
i.e., a Hankel operator Γ such that ‖Γn‖1/n → 0 as n → ∞, or, equivalently,
σ(Γ) = {0}.

1.1. Hankel operators on the Hardy space H2. Let D be the unit disc
in the complex plane C, and let T be the unit circle, T := ∂D. Let m be the
normalized (m(T) = 1) Lebesgue measure on T, and let L2 = L2(T,m) be the
usual L2 space.

For a function f on T let f̂(k) denote its k-th Fourier coefficient, f̂(k) :=∫
T

f(z)z−k dm(z).

Let us recall that the Hardy space H2 is the analytic subspace of L2:

H2 := {f ∈ L2 : f̂(k) = 0 for k < 0};

the norm in H2 is just the regular L2-norm.
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The space H2 can be also identified with the space of analytic function on
the unit disc D:

H2 :=
{

f(z) =
∞∑

k=0

akzk : ‖f‖2

H2
:=

∞∑
k=0

|ak|2 < ∞
}

;

here ak = f̂(k).
Clearly, the Fourier Transform {ak} 7→

∑
akzk maps the space `2 onto the

Hardy space H2, and it is only natural to study Hankel operators acting on H2.
Let P+ be the orthogonal projection of L2 onto H2, and let P− be the

orthogonal projection onto (H2)⊥.
For a function ϕ ∈ L∞, define the operator Hϕ : H2 → (H2)⊥ by the formula

Hϕf = P−(ϕf), f ∈ H2.

It is easy to see, that the matrix of the operator Hϕ, with respect to the standard
bases {zn}n>0 and {zn}n<0 in H2 and (H2)⊥ respectively, has Hankel structure;
i.e., its entries depend only on sum of indices (and γk = ϕ̂(−k − 1)).

Such operators Hϕ are also called Hankel operators. To make the operator
Hϕ act in H2, we just compose it with the standard involution J on L2,

Jf(z) = zf(z), z ∈ T.

The involution J maps (H2)⊥ onto H2 (J(z−1) = 1, J(z−2) = z, J(z−3) = z2, . . .),
and clearly the operator Γϕ = JHϕ is a Hankel operator on H2 (with respect to
the standard basis). The function ϕ is called a symbol of the Hankel operator Γϕ.
The symbol is clearly not unique: if we add an analytic function to ϕ, the Hankel
operator does not change.

The famous Nehari Theorem ([7]; for a modern treatment see Power ([8]))
says that any Hankel operator Γ in H2 can be represented as Γϕ, and, moreover,
a symbol ϕ can be chosen in such a way that ‖ϕ‖∞ = ‖Γ‖ (the inequality ‖Γϕ‖ 6
‖ϕ‖∞ is trivial).

2. IDEA OF THE PROOF AND MAIN CONSTRUCTION

It is very easy to construct a Hilbert space operator T with prescribed spectrum
σ. One can take a sequence {bn}∞n=1 which is dense in σ and make T a diagonal
operator with {bn}∞n=1 on the diagonal. In other words, one picks an orthonormal
basis {en}∞n=1 and defines an operator T by Ten = bnen for all n. Clearly, σ(T ) =
clos({bn}∞n=1) = σ.

Note that if 0 ∈ σ, we do not have to assume that the system {en}∞n=1 is
complete: any orthogonal system will work.

We also do not have to assume that the system {en}∞n=1 is orthogonal: it
is enough to assume that the system is a Riesz basis. Let us recall that a sys-
tem of vectors {fn} in a Hilbert space H is called a Riesz basis if there exists a
bounded invertible operator R (the so-called orthogonalizer) which maps the sys-
tem into an orthonormal basis (some basic facts about Riesz bases can be found
in Young ([12])).
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The orthogonalizer is unique up to a unitary factor on the left. The quantity
‖R‖ · ‖R−1‖ is called the measure of non-orthogonality of the Riesz basis: ‖R‖ ·
‖R−1‖ = 1 if and only if the system is a multiple of an orthonormal basis.

Again, if 0 ∈ σ we do not need the system to be complete: it is enough to
require that it is a Riesz basis in its closed linear span.

Unfortunately, we do not have simple “building blocks” to construct a Hankel
operator with prescribed spectrum. For example, if we take eigenvectors of a
Hankel operator and change the corresponding eigenvalues, the resulting operators
generally will not be Hankel. This makes the construction complicated.

We begin with a simple problem: given a non-zero (complex) number b,
construct a rank one Hankel operator whose non-zero eigenvalue is exactly b.

We need the notion of a reproducing kernel. Let us recall that the function
Ka(z) := (1− az)−1, a ∈ D is called the reproducing kernel of H2 at the point a.
The reason for this name is the fact that for any f ∈ H2

(f,Ka) = f(a).

The above identity implies that ‖Ka‖2 = (1 − |a|2)−1, and therefore it is easy to
find the normalized reproducing kernel

ka(z) := ‖Ka‖−1Ka(z) =
(1− |a|2)1/2

1− az
.

Consider a Hankel operator Γ = Γϕa
, with symbol ϕa(z) = (z−a)−1, a ∈ D.

Take f ∈ H2. To compute Γϕa
f , notice that

1
z − a

f(z) =
f(a)
z − a

+
f(z)− f(a)

z − a
.

Clearly, the second term belongs to H2 and the first is orthogonal to H2. Recalling
that Γϕf = JP−(ϕf), where Jf(z) = zf(z), we get (for z ∈ T)

(2.1) Γϕa
f(z) =

zf(a)
z − a

=
f(a)

1− az
= (f,Ka)Ka =

1
1− |a|2

· (f, ka)ka.

Notice that (· , ka)ka is the orthogonal projection onto the one-dimensional
subspace spanned by ka. Therefore, if a is real, we have that for ϕ(z) = b · (1 −
|a|2) · (z − a)−1,

Γϕ = b(· , ka)ka , and so Γϕka = b · ka.

Thus we constructed a rank one Hankel operator with an eigenvalue b.
If we could find an orthogonal sequence of reproducing kernels {kan

}∞n=1,
we would be done. Unfortunately, no two reproducing kernels are orthogonal.
Fortunately, they are asymptotically orthogonal. Namely, if we fix a1 ∈ D, then

(2.2) (ka1 , ka) =
(1− |a1|2)1/2(1− |a|2)1/2

1− a1a
→ 0 as |a| → 1−.

This is the main property we need for our construction.

2.1. Main construction. Pick a dense disjoint sequence {bn}∞n=1 in σ \ {0}. If
we constructed a sequence of finite-rank Hankel operators Γϕn (with Γϕn of rank
n) such that
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(i) range Γϕn
= (ker Γϕn

)⊥; i.e., range Γϕn
is a reducing subspace of Γϕn

;
(ii) range Γϕn

⊂ range Γϕn+1 ;
(iii) the (non-zero) eigenvalues of Γϕn

are exactly b1, b2, . . . , bn, with the
corresponding normalized (‖f (n)

k ‖ = 1) eigenvectors f
(n)
1 , f

(n)
2 , . . . , f

(n)
n ;

(iv) the measure of non-orthogonality ‖R‖ ·‖R−1‖ of each system {f (n)
k }n

k=1,
for each n, is strictly less than 2 (each system is a finite linearly independent
system, so it is a Riesz basis in its linear span, so for each system one can construct
an orthogonalizer R and compute the measure of non-orthogonality ‖R‖ · ‖R−1‖);
and

(v) ‖f (n)
k − f

(n+1)
k ‖ 6 2−n;

then we are done!
Before explaining why it is so, let us mention that we will construct the

operators Γϕn (or, equivalently, symbols ϕn) by induction, and to perform this
induction we will need an additional condition, namely the condition (vi) from
Subsection 2.2 below.

However, conditions (i)–(v) alone are sufficient for the conclusion of the main
theorem, so we discuss the technical condition (vi) later in Subsection 2.2.

So, let us show that if we construct the operators Γϕn
satisfying the condi-

tions (i)–(v) above, then we obtain a Hankel operator with the prescribed spec-
trum.

Consider the trivial cases first. If σ = {0}, then we can just put Γ = 0. For
an example of a nontrivial Hankel operator with zero spectrum see the paper by
Megretskĭı ([5]) mentioned above.

If σ consists of zero and n other points, notice that constructing an operator
Γϕn

satisfying (iii) solves the problem (for another solution see [1]).
Thus we need only consider the case when σ consists of infinitely many points.

In this case, the construction gives us a Hankel operator with the desired spectral
property, as we now describe.

Indeed, let us first notice that condition (v) implies that {f (n)
k } → fk as

n → ∞ for some fk ∈ H2. Since for every fixed N 6 n the finite set {f (n)
k }N

k=1

is clearly a Riesz basis, it is easy to prove that the set {fk}N
k=1 is also a Riesz

basis (since {f (n)
k } → fk as n → ∞) and its measure of non-orthogonality is also

bounded by 2 (since, by condition (iv), the measure of non-orthogonality of every
set {f (n)

k }N
k=1 is bounded by 2). Secondly, since every finite set {fk}N

k=1 is a Riesz
basis, it follows that the system {fk}∞k=1 is also a Riesz basis (for its closed linear
span), and its measure of non-orthogonality ‖R‖ ·‖R−1‖ is at most 2 (because it is
sufficient to compute the norms of R and R−1 on dense sets of linear combinations∑

ckfk and
∑

ckRfk respectively).
Define an operator Γ on H2 by

Γfk = bkfk, for each k > 1,

and
Γf = 0 when f is orthogonal to all the {fk}.
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Then

‖Γfk − Γϕnfk‖ 6 ‖Γfk − Γϕnf
(n)
k ‖+ ‖Γϕnf

(n)
k − Γϕnfk‖

6 |bk| ‖fk − f
(n)
k ‖+ ‖Γϕn

‖ ‖fk − f
(n)
k ‖

6 (diam σ + 2 diam σ) ‖fk − f
(n)
k ‖,

where the last inequality follows because the norms of the operators Γϕn are
all bounded by 2diam σ (this is obtained by observing that when restricted to
range Γϕn , Γϕn = R−1

n diag{b1, b2, . . . , bn}Rn where Rn is the orthogonalizer cor-
responding to the Riesz basis {f (n)

k }n
k=1). But this shows that Γϕn

→ Γ in the
strong operator topology. Therefore Γ is a Hankel operator.

Clearly the spectrum of Γ is clos{bk : k > 1} if the system {fk}∞k=1 is com-
plete, and clos{bk : k > 1}∪{0} if it is not complete. Since for a Hankel operator Γ
one always has 0 ∈ σ(Γ), our operator has the prescribed spectrum in either case,
but notice that the system {fk}∞k=1 may be complete only if 0 ∈ clos{bk : k > 1}.

Let us also mention that, since the subspace En := range Γϕn
is a reducing

subspace for Γϕn
, one can forget about ker Γϕn

, and treat Γϕn
as an operator

acting on the finite dimensional space En.
We will construct the operators Γϕn

by induction. The symbols ϕn will be
of the form

(2.3) ϕn(z) =
n∑

k=1

bk ·
1− |ak|2

z − ak
· (1 + t

(n)
k ), ak ∈ (0, 1), t

(n)
k ∈ R \ {−1}

(we will have to chose ak and t
(n)
k ). It follows from (2.1) that

Γϕnf =
n∑

k=1

bk · (1 + t
(n)
k ) · (f, kak

)kak
.

Therefore range Γϕn = span{kak
: 1 6 k 6 n} and ker Γϕn = (span{kak

: 1 6 k 6
n})⊥, so conditions (i) and (ii) hold automatically.

The choice of ϕ1 is trivial: in equation (2.3) above pick an arbitrary a1

and put t
(1)
1 = 0 (that it satisfies all our conditions follows from equation (2.1)

above). Suppose we have constructed symbols ϕ1, . . . , ϕn. If we pick a point an+1

close enough to the boundary of the disk, the reproducing kernel kan+1 will be
almost orthogonal to ka1 , . . . , kan

. Therefore the Hankel operator with symbol
ϕn +bn+1 · (1−|an+1|2)/(z−an+1) will be almost the operator Γϕn+1 we need (the
eigenvalues are close to the desired eigenvalues, and the the other conditions are
also satisfied). To get the desired operator Γϕn+1 we just perturb the parameters
t
(n)
k a little.

To show that such perturbation is possible, we will use the implicit function
theorem. For this we will need one more assumption.

2.2. An additional assumption. Consider families of symbols ϕn,τ , parame-
terized by τ = (t1, t2, . . . , tn) ∈ Rn, where

ϕn,τ (z) =
n∑

k=1

bk ·
1− |ak|2

z − ak
· (1 + tk).
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If we put τ (n) := (t(n)
1 , t

(n)
2 , . . . , t

(n)
n ), then, in this notation, ϕn = ϕn,τ(n) .

Let Λ(n)(τ) = (λ(n)
1 (τ), λ(n)

2 (τ), . . . , λ(n)
n (τ)) be the nonzero eigenvalues of the

Hankel operator Γ = Γϕn,τ with symbol ϕn,τ . Then the last condition required is

(vi) the Jacobian dΛ(n)

dτ =
{

∂λ
(n)
j

∂tk

}n

j,k=1
is non-singular at τ = τ (n).

Clearly, the ordering of eigenvalues here is not essential. It is natural for our
purposes to order the eigenvalues such that λ

(n)
k (τ (n)) = bk.

Since bk 6= bj whenever k 6= j, it follows that λ
(n)
k (τ) 6= λ

(n)
j (τ) for j 6= k in a

small neighborhood of τ (n); so by Lemma 3.1 below, the functions τ 7→ λk(τ) are
continuously differentiable. Therefore the Jacobian dΛ/dτ is well-defined.

3. TECHNICAL LEMMAS

To prove the theorem we need few technical lemmas. Although they hold for
general operators, we will only need them for operators on a finite dimensional
space (matrices).

Let us recall that a point λ is called a simple isolated eigenvalue of an operator
A if it is an isolated point of σ(A) and the dimension of the corresponding spectral
subspace is 1. For matrices this means that λ is a simple root of the characteristic
polynomial p(z) := det(A− zI).

Lemma 3.1. Let t 7→ A(t) be a continuously differentiable operator-valued
function defined on an open subset Ω ⊂ Rn. Let the point λ ∈ C be a simple isolated
eigenvalue of A(t0) for t0 ∈ Ω. Then there exists a continuously differentiable
function t 7→ λ(t), defined in a small neighborhood of t0, such that λ(t0) = λ and
λ(t) is a simple isolated eigenvalue of A(t) for all t in the neighborhood.

Proof. The proof is not too difficult even in general case. In the matrix case
(which is what we need) the lemma is a simple corollary of the implicit function
theorem. The critical step here is that if λ is a simple root of a polynomial p(z),
then dp

dz (λ) 6= 0.

The next lemma (in the matrix case) is also a simple corollary of the implicit
function theorem. It also can be obtained (in the general case) by application of
standard techniques of perturbation theory; see, for example, [3], p. 213.

Lemma 3.2. Let A(t) and An(t) be continuously differentiable operator-
valued functions on some open subset Ω ⊂ Rm, and let

lim
n→∞

‖An(·)−A(·)‖C1(Ω) = 0.

For t0 ∈ Ω let λ be a simple isolated eigenvalue of A(t0).
Then there exist a small neighborhood U of t0 and continuously differentiable

functions λ(t), λ(n)(t), n > N for some large N , on U such that:
(i) λ(t) and λ(n)(t) are simple isolated eigenvalues of A(t) and An(t) re-

spectively for all t ∈ U ;
(ii) λ(t0) = λ; and
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(iii) lim
n→∞

‖λ(n)(·)− λ(·)‖C1(U) = 0.

Lemma 3.3. Let A,An be bounded operators of finite rank on a Hilbert space,
and assume that lim

n→∞
‖An−A‖ = 0. Suppose that µ is a simple isolated eigenvalue

for A and An for all n larger than some fixed N . If Af = µf , ‖f‖ = 1, then there
exists a sequence {fn} of unit vectors (‖fn‖ = 1) such that Anfn = µfn for n > N
and

lim
n→∞

‖fn − f‖ = 0.

Proof. If P (An) and P (A) are the Riesz spectral projections corresponding
to the eigenvalue µ, then

‖P (An)− P (A)‖ → 0 whenever ‖An −A‖ → 0,

(see, for example, [2], p. 80).
Thus, ‖f − P (An)f‖ = ‖P (A)f − P (An)f‖ → 0 since f is an eigenvector of

A. Also, |1− ‖P (An)f‖ | → 0 as n →∞. Let

fn =
P (An)f
‖P (An)f‖

.

Clearly fn is a normalized eigenvector of An corresponding to µ, and

‖f − fn‖ 6 ‖f − P (An)f‖+ | ‖P (An)f‖ − 1| → 0 as n →∞.

4. PROOF OF THE MAIN THEOREM

As it was shown above in Section 2, to prove the main theorem, it is enough to
construct a sequence of functions (symbols) ϕn, such that Hankel operators Γϕn

satisfy the conditions (i)–(v) from Subsection 2.1.
As it was mentioned above, we will construct symbols ϕn = ϕn,τ(n) by in-

duction, and to perform such induction we need to impose one more condition on
the symbols ϕn, namely condition (vi) from Subsection 2.2.

So, our goal is to construct by induction the sequence of symbols ϕn, such
that the corresponding Hankel operators Γϕn

satisfy the conditions (i)–(vi).
The case n = 1 is trivial: we just pick an arbitrary a1 ∈ (0, 1) and put

t
(1)
1 = 0.

Let us suppose that we have constructed vectors τ (k) ∈ Rk and real numbers
ak, with 1 6 k 6 n, satisfying conditions (i)–(vi). We must show that there is a
vector τ (n+1) and a real number an+1 such that conditions (i)–(vi) are satisfied.

First, let τ = (t1, t2, . . . , tn) ∈ Rn, and let τ̃ = (τ, tn+1) = (t1, t2, . . . , tn,
tn+1) ∈ Rn+1. Define

ϕ
(a)

n,τ̃
(z) = ϕn,τ (z) + bn+1

1− a2

z − a
(1 + tn+1), a ∈ (0, 1).

Define the operator-valued function (a, τ̃) 7→ Γa
n+1(τ̃) by

Γa
n+1(τ̃)f = Γϕn,τ

f + bn+1(1 + tn+1)(f, ha)ha,
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where ha is the normalized (‖ha‖ = 1) projection of the reproducing kernel ka(z) =
(1 − |a|2)1/2/(1 − az) onto the orthogonal complement of En := range Γϕn

=
span{kaj : 1 6 j 6 n}.

Notice that, for fixed τ̃ , the operators Γa
n+1(τ̃), a ∈ (0, 1) \ {a1, a2, . . . , an},

are unitarily equivalent to each other. Thus for each a there exist an operator
Γn+1(τ̃) (acting, say, on Cn+1) and a unitary operator Ua : Cn+1 → span{En, ha}
= span{ha, kaj

: 1 6 j 6 n} satisfying

U∗aΓa
n+1(τ̃)Ua = Γn+1(τ̃),

and such that the restriction U∗a |En does not depend on a (operators Γa
n+1(τ̃) for

fixed τ̃ and different a coincide on En).
The asymptotic orthogonality (2.2) of reproducing kernels implies

(4.1) lim
a→1

‖ha − ka‖ = 0,

and therefore the operator-valued functions τ̃ 7→ U∗aΓ
ϕ

(a)
n+1,τ̃

Ua converge in C1(G)

to τ̃ 7→ Γn+1(τ̃), for every bounded domain G in Rn as a → 1.
Notice that the eigenvalues of Γn+1(τ̃) for τ̃ = (τ (n), 0) ∈ Rn+1 are exactly

the numbers b1, b2, . . . , bn, bn+1.
Since the {bj} are distinct, we can apply Lemma 3.2. We get that there exists

a neighborhood U of the point (τ (n), 0) such that Λa(·) → Λ(·) in C1(U) as a → 1,
where Λa(τ̃) = (λa

1(τ̃), λa
2(τ̃), . . . , λa

n+1(τ̃)) and Λ(τ̃) = (λ1(τ̃), λ2(τ̃), . . . , λn+1(τ̃))
are eigenvalues of Γ

ϕ
(a)
n+1,τ̃

|span{En, ka}, and Γn+1(τ̃) respectively.

The order of eigenvalues is not essential here, but it is convenient for us to
order Λ(τ̃) such that λk((τ (n), 0)) = bk, k = 1, 2, . . . , n + 1.

The Jacobian dΛ

dτ̃
is non-singular at the point (τ (n), 0) since it can be easily

seen to have the following form:({
∂λ

(n)
k

∂tj

}n

k,j=1
O

O bn+1

)
.

The upper-left corner is non-singular by the induction hypothesis (vi), and
bn+1 6= 0 by the initial assumption.

Let I = (0, 1] and Ω ⊂ I×Rn+1 be a neighborhood of the point (1, (τ (n), 0)) ∈
I× Rn+1. Define the function f : Ω → Cn+1 by

f(a, τ̃) =
{

Λa(τ̃), if a ∈ (0, 1),
Λ(τ̃), if a = 1.

If the neighborhood Ω is small enough, the function f is well-defined and con-
tinuous. Moreover, the partial derivative ∂f/∂τ̃ (matrix-valued function) exists
and is continuous in Ω. Notice that at the point (1, (τ (n), 0)) ∈ I × Rn+1 the
partial derivative ∂f/∂τ̃ is exactly the Jacobian ∂Λ/∂τ̃ , which is non-singular at
this point.

Therefore, we are in position to apply the following implicit function theorem
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Theorem 4.1. (Implicit function theorem) Let E be a topological space, let
F and G be Banach spaces, let L(F,G) be the space of bounded linear operators
from F to G, let Ω be an open subset of E × F , and let (a, b) be a point in Ω. Let
f be a continuous mapping from Ω into G such that

(1) for any fixed x, the function f has a partial derivative ∂f
∂y (x, y), and the

mapping (x, y) 7→ ∂f
∂y (x, y) is a continuous mapping of Ω into L(F,G);

(2) ∂f
∂y (a, b) is an invertible mapping from F to G.

Assume, in addition, c = f(a, b).
Then there exist neighborhoods A and B of the points a and b such that for

any x ∈ A, the equation f(x, y) = c has a unique solution y = g(x) belonging to B,
and the function g defined in this manner is a continuous mapping from A to B.

This formulation of the implicit function theorem can be found, for example,
in Schwartz’ book ([10]).

If we apply this theorem to the function f defined above (with x = a, y = τ̃ ,
a = 1, b = (τ (n), 0), c = (b1, b2, . . . , bn+1)), we get that for a sufficiently close to 1
there exists a vector τ̃(a) such that

Λa(τ̃(a)) = Λ(τ (n), 0) = (b1, b2, . . . , bn+1) ∈ Rn+1.

This satisfies condition (iii). Of course,

lim
a→1

τ̃(a) = (τ (n), 0)

by continuity. Thus, if we choose a close enough to 1, the operator U∗aΓ
ϕ

(a)
n+1,τ̃(a)

Ua

can be as close as we want to Γn+1(τn, 0). Therefore, by Lemma 3.3, the nor-
malized eigenvectors of Γ

ϕ
(a)
n+1,τ̃(a)

are as close as we want to the corresponding

normalized eigenvectors of Γa
n+1(τ

(n), 0), which are exactly the normalized eigen-
vectors of Γϕn

and the normal eigenvector ha (which is orthogonal to all the other
eigenvectors) corresponding to the eigenvalue bn+1. So condition (v) is satisfied.

If we add to a Riesz basis of unit vectors (in a subspace) a unit vector
orthogonal to it, we get a Riesz basis for the higher-dimensional subspace with
the same measure of non-orthogonality ‖R‖ · ‖R−1‖ (because, as can easily be
seen, neither ‖R‖ nor ‖R−1‖ change when adding an orthonormal vector). So, by
the induction hypothesis (iv), the measure of non-orthogonality of the system of
normalized eigenvectors of Γa

n+1(τ
(n), 0) is strictly less than 2.

Therefore, for a close to 1, the measure of non-orthogonality of the system
of normalized eigenvectors of Γ

ϕ
(a)
n+1,τ̃(a)

is strictly less than 2 as well, since we can

make the eigenvectors as close as we want to the system of normalized eigenvectors
of Γa

n+1(τ
(n), 0), and for finite systems this implies that the orthogonalizers can

be made as close as we desire. Hence condition (iv) is satisfied.
Finally, since Λa( · ) → Λ( · ) in C1(Ω) as a → 1, for a close enough to 1 the

Jacobian ∂Λa(τ̃)/∂τ̃ is non-singular at τ̃ = τ̃(a), which is just condition (vi).
Therefore if we put τ (n+1) = τ̃(a), where a is close enough to 1 such that all

of the above hold, we get that the symbol ϕn+1 = ϕ
(a)

n+1,τ(n+1) = ϕ
(a)
n+1,τ̃(a) satisfies

all the conditions (i)–(vi). This finishes the proof.
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