SCHATTEN CLASS COMPOSITION OPERATORS ON PLANAR DOMAINS

VINH-THY M. TRAN

Communicated by Norberto Salinas

Abstract

We extend to finitely connected planar domains a result of Kehe Zhu which characterizes the Schatten class composition operators on the Hardy space of the disc. In the process, we characterize the positive compact and Schatten class Toeplitz operators on a weighted Bergman space.

Keywords: Compact composition operator, planar domains, Hardy space.
MSC (2000): Primary 47B38; Secondary 30H05.

1. INTRODUCTION

Let Ω be a domain in the plane. The Hardy space $H^{2}=H^{2}(\Omega)$ is defined to be those analytic functions f on Ω for which the subharmonic function $|f(z)|^{2}$ has a harmonic majorant. Once we specify a base point $t_{0} \in \Omega$, we define the norm of f to be square root of the value at t_{0} of the (unique) least harmonic majorant of $|f|^{2}$. The norm depends on t_{0} but, by an application of Harnack's inequality, the resulting topology does not. For more on the Hardy spaces, see [9].

An analytic function φ that maps Ω into itself determines a composition operator C_{φ} on H^{2} given by

$$
C_{\varphi} f=f \circ \varphi .
$$

That C_{φ} is bounded follows from Harnack's inequality.
Since C_{φ} depends intimately on φ, it is natural to ask how the functiontheoretic properties of φ relate to the operator-theoretic properties of C_{φ}. As an easy illustration, suppose $\varphi\left(t_{0}\right)=t_{0}$. Now if u_{f} is the least harmonic majorant of $|f|^{2}$, then $u_{f} \circ \varphi$ is a harmonic majorant of $|f \circ \varphi|^{2}$; hence

$$
\left\|C_{\varphi}(f)\right\|^{2} \leqslant u_{f}\left(\varphi\left(t_{0}\right)\right)=u_{f}\left(t_{0}\right)=\|f\|^{2}
$$

so that C_{φ} is a contraction.

In this paper the operator-theoretic properties that concern us are defined as follows. Let \mathcal{H} be a Hilbert space and $T: \mathcal{H} \rightarrow \mathcal{H}$ a bounded linear operator. For $n \geqslant 0$, let \mathcal{F}_{n} denote the set of bounded linear operators on \mathcal{H} with rank less than or equal to n. Define

$$
\begin{equation*}
s_{n+1}=\inf \left\{\|T-F\|: F \in \mathcal{F}_{n}\right\} . \tag{1.1}
\end{equation*}
$$

We call T compact if $\left\{s_{n}\right\} \in c_{0}$. Let $1 \leqslant p<\infty$. We call T Schatten p-class if $\left\{s_{n}\right\} \in l^{p}$. The number s_{n} is the nth singular value of T.

When Ω is the open unit disc, whether C_{φ} is compact or Schatten p-class depends on the value distribution of φ near the boundary of Ω. More precisely, from [10] and [12]:

Definition 1.1. Let Δ be the open unit disc and suppose $\varphi: \Delta \rightarrow \Delta$ is analytic. Define

$$
N_{\varphi}(w)=\sum_{\varphi(z)=w} \log \frac{1}{|z|}
$$

N_{φ} is the Nevanlinna counting function for φ.
Theorem 1.2. Suppose $\varphi: \Delta \rightarrow \Delta$ is analytic with $\varphi(0)=0$.
(a) C_{φ} is compact on $H^{2}(\Delta)$ if and only if

$$
\lim _{w \rightarrow \partial \Delta} \frac{N_{\varphi}(w)}{\log \frac{1}{|w|}}=0
$$

(b) C_{φ} is Schatten p-class on $H^{2}(\Delta), 2 \leqslant p<\infty$, if and only if

$$
\int_{\Delta}\left[\frac{N_{\varphi}(w)}{\log \frac{1}{|w|}}\right]^{\frac{p}{2}} \frac{\mathrm{~d} A(w)}{\left(1-|w|^{2}\right)^{2}}<\infty
$$

where $\mathrm{d} A$ is Lebesgue area measure.
In [4], Definition 1.1 and Theorem 1.2 (a) were extended to finitely connected planar domains. The main result of this paper is the extension of Theorem 1.2 (b) to such domains. Our arguments closely follow those in [12]; in particular, we prove our extension by connecting the composition operator on the Hardy space to a Toeplitz operator on a weighted Bergman space. As an added bonus, our methods allow us to present a different proof of the extension of (a) from that in [4].

2. BACKGROUND

2.1. Definitions and conventions. In this paper we are concerned with a planar domain Ω whose complement consists of a finite number of disjoint nontrivial continua. Such a domain is conformally equivalent to a domain whose boundary components are circles. Since the conformal mapping gives an isometry of the corresponding Hardy spaces, we may assume, and shall do so, that the components $\Gamma_{0}, \ldots, \Gamma_{m}$ of $\partial \Omega$ are circles, with Γ_{0} the boundary of the unbounded component of the complement of Ω.

We let Ω_{j} be the region outside $\Gamma_{j}, j=1, \ldots, m$, including the point at ∞, and Ω_{0} be the region inside Γ_{0}. A glance at Theorem 1.2 shows that behavior at the boundary is what concerns us here. Accordingly, we let A_{j} be a very thin annulus in Ω_{j} where $\Gamma_{j}=\partial \Omega_{j}$ is one component of ∂A_{j} and we set $A_{\partial \Omega}=\bigcup_{j=0}^{m} A_{j}$.

Each of the regions Ω_{j} is conformally equivalent to the open unit disc Δ via a linear fractional transformation φ_{j}; we will assume that $\varphi_{j}\left(t_{0}\right)=0$. By explicitly writing down the linear fractional transformation ϕ_{j}, it is easy to see that ϕ_{j}^{\prime} is non-vanishing in a full neighborhood of A_{j}. We will use this fact repeatedly in the sequel.

We let $g_{\Omega}\left(z, t_{0}\right)$ denote the Green's function for Ω with pole at t_{0}. The weighted Bergman space $A_{1, s}^{2}(\Omega)$ is defined to be those analytic functions f on Ω for which f has single-valued integral and for which

$$
\|f\|_{A_{1, s}^{2}(\Omega)}=\left[\frac{2}{\pi} \int_{\Omega}|f(z)|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)\right]^{\frac{1}{2}}
$$

is finite. Again, the norm depends on t_{0} but, by the Littlewood-Paley identity (4.5), the resulting topology does not. Standard techniques ([3]) reveal that $A_{1, s}^{2}(\Omega)$ is a reproducing kernel Hilbert space; further, if K_{a}^{Ω} is the reproducing kernel for the point $a \in \Omega$ and $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis, then $K_{a}^{\Omega}(z)=$ $\sum_{n=1}^{\infty} e_{n}(z) \overline{e_{n}(a)}$. We denote the normalized reproducing kernel by $k_{a}^{\Omega}=K_{a}^{\Omega} / \sqrt{K_{a}^{\Omega}(a)}$.

When we write $H^{2}\left(\Omega_{j}\right)$ or $A_{1}^{2}\left(\Omega_{j}\right)=A_{1, s}^{2}\left(\Omega_{j}\right)$ for the Hardy space or weighted Bergman space for this region, we will always assume that the norm is taken with respect to the base point t_{0}.

Let $\Pi: \Delta \rightarrow \Omega$ be an analytic covering map. The (unique maximal) ultrahyperbolic metric for Ω is defined at $w=\Pi(z) \in \Omega$ by

$$
\lambda_{\Omega}(w)=\frac{1}{\left(1-|z|^{2}\right)\left|\Pi^{\prime}(z)\right|}
$$

It is standard ([6]) that the value of $\lambda_{\Omega}(w)$ is independent of the covering map Π and the particular choice of $z \in \Delta$ with $\Pi(z)=w$.
2.2. Distance to the boundary. Let $\operatorname{dist}(z, \partial \Omega)$ denote the distance from z to the boundary of Ω. The next result is standard ([7]).

Proposition 2.1. Let U be a bounded, simply connected domain in the plane. If ϕ maps U conformally onto Δ then for all $z \in U$,

$$
\frac{1}{4}\left(1-|\phi(z)|^{2}\right) \frac{1}{\left|\phi^{\prime}(z)\right|} \leqslant \operatorname{dist}(z, \partial U) \leqslant\left(1-|\phi(z)|^{2}\right) \frac{1}{\left|\phi^{\prime}(z)\right|}
$$

Basically, this means that $1-|\phi(z)|^{2}$ and $\operatorname{dist}(z, \partial U)$ are comparable when ϕ has non-vanishing derivative in a full neighborhood of $\Gamma \subset \partial U$; in particular, when ϕ may be conformally extended across Γ.

Theorem 2.2. For all $z \in A_{\partial \Omega}$:
(a) $g_{\Omega}\left(z, t_{0}\right) \approx \operatorname{dist}(z, \partial \Omega)$;
(b) $\lambda_{\Omega}(z) \approx 1 / \operatorname{dist}(z, \partial \Omega)$;
(c) $K_{z}^{\Omega}(z) \approx 1 /[\operatorname{dist}(z, \partial \Omega)]^{3}$.

Proof. The general idea is to bound $g_{\Omega}\left(z, t_{0}\right), \lambda_{\Omega}(z)$, and $K_{z}^{\Omega}(z)$ above and below by their counterparts on simply connected domains, and then to estimate using these more tractable quantities.

Fix $a \in \partial \Omega$. Put $B_{a}(\varepsilon)=\{z:|z-a|<\varepsilon\}$ where ε is small. Define $U=\Omega \cap B_{a}(\varepsilon)$ and note that $U \subset \Omega \subset \Omega_{j}$ where $a \in \Gamma_{j}=\partial \Omega_{j}$. Let ϕ be a conformal map of U onto Δ.

To prove (c): Standard techniques ([3]) reveal that

$$
\begin{equation*}
K_{z}^{\Omega_{j}}(z) \leqslant K_{z}^{\Omega}(z) \leqslant K_{z}^{U}(z) \tag{2.1}
\end{equation*}
$$

So if we can show that $K_{z}^{\Omega_{j}}(z)$ and $K_{z}^{U}(z)$ are both comparable to $1 /[\operatorname{dist}(z, \partial \Omega)]^{3}$ for $z \in U \cap B_{a}(\varepsilon / 2)$ then we are done, for $\partial \Omega$ is compact and by a standard compactness argument, (c) will be proven.

A straightforward calculation shows that

$$
\begin{equation*}
K_{z}^{U}(z)=K_{\phi(z)}^{\Delta}(\phi(z))\left|\phi^{\prime}(z)\right|^{2}=\frac{\left(1+|\phi(z)|^{2}\right)\left|\phi^{\prime}(z)\right|^{2}}{\left(1-|\phi(z)|^{2}\right)^{3}} \tag{2.2}
\end{equation*}
$$

Now consider the portion of ∂U defined by $\partial \Omega \cap B_{a}(\varepsilon)$. Since this portion is an arc of a circle, ϕ may be conformally extended across $\partial \Omega \cap B_{a}(\varepsilon)$; therefore ϕ^{\prime} is non-vanishing in a full neighborhood of $\partial \Omega \cap B_{a}(\varepsilon / 2)$. Applying Proposition 2.1 to (2.2) we have, for $z \in U \cap B_{a}(\varepsilon / 2)$,

$$
K_{z}^{U}(z) \approx \frac{1}{\left[1-|\phi(z)|^{2}\right]^{3}} \approx \frac{1}{[\operatorname{dist}(z, \partial U)]^{3}}=\frac{1}{[\operatorname{dist}(z, \partial \Omega)]^{3}}
$$

By a similar argument (or by explicitly writing down a linear fractional transformation ϕ_{j} which maps Ω_{j} onto Δ with $\phi_{j}\left(t_{0}\right)=0$), it follows that $K_{z}^{\Omega_{j}}(z) \approx$ $1 /[\operatorname{dist}(z, \partial \Omega)]^{3}$ for $z \in U \cap B_{a}(\varepsilon / 2)$. Thus (c) is proven.

Examining the argument above, we clearly only need to establish that $g_{\Omega}\left(z, t_{0}\right)$ and $\lambda_{\Omega}(z)$ have properties akin to (2.1) and (2.2) to prove (a) and (b). For ultrahyperbolic metrics, it is standard ([6]) that:
(d) $\lambda_{\Omega_{j}}(z) \leqslant \lambda_{\Omega}(z) \leqslant \lambda_{U}(z) ;$
(e) $\lambda_{U}(z)=\lambda_{\Delta}(\phi(z))\left|\phi^{\prime}(z)\right|=\frac{\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}}$.

For the Green's function, first modify U so that $t_{0} \in U$ (for instance, let U be a thin tube in Ω containing $\Omega \cap B_{a}(\varepsilon)$ and $\left.t_{0}\right)$; next, choose ϕ so that $\phi\left(t_{0}\right)=0$. With these modifications, it is standard ([8]) that:
(f) $g_{U}\left(z, t_{0}\right) \leqslant g_{\Omega}\left(z, t_{0}\right) \leqslant g_{\Omega_{j}}\left(z, t_{0}\right)$;
(g) $g_{U}\left(z, t_{0}\right)=g_{\Delta}\left(\phi(z), \phi\left(t_{0}\right)\right)=\log 1 /|\phi(z)|$.

Now note that $\log 1 /|\phi(z)| \approx 1-|\phi(z)|$ near ∂U.
2.3. Ultrahyperbolic discs. The ultrahyperbolic length of a smooth curve γ in Ω is defined to be $\int_{\gamma} \lambda_{\Omega}(z) \mathrm{d} z$. For $a, b \in \Omega$, the ultrahyperbolic distance from a to b, denoted by $\lambda_{\Omega}(a, b)$, may then be defined as the infimum over all ultrahyperbolic lengths of smooth curves from a to b. For $a \in \Omega$ and $r>0$, define
(a) $U_{\Omega}(a, r)=\left\{z: \lambda_{\Omega}(a, z)<r\right\}$,
(b) $\left|U_{\Omega}(a, r)\right|=\frac{1}{\pi} \int_{U_{\Omega}(a, r)} \mathrm{d} A(z)$.

We call $U_{\Omega}(a, r)$ the ultrahyperbolic disc centered at a with radius r.
When Ω is the open unit disc $\Delta, U_{\Delta}(a, r)$ is just the familiar hyperbolic disc with center a, radius r; in this case, it is standard ([12]) that $U_{\Delta}(a, r)$ is a Euclidean disc with area

$$
\begin{equation*}
\left|U_{\Delta}(a, r)\right|=\frac{\left(1-|a|^{2}\right)^{2} s^{2}}{\left(1-|a|^{2} s^{2}\right)^{2}}, \quad s=\tanh r \tag{2.3}
\end{equation*}
$$

Lemma 2.3. If ϕ_{j} is the conformal map of Ω_{j} onto Δ, then:
(a) $\phi_{j}\left(U_{\Omega_{j}}(z, r)\right)=U_{\Delta}\left(\phi_{j}(z), r\right)$;
(b) $\left|U_{\Omega_{j}}(z, r)\right| \approx\left|U_{\Delta}\left(\phi_{j}(z), r\right)\right|, z \in A_{j}, 0<r<1$.

Proof. For (a): It is easy to verify that $\lambda_{\Omega_{j}}(a, b)=\lambda_{\Delta}\left(\phi_{j}(a), \phi_{j}(b)\right)$; that is, ultrahyperbolic distance is conformally invariant.

For (b): By the change of variable $w=\phi_{j}(z)$,

$$
\frac{1}{\pi} \int_{U_{\Delta}\left(\phi_{j}(a), r\right)} \mathrm{d} A(w)=\frac{1}{\pi} \int_{U_{\Omega_{j}}(a, r)}\left|\phi_{j}^{\prime}(z)\right|^{2} \mathrm{~d} A(z)
$$

Since ϕ_{j}^{\prime} is non-vanishing in a full neighborhood of A_{j}, the integral above on the right is comparable to $\left|U_{\Omega_{j}}(a, r)\right|$.

The next result may be proved using Theorem 2.2, Lemma 2.3, and standard estimates ([12]) for hyperbolic discs. For details, see [5] or [11].

Lemma 2.4. (a) For any $R_{2}>0$,

$$
\left|U_{\Omega_{j}}\left(z, r_{1}\right)\right| \approx\left|U_{\Omega_{j}}\left(w, r_{2}\right)\right|
$$

if $r_{1}, r_{2}<1,1 / R_{2} \leqslant r_{1} / r_{2} \leqslant R_{2}, z \in A_{j}, w \in \Omega$, and $\lambda_{\Omega_{j}}(z, w)<1$.
(b) There exists a constant $S>1$ such that

$$
U_{\Omega_{j}}\left(w, \frac{r}{S}\right) \subset U_{\Omega}(w, r) \subset U_{\Omega_{j}}(w, r)
$$

for all $0<r<1, z \in A_{j}$, and $w \in \Omega$ with $\lambda_{\Omega_{j}}(z, w)<r$.
Proposition 2.5. Let $0<r<1$.
(a) For all $z \in A_{\partial \Omega}$ and $w \in \Omega$ with $\lambda_{\Omega}(z, w)<r$,

$$
\left|U_{\Omega}(z, r)\right| \approx\left|U_{\Omega}(w, r)\right|
$$

(b) There exists a constant $C_{r}>0$ such that for all $z \in A_{\partial \Omega}$,

$$
\frac{1}{C_{r}} \leqslant \frac{\left|U_{\Omega}(z, r)\right|^{\frac{1}{2}}}{g_{\Omega}\left(z, t_{0}\right)} \leqslant C_{r}
$$

(c) There exists a constant $C_{r}>0$ such that for all $z \in A_{j}$,

$$
\frac{1}{\left|U_{\Omega}(z, r)\right|^{\frac{3}{2}}} \leqslant C_{r} \inf _{w \in U_{\Omega}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2}
$$

Proof. For (a): Using the standard inequality $\lambda_{\Omega_{j}} \leqslant \lambda_{\Omega}$ and Lemma 2.4,

$$
\begin{equation*}
\left|U_{\Omega}(z, r)\right| \approx\left|U_{\Omega_{j}}(z, r)\right| \approx\left|U_{\Omega_{j}}(w, r)\right| \approx\left|U_{\Omega}(w, r)\right| \tag{2.4}
\end{equation*}
$$

For (b): Using (2.4), Lemma 2.3 (b), and (2.3) we obtain

$$
\left|U_{\Omega}(z, r)\right| \approx\left|U_{\Omega_{j}}(z, r)\right| \approx\left|U_{\Delta}\left(\phi_{j}(z), r\right)\right| \approx\left(1-\left|\phi_{j}(z)\right|^{2}\right)^{2} s^{2}
$$

where $s=\tanh r$. And by Proposition 2.1 and Theorem 2.2,

$$
\begin{equation*}
1-\left|\phi_{j}(z)\right|^{2} \approx \operatorname{dist}\left(z, \partial \Omega_{j}\right)=\operatorname{dist}(z, \partial \Omega) \approx g_{\Omega}\left(z, t_{0}\right) \tag{2.5}
\end{equation*}
$$

For (c): We will need the following standard estimate ([12]),

$$
\begin{equation*}
\inf _{w \in U_{\Delta}(z, r)}\left[\frac{1-|z|^{2}}{|1-\bar{z} w|^{2}}\right]^{2}=\frac{(1-s|z|)^{4}}{\left(1-|z|^{2}\right)^{2}}, \quad s=\tanh r . \tag{2.6}
\end{equation*}
$$

Using Lemma 2.3 (a), a straightforward calculation reveals that

$$
\begin{align*}
\inf _{w \in U_{\Omega_{j}}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2} & =\inf _{\phi_{j}(w) \in U_{\Delta}\left(\phi_{j}(z), r\right)}\left|k_{\phi_{j}(z)}^{\Delta}\left(\phi_{j}(w)\right)\right|^{2}\left|\phi_{j}^{\prime}(w)\right|^{2} \\
& \approx \inf _{\phi_{j}(w) \in U_{\Delta}\left(\phi_{j}(z), r\right)}\left[\frac{1-\left|\phi_{j}(z)\right|^{2}}{\left|1-\overline{\phi_{j}(z)} \phi_{j}(w)\right|^{2}}\right]^{3}, \tag{2.7}
\end{align*}
$$

since ϕ_{j}^{\prime} is non-vanishing in a neighborhood of A_{j}. Applying (2.6), the quantity in (2.7) is comparable to $\left.1 /\left[1-\left|\phi_{j}(z)\right|^{2}\right)\right]^{3}$. So by (2.5) and (b),

$$
\frac{1}{\left|U_{\Omega}(z, r)\right|^{\frac{3}{2}}} \leqslant C_{r} \inf _{w \in U_{\Omega_{j}}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2}
$$

To complete the proof note, by Lemma $2.4(\mathrm{~b}), U_{\Omega}(z, r) \subset U_{\Omega_{j}}(z, r)$; so the definition of infimum shows that

$$
\inf _{w \in U_{\Omega_{j}}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2} \leqslant \inf _{w \in U_{\Omega}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2}
$$

3. COMPACT AND SCHATTEN CLASS TOEPLITZ OPERATORS

3.1. Definitions and conventions. In the sequel, $\mathrm{d} A$ will denote Lebesgue area measure normalized by a factor of $2 / \pi$.

Let $P: L^{2}\left(\Omega, g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)\right) \rightarrow A_{1, s}^{2}(\Omega)$ denote the orthogonal projection and let $\psi \in L^{\infty}(\Omega, \mathrm{d} A)$. The Toeplitz operator T_{ψ} on $A_{1, s}^{2}(\Omega)$ is defined as

$$
T_{\psi} f=P(\psi f)
$$

T_{ψ} is clearly bounded. Further, $\left\langle P(\psi f), K_{z}^{\Omega}\right\rangle=\left\langle\psi f, P K_{z}^{\Omega}\right\rangle=\left\langle\psi f, K_{z}^{\Omega}\right\rangle$ so that T_{ψ} has the integral representation

$$
T_{\psi} f(z)=\int_{\Omega} \psi(w) f(w) K_{w}^{\Omega}(z) g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w)
$$

The goal of this section is to characterize those compact and Schatten class Toeplitz operators T_{ψ} whose non-negative symbol ψ possesses a certain averaging property.

Definition 3.1. Let ψ be a non-negative function in $L^{\infty}(\Omega, \mathrm{d} A)$. Fix $0<$ $r<1$ and define, for $z \in \Omega$,

$$
\widehat{\psi}_{r}(z)=\frac{1}{\left|U_{\Omega}(z, r)\right|^{\frac{3}{2}}} \int_{U_{\Omega}(z, r)} \psi(w) g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w)
$$

We say ψ has the generalized sub-mean-value property near $\partial \Omega$ if there exists a constant $C_{r}>0$ such that $\psi(z) \leqslant C_{r} \widehat{\psi}_{r}(z)$ for all $z \in A_{\partial \Omega}$.

The extra factor $\left|U_{\Omega}(z, r)\right|^{1 / 2}$ may seem odd, but compensates for the extra weight $g_{\Omega}\left(w, t_{0}\right)$: by Proposition 2.5 we know $\left|U_{\Omega}(z, r)\right| \approx\left|U_{\Omega}(w, r)\right|$ when $w \in$ $U_{\Omega}(z, r)$ and $\left|U_{\Omega}(w, r)\right|^{1 / 2} \approx g_{\Omega}\left(w, t_{0}\right)$. Thus

$$
\begin{align*}
\widehat{\psi}_{r}(z) & =\frac{1}{\left|U_{\Omega}(z, r)\right|} \int_{U_{\Omega}(z, r)} \psi(w) \frac{g_{\Omega}\left(w, t_{0}\right)}{\left|U_{\Omega}(z, r)\right|^{1 / 2}} \mathrm{~d} A(w) \\
& \approx \frac{1}{\left|U_{\Omega}(z, r)\right|} \int_{U_{\Omega}(z, r)} \psi(w) \mathrm{d} A(w) \tag{3.1}
\end{align*}
$$

So, at least near $\partial \Omega, \widehat{\psi}_{r}(z)$ is just the average value of $\psi(z)$ calculated with respect to an ultrahyperbolic, as opposed to Euclidean, disc.

With this definition, we may now state the main result of this section.
THEOREM 3.2. Let ψ be a non-negative function in $L^{\infty}(\Omega, \mathrm{d} A)$ with the generalized sub-mean-value property near $\partial \Omega$.
(a) T_{ψ} is compact on $A_{1, s}^{2}(\Omega)$ if and only if

$$
\lim _{z \rightarrow \partial \Omega} \psi(z)=0
$$

(b) T_{ψ} is Schatten p-class on $A_{1, s}^{2}(\Omega), 1 \leqslant p<\infty$, if and only if

$$
\int_{\Omega}[\psi(z)]^{p}\left[\lambda_{\Omega}(z)\right]^{2} \mathrm{~d} A(z)<\infty
$$

In the next two subsections, we derive necessary and sufficient conditions for a Toeplitz operator to be compact or Schatten class. Then we use these conditions, coupled with the restriction on the symbol ψ, to prove Theorem 3.2.
3.2. Necessary conditions. The standard argument for the open unit disc involves estimating the Berezin transform (The Berezin transform of T_{ψ} is defined for $z \in \Omega$ by $\widetilde{T}_{\psi}(z)=\left\langle T_{\psi} k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle$.) of T_{ψ} near the boundary. Our argument for finitely connected domains is essentially the same, except we use "pseudo-Berezin" transforms to estimate one boundary component at a time.

Definition 3.3. Let T_{ψ} be a positive Toeplitz operator on $A_{1, s}^{2}(\Omega)$ and let $I: A_{1}^{2}\left(\Omega_{j}\right) \rightarrow A_{1, s}^{2}(\Omega)$ be the inclusion map and I^{*} the adjoint of I. Define $T_{j}: A_{1}^{2}\left(\Omega_{j}\right) \rightarrow A_{1}^{2}\left(\Omega_{j}\right)$ by

$$
T_{j}=I^{*} T_{\psi} I
$$

Note that for $f \in A_{1}^{2}\left(\Omega_{j}\right)$,

$$
\begin{equation*}
\left\langle T_{j} f, f\right\rangle=\left\langle I^{*} T_{\psi} I f, f\right\rangle=\left\langle T_{\psi} I f, I f\right\rangle=\left\langle T_{\psi} f, f\right\rangle \tag{3.2}
\end{equation*}
$$

Hence T_{j} is also positive. Specializing to $f=k_{z}^{\Omega_{j}}$ in (3.2) we obtain

$$
\begin{equation*}
\left\langle T_{j} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle=\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle \tag{3.3}
\end{equation*}
$$

Proposition 3.4. Let $1 \leqslant p<\infty$. If T_{ψ} is a positive Toeplitz operator that is Schatten p-class on $A_{1, s}^{2}(\Omega)$, then:
(a) T_{j} is Schatten p-class on $A_{1}^{2}\left(\Omega_{j}\right)$;
(b) $\int_{\Omega_{j}}\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle^{p}\left[\lambda_{\Omega_{j}}(z)\right]^{2} \mathrm{~d} A(z)<\infty$.

Proof. For (a): If $\left\{s_{n}\right\}$ denotes the singular values of T_{j} and $\left\{t_{n}\right\}$ denotes the singular values of T_{ψ}, a straightforward argument using the definition of singular values gives $s_{n} \leqslant t_{n}$.

For (b): From [1] and [2], the formulas
(c) $\left\langle T k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle^{p} \leqslant\left\langle T^{p} k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle$;
(d) $\operatorname{trace}(T)=\int_{\Omega}\left\langle T k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle K_{z}^{\Omega}(z) g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)$,
are valid for any positive operator T on $A_{1, s}^{2}(\Omega)$. So using (c), Theorem 2.2, and then (d), we obtain

$$
\begin{aligned}
\int_{\Omega}\left\langle T k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle^{p}\left[\lambda_{\Omega}(z)\right]^{2} \mathrm{~d} A(z) & \leqslant \int_{\Omega}\left\langle T^{p} k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle\left[\lambda_{\Omega}(z)\right]^{2} \mathrm{~d} A(z) \\
& \leqslant C \int_{\Omega}\left\langle T^{p} k_{z}^{\Omega}, k_{z}^{\Omega}\right\rangle K_{z}^{\Omega}(z) g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) \\
& =C \operatorname{trace}\left(T^{p}\right)
\end{aligned}
$$

By a standard result ([12]) of operator theory, if T is Schatten p-class, then T^{p} is Schatten 1-class; that is, trace $\left(T^{p}\right)$ is finite.

To complete the proof of (b), apply the above chain of inequalities with $\Omega=\Omega_{j}, T=T_{j}$, and use (3.3).
3.3. Sufficient conditions. Since the arguments for the open unit disc adapt readily to finitely connected domains, we will only sketch the proofs of the next two results.

Proposition 3.5. Let ψ be a non-negative function in $L^{\infty}(\Omega, \mathrm{d} A)$. If $\psi \in$ $C_{0}(\Omega)$, then T_{ψ} is compact on $A_{1, s}^{2}(\Omega)$.

Proof. Let $\left\{f_{n}\right\}$ be a sequence of functions in $A_{1, s}^{2}(\Omega)$ with $\left\|f_{n}\right\| \leqslant 1$ and $f_{n} \rightarrow 0$ uniformly on compact subsets of Ω. We wish to show that $\left\langle T_{\psi} f_{n}, f_{n}\right\rangle \rightarrow 0$.

Using hypothesis, we may choose a compact set $K \subset \Omega$ such that

$$
\begin{aligned}
\left\langle T_{\psi} f_{n}, f_{n}\right\rangle & =\int_{\Omega} \psi(z)\left|f_{n}(z)\right|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) \\
& \leqslant \int_{\Omega \backslash K} \psi(z) \varepsilon g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)+\int_{K} \varepsilon\left|f_{n}(z)\right|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) \\
& \leqslant \varepsilon\|\psi\|_{\infty} \int_{\Omega} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)+\varepsilon \int_{\Omega}\left|f_{n}(z)\right|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) .
\end{aligned}
$$

Since the singularity of $g_{\Omega}\left(z, t_{0}\right)$ at t_{0} is integrable, and since $\left\|f_{n}\right\| \leqslant 1$,

$$
\left\langle T_{\psi} f_{n}, f_{n}\right\rangle \leqslant \varepsilon\|\psi\|_{\infty} \cdot C_{\Omega}+\varepsilon .
$$

By a standard result ([12]) of operator theory, T_{ψ} is compact.
Proposition 3.6. Let ψ be a non-negative function in $L^{\infty}(\Omega, \mathrm{d} A)$ and suppose $1 \leqslant p<\infty$. If $\psi \in L^{p}\left(\Omega,\left[\lambda_{\Omega}\right]^{2} \mathrm{~d} A\right)$, then T_{ψ} is Schatten p-class on $A_{1, s}^{2}(\Omega)$.

Proof. Let $\left\{e_{n}\right\}$ be any orthonormal set in $A_{1, s}^{2}(\Omega)$. We wish to show that $\sum_{n}\left\langle T_{\psi} e_{n}, e_{n}\right\rangle^{p}$ is finite.

A standard calculation reveals that

$$
\begin{aligned}
\sum_{n}\left\langle T_{\psi} e_{n}, e_{n}\right\rangle^{p} & \leqslant \int_{\Omega} \sum_{n}\left|e_{n}(z)\right|^{2}[\psi(z)]^{p} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) \\
& =\int_{\Omega} K_{z}^{\Omega}(z)[\psi(z)]^{p} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)
\end{aligned}
$$

But $K_{z}^{\Omega}(z) g_{\Omega}\left(z, t_{0}\right) \leqslant C\left[\lambda_{\Omega}(z)\right]^{2}$ near $\partial \Omega$ by Theorem 2.2. Therefore,

$$
\sum_{n}\left\langle T_{\psi} e_{n}, e_{n}\right\rangle^{p} \leqslant C \int_{\Omega}[\psi(z)]^{p}\left[\lambda_{\Omega}(z)\right]^{2} \mathrm{~d} A(z)<\infty
$$

By a standard result ([12]) of operator theory, T_{ψ} is Schatten p-class.
3.4. Proof of Theorem 3.2. We begin by connecting the averaging function for ψ with our "pseudo-Berezin" transform for T_{ψ}.

Lemma 3.7. Let $0<r<1$. There exists a constant $C_{r}>0$ such that

$$
\widehat{\psi}_{r}(z) \leqslant C_{r}\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle, \quad z \in A_{j}
$$

Proof. By Proposition 2.5 (c),

$$
\begin{aligned}
\widehat{\psi}_{r}(z) & =\frac{1}{\left|U_{\Omega}(z, r)\right|^{\frac{3}{2}}} \int_{U_{\Omega}(z, r)} \psi(w) g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w) \\
& \leqslant C_{r} \inf _{w \in U_{\Omega}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2} \int_{U_{\Omega}(z, r)} \psi(w) g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w) \\
& =C_{r} \int_{U_{\Omega}(z, r)} \psi(w)\left[\inf _{w \in U_{\Omega}(z, r)}\left|k_{z}^{\Omega_{j}}(w)\right|^{2}\right] g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w)
\end{aligned}
$$

Therefore,

$$
\widehat{\psi}_{r}(z) \leqslant C_{r} \int_{\Omega} \psi(w)\left|k_{z}^{\Omega_{j}}(w)\right|^{2} g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w)=C_{r}\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle
$$

We are now ready to prove the main theorem of this section.
Proof. (Proof of Theorem 3.2 (a)) Suppose T_{ψ} is compact. Then $\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle$ $\rightarrow 0$ as $z \rightarrow \partial \Omega_{j}$ since $k_{z}^{\Omega_{j}} \rightarrow 0$ weakly as $z \rightarrow \partial \Omega_{j}$. Now by Lemma 3.7,

$$
\widehat{\psi}_{r}(z) \leqslant C_{r}\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle, \quad z \in A_{j}
$$

Hence $\widehat{\psi}_{r}(z) \rightarrow 0$ as $z \rightarrow \partial \Omega_{j}$. But by hypothesis $\psi(z) \leqslant C_{r} \widehat{\psi}_{r}(z)$, forcing $\psi(z) \rightarrow 0$ as $z \rightarrow \partial \Omega_{j}$.

For the converse, write $T_{\psi}=T_{\psi \mid \Omega \backslash A_{\partial \Omega}}+T_{\psi \mid A_{\partial \Omega}}$. Then T_{ψ} will be compact if we can show that $T_{\psi \mid \Omega \backslash A_{\partial \Omega}}$ and $T_{\psi \mid A_{\partial \Omega}}$ are compact.

Now by assumption $\psi(z) \rightarrow 0$ as $z \rightarrow \partial \Omega$, so (3.1) implies $\widehat{\psi}_{r}(z) \rightarrow 0$ as $z \rightarrow$ $\partial \Omega$. Thus, by Proposition 3.5, $T_{\widehat{\psi}_{r}}$ is compact. But by hypothesis, $\psi(z) \leqslant C \widehat{\psi}_{r}(z)$ for z near $\partial \Omega$ so that $T_{\psi \mid A_{\partial \Omega}} \leqslant T_{C \widehat{\psi}_{r}}=C T_{\widehat{\psi}_{r}}$. Therefore $T_{\psi \mid A_{\partial \Omega}}$ is compact.

It remains to show $T_{\psi \mid \Omega \backslash A_{\partial \Omega}}$ is compact; but this follows from the standard argument outlined in Proposition 3.5.

Proof. (Proof of Theorem 3.2 (b)) Suppose T_{ψ} is Schatten p-class. Then by Lemma 3.7 and Proposition 3.4,

$$
\int_{\Omega}\left[\widehat{\psi}_{r}(z)\right]^{p}\left[\lambda_{\Omega_{j}}\right]^{2} \mathrm{~d} A \leqslant C_{r} \int_{\Omega_{j}}\left\langle T_{\psi} k_{z}^{\Omega_{j}}, k_{z}^{\Omega_{j}}\right\rangle^{p}\left[\lambda_{\Omega_{j}}\right]^{2} \mathrm{~d} A<\infty .
$$

Now by Theorem $2.2 \lambda_{\Omega_{j}}$ and λ_{Ω} are comparable near $\partial \Omega_{j} \subset \partial \Omega$ since each is comparable to the reciprocal of the distance to the boundary. Thus $\widehat{\psi}_{r}$ is in $L^{p}\left(\Omega,\left[\lambda_{\Omega}\right]^{2} \mathrm{~d} A\right)$. But by hypothesis, $\psi(z) \leqslant C_{r} \widehat{\psi}_{r}(z)$ for z near $\partial \Omega$ so that ψ is in $L^{p}\left(\Omega,\left[\lambda_{\Omega}\right]^{2} \mathrm{~d} A\right)$.

The converse follows immediately from Proposition 3.6.

Remark 3.8. Similar to the situation for the open unit disc, a little more work shows that, with no extra sub-mean-value assumption on ψ, the conditions $\widehat{\psi}_{r}(z) \rightarrow 0$ as $z \rightarrow \partial \Omega$ and $\widehat{\psi}_{r} \in L^{p}\left(\Omega,\left[\lambda_{\Omega}\right]^{2} \mathrm{~d} A\right)$ actually characterize the compact and Schatten class Toeplitz operators T_{ψ} on $A_{1, s}^{2}(\Omega)$ with non-negative symbol ψ. For details, see [11].

4. COMPACT AND SCHATTEN CLASS COMPOSITION OPERATORS

With the results of Section 3 in place, we need just a few more results before we can state and prove the main theorem of this paper.
4.1. The sub-mean-value property. The following definition and theorem are from [4].

Definition 4.1. Let $\varphi: \Omega \rightarrow \Omega$ be an analytic function. Define, for $w \in$ $\Omega \backslash\left\{\varphi\left(t_{0}\right)\right\}$,

$$
N_{\varphi}(w)=\sum_{\varphi(z)=w} g_{\Omega}\left(z, t_{0}\right)
$$

N_{φ} is the Nevalinna counting function for φ.
Theorem 4.2. Suppose $\varphi: \Omega \rightarrow \Omega$ is analytic with $\varphi\left(t_{0}\right)=t_{0}$.
(a) For all $w \in \Omega \backslash\left\{t_{0}\right\}, N_{\varphi}(w) \leqslant g_{\Omega}\left(w, t_{0}\right)$.
(b) Suppose f is an analytic function on an open disc D with center at w. If $f(D) \subset \Omega$ and $t_{0} \notin f(D)$, then

$$
N_{\varphi}(f(w)) \leqslant \frac{1}{|D|} \int_{D} N_{\varphi}(f(z)) \mathrm{d} A(z)
$$

If $f(w)=w$ is the identity map, then (b) asserts that N_{φ} has a subharmonic mean value property on Euclidean discs in Ω which do not contain t_{0}. The following corollary shows that, near $\partial \Omega, N_{\varphi}$ retains a similar property for ultrahyperbolic discs as well.

Corollary 4.3. Let $0<r<1$. There exists a constant $C>0$ such that for all $w \in A_{\partial \Omega}$,

$$
\begin{equation*}
N_{\varphi}(w) \leqslant \frac{C}{\left|U_{\Omega}(w, r)\right|} \int_{U_{\Omega}(w, r)} N_{\varphi}(z) \mathrm{d} A(z) \tag{4.1}
\end{equation*}
$$

Proof. Let $a \in A_{j}$ and $U_{\Omega_{j}}(a, r)$ a hyperbolic disc contained in A_{j}. For simplicity, put $b=\phi_{j}(a)$. If $\tau_{b}(z)=\frac{b-z}{1-\bar{b} z}$, then it is easy to check that

$$
\begin{equation*}
\tau_{b}\left(U_{\Delta}(0, r)\right)=U_{\Delta(b, r)}=\phi_{j}\left(U_{\Omega_{j}}(a, r)\right) \tag{4.2}
\end{equation*}
$$

Applying Theorem 4.2 (b) with $f=\phi_{j}^{-1} \circ \tau_{b}$ and $D=U_{\Delta}(0, r)$,

$$
N_{\varphi}(a)=N_{\varphi}\left(\phi_{j}^{-1} \circ \tau_{b}(0)\right) \leqslant \frac{1}{\left|U_{\Delta}(0, r)\right|} \int_{U_{\Delta}(0, r)} N_{\varphi}\left(\phi_{j}^{-1} \circ \tau_{b}(z)\right) \mathrm{d} A(z)
$$

Since $\tau_{b}\left(\tau_{b}(w)\right)=w$, by (4.2) the change of variable $z=\tau_{b}(w)$ gives

$$
\int_{U_{\Delta}(0, r)} N_{\varphi}\left(\phi_{j}^{-1} \circ \tau_{b}(z)\right) \mathrm{d} A(z)=\int_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\left|\tau_{b}^{\prime}(w)\right|^{2} \mathrm{~d} A(w)\right.
$$

Letting $s=\tanh r$ and using (2.3) along with standard estimates ([12]),

$$
\begin{aligned}
N_{\varphi}(a) & \leqslant \frac{1}{s^{2}} \int_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\left|\tau_{b}^{\prime}(w)\right|^{2} \mathrm{~d} A(w)\right. \\
& \leqslant \frac{1}{s^{2}} \int_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\right)\left[\sup _{w \in U_{\Delta}(b, r)}\left|\frac{1-|b|^{2}}{(1-\bar{b} z)^{2}}\right|^{2}\right] \mathrm{d} A(w) \\
& =\frac{(1+s|b|)^{4}}{s^{2}\left(1-|b|^{2}\right)^{2}} \int N_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\right) \mathrm{d} A(w) \\
& =\frac{(1+s|b|)^{4}}{\left(1-|b|^{2} s^{2}\right)^{2}} \frac{1}{\left|U_{\Delta}(b, r)\right|} \int_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\right) \mathrm{d} A(w)
\end{aligned}
$$

The factor $(1+s|b|)^{4} /\left(1-|b|^{2} s^{2}\right)^{2}$ is bounded by a constant independent of $b=$ $\phi_{j}(a)$ and $s=\tanh r$ since $\left|\phi_{j}(a)\right|<1$ and $r<1$. Thus

$$
\begin{aligned}
N_{\varphi}(a) & \leqslant \frac{C}{\left|U_{\Delta}(b, r)\right|} \int_{U_{\Delta}(b, r)} N_{\varphi}\left(\phi_{j}^{-1}(w)\right) \mathrm{d} A(w) \\
& =\frac{C}{\left|U_{\Delta}\left(\phi_{j}(a), r\right)\right|} \int_{U_{\Omega_{j}}(a, r)} N_{\varphi}(z)\left|\phi_{j}^{\prime}(z)\right|^{2} \mathrm{~d} A(z)
\end{aligned}
$$

where, by (4.2), we have made the change of variable $w=\phi_{j}(z)$. Since $U_{\Omega_{j}}(a, r) \subset$ A_{j} and ϕ_{j}^{\prime} is non-vanishing in a neighborhood of A_{j},

$$
\begin{equation*}
N_{\varphi}(a) \leqslant \frac{C}{\left|U_{\Delta}\left(\phi_{j}(a), r\right)\right|} \int_{U_{\Omega_{j}}(a, r)} N_{\varphi}(z) \mathrm{d} A(z) \tag{4.3}
\end{equation*}
$$

Now fix an $S>1$. Since (4.3) holds for $0<r<1$, it holds for r / S. So replacing r with r / S in (4.3) and using Lemma 2.3 (b) and Lemma 2.4 (a),

$$
\begin{equation*}
N_{\varphi}(a) \leqslant \frac{C}{\left|U_{\Omega_{j}}(a, r / S)\right|} \int_{U_{\Omega_{j}}(a, r / S)} N_{\varphi}(z) \mathrm{d} A(z) \tag{4.4}
\end{equation*}
$$

If S is the constant from Lemma 2.4, then there exists a $C>0$ such that $\left|U_{\Omega}(a, r)\right| \leqslant C\left|U_{\Omega_{j}}(a, r / S)\right|$ and $U_{\Omega_{j}}(a, r / S) \subset U_{\Omega}(a, r) ;$ so by (4.4),

$$
N_{\varphi}(a) \leqslant \frac{C}{\left|U_{\Omega}(a, r)\right|} \int_{U_{\Omega}(a, r)} N_{\varphi}(z) \mathrm{d} A(z)
$$

4.2. The main theorem. The next lemma provides the crucial link between composition operators on the Hardy space $H^{2}(\Omega)$ and Toeplitz operators on the weighted Bergman space $A_{1, s}^{2}(\Omega)$.

Lemma 4.4. Suppose $\varphi: \Omega \rightarrow \Omega$ is analytic with $\varphi\left(t_{0}\right)=t_{0}$. Let $H_{t_{0}}^{2}(\Omega)$ denote the subspace of $H^{2}(\Omega)$ functions vanishing at the base point t_{0} and define

$$
U: H_{t_{0}}^{2}(\Omega) \rightarrow A_{1, s}^{2}(\Omega) \quad \text { and } \quad D_{\varphi}: A_{1, s}^{2}(\Omega) \rightarrow A_{1, s}^{2}(\Omega)
$$

by $U f(z)=f^{\prime}(z)$ and $D_{\varphi} f(z)=f(\varphi(z)) \varphi^{\prime}(z)$. Then:
(a) $U C_{\varphi} U^{*}=D_{\varphi}$; that is, C_{φ} is unitarily equivalent to D_{φ}.
(b) Let $\psi(w)=N_{\varphi}(w) / g_{\Omega}\left(w, t_{0}\right)$. Then $D_{\varphi}^{*} D_{\varphi}=T_{\psi}$.

Proof. For (a): Let $\omega_{t_{0}}$ denote the harmonic measure on $\partial \Omega$ for the base point t_{0}. It is standard ([9]) that each H^{2} function f on Ω has boundary values almost everywhere on $\partial \Omega$, and that the correspondence of f to its boundary values is an isometry of H^{2} onto a closed subspace of $L^{2}\left(\partial \Omega, \omega_{t_{0}}\right)$. From the Littlewood-Paley identity ([4]),

$$
\begin{equation*}
\|f\|_{H^{2}(\Omega)}^{2}=\int_{\partial \Omega}|f|^{2} \mathrm{~d} \omega_{t_{0}}=\left|f\left(t_{0}\right)\right|^{2}+\int_{\Omega}\left|f^{\prime}(z)\right|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z) \tag{4.5}
\end{equation*}
$$

Hence $H_{t_{0}}^{2}(\Omega)$ is unitarily isomorphic to $A_{1, s}^{2}(\Omega)$ via the map $U f=f^{\prime}$ and (a) now follows from the chain rule.

For (b): From [4], the change of variable formula

$$
\int_{\Omega} F(\varphi(z))\left|\varphi^{\prime}(z)\right|^{2} g\left(z, t_{0}\right) \mathrm{d} A(z)=\int_{\Omega} F(w) N_{\varphi}(w) \mathrm{d} A(w)
$$

is valid for any non-negative measurable function F on Ω.
Let $f \in A_{1, s}^{2}(\Omega)$. Then $\left\langle D_{\varphi}^{*} D_{\varphi} f, f\right\rangle=\left\langle D_{\varphi} f, D_{\varphi} f\right\rangle$ so that

$$
\left\langle D_{\varphi}^{*} D_{\varphi} f, f\right\rangle=\int_{\Omega}|f(\varphi(z))|^{2}\left|\varphi^{\prime}(z)\right|^{2} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)
$$

Applying the change of variable formula with $F=|f|^{2}$, we obtain

$$
\left\langle D_{\varphi}^{*} D_{\varphi} f, f\right\rangle=\int_{\Omega}|f(w)|^{2} N_{\varphi}(w) \mathrm{d} A(w)
$$

On the other hand, $\psi(w)=N_{\varphi}(w) / g_{\Omega}\left(w, t_{0}\right)$ so that

$$
\left\langle T_{\psi} f, f\right\rangle=\int_{\Omega} \psi(w)|f(w)|^{2} g_{\Omega}\left(w, t_{0}\right) \mathrm{d} A(w)=\int_{\Omega}|f(w)|^{2} N_{\varphi}(w) \mathrm{d} A(w)
$$

Hence $\left\langle T_{\psi} f, f\right\rangle=\left\langle D_{\varphi}^{*} D_{\varphi} f, f\right\rangle$ for all $f \in A_{1, s}^{2}(\Omega)$.
We are now ready to state and prove the main result of this paper.
Theorem 4.5. Suppose $\varphi: \Omega \rightarrow \Omega$ is analytic with $\varphi\left(t_{0}\right)=t_{0}$.
(a) C_{φ} is compact on $H^{2}(\Omega)$ if and only if

$$
\lim _{w \rightarrow \partial \Omega} \frac{N_{\varphi}(w)}{g_{\Omega}\left(w, t_{0}\right)}=0
$$

(b) C_{φ} is Schatten p-class on $H^{2}(\Omega), 2 \leqslant p<\infty$, if and only if

$$
\int_{\Omega}\left[\frac{N_{\varphi}(w)}{g_{\Omega}\left(w, t_{0}\right)}\right]^{\frac{p}{2}}\left[\lambda_{\Omega}(w)\right]^{2} \mathrm{~d} A(w)<\infty
$$

where $\mathrm{d} A$ is Lebesgue area measure.
Proof. Since $H_{t_{0}}^{2}(\Omega)$ is a subspace of codimension 1 in $H^{2}(\Omega)$, the question of whether C_{φ} is compact or Schatten class on $H^{2}(\Omega)$ is the same as whether C_{φ} is compact or Schatten class on $H_{t_{0}}^{2}(\Omega)$. Hence, it suffices to consider C_{φ} acting on $H_{t_{0}}^{2}(\Omega)$.

Let

$$
\psi(w)=\frac{N_{\varphi}(w)}{g_{\Omega}\left(w, t_{0}\right)}
$$

From Lemma 4.4, C_{φ} is unitarily equivalent to D_{φ}, and $D_{\varphi}^{*} D_{\varphi}=T_{\psi}$. Therefore, C_{φ} is compact if and only if T_{ψ} is compact and, for $2 \leqslant p<\infty, C_{\varphi}$ is Schatten p-class if and only if T_{ψ} is Schatten $\frac{p}{2}$-class. So by Theorem 3.2, it simply remains to check that ψ has the generalized sub-mean-value property near $\partial \Omega$.

Multiplying both sides of (4.1) by $1 / g_{\Omega}\left(w, t_{0}\right)$,

$$
\begin{equation*}
\frac{N_{\varphi}(w)}{g_{\Omega}\left(w, t_{0}\right)} \leqslant \frac{C}{g_{\Omega}\left(w, t_{0}\right)\left|U_{\Omega}(w, r)\right|} \int_{U_{\Omega}(w, r)} N_{\varphi}(z) \mathrm{d} A(z) \tag{4.6}
\end{equation*}
$$

Now from Proposition 2.5 (b), $\left|U_{\Omega}(w, r)\right|^{1 / 2} \leqslant C_{r} g_{\Omega}\left(w, t_{0}\right)$. So by (4.6),

$$
\begin{aligned}
\frac{N_{\varphi}(w)}{g_{\Omega}\left(w, t_{0}\right)} & \leqslant \frac{C_{r}}{\left|U_{\Omega}(w, r)\right|^{\frac{3}{2}}} \int_{U_{\Omega}(w, r)} N_{\varphi}(z) \mathrm{d} A(z) \\
& =\frac{C_{r}}{\left|U_{\Omega}(w, r)\right|^{\frac{3}{2}}} \int_{U_{\Omega}(w, r)} \frac{N_{\varphi}(z)}{g_{\Omega}\left(z, t_{0}\right)} g_{\Omega}\left(z, t_{0}\right) \mathrm{d} A(z)
\end{aligned}
$$

for all $w \in A_{\partial \Omega}$. Therefore, ψ has the generalized sub-mean-value property near $\partial \Omega$ and the proof is complete.

The material in this paper formed part of the author's dissertation prepared at Northwestern University under the direction of Stephen D. Fisher.

REFERENCES

1. J. Arazy, S.D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110(1988), 989-1054.
2. J. Arazy, S.D. Fisher, J. Peetre, Hankel operators on planar domains, Constr. Approx. 6(1990), 113-138.
3. S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys, vol. 5, Amer. Math. Soc., New York 1950.
4. S.D. Fisher, J.E. Shapiro, The essential norm of a composition operator on a planar domain, Illinois J. Math. 43(1999), 113-130.
5. H.P. Li, Hankel operators on the Bergman space of multiply-connected domains, J. Operator Theory 28(1992), 321-335.
6. I. Kra, Automorphic Forms and Kleinian Groups, W.A. Benjamin, Reading 1972.
7. Сh. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin 1991.
8. T. Ransford, Potential Theory in the Complex Plane, Press Syndicate of the University of Cambridge, Cambridge 1995.
9. W. Rudin, Analytic functions of class H^{p}, Trans. Amer. Math. Soc. 78(1955), 46-66.
10. J.H. Shapiro, The essential norm of a composition operator, Ann. of Math. 125 (1987), 375-404.
11. V.M. Tran, Function-theoretic operator theory on finitely connected planar domains, Ph.D. Dissertation, Northwestern University, 1998.
12. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.

VINH-THY M. TRAN
Department of Mathematics
Vassar College
124 Raymond Ave.
Poughkeepsie, NY 12604
USA
Current address:
1785 Jonathan's Way, Apt. D Reston, VA 20190
E-mail: vinhthy-tran@yahoo.com

Received December 6, 1999.

