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1. INTRODUCTION

Let Ω be a domain in the plane. The Hardy space H2 = H2(Ω) is defined to be
those analytic functions f on Ω for which the subharmonic function |f(z)|2 has a
harmonic majorant. Once we specify a base point t0 ∈ Ω, we define the norm of
f to be square root of the value at t0 of the (unique) least harmonic majorant of
|f |2. The norm depends on t0 but, by an application of Harnack’s inequality, the
resulting topology does not. For more on the Hardy spaces, see [9].

An analytic function ϕ that maps Ω into itself determines a composition
operator Cϕ on H2 given by

Cϕf = f ◦ ϕ.
That Cϕ is bounded follows from Harnack’s inequality.

Since Cϕ depends intimately on ϕ, it is natural to ask how the function-
theoretic properties of ϕ relate to the operator-theoretic properties of Cϕ. As an
easy illustration, suppose ϕ(t0) = t0. Now if uf is the least harmonic majorant of
|f |2, then uf ◦ ϕ is a harmonic majorant of |f ◦ ϕ|2; hence

‖Cϕ(f)‖2 6 uf (ϕ(t0)) = uf (t0) = ‖f‖2

so that Cϕ is a contraction.
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In this paper the operator-theoretic properties that concern us are defined

as follows. Let H be a Hilbert space and T : H → H a bounded linear operator.

For n > 0, let Fn denote the set of bounded linear operators on H with rank less

than or equal to n. Define

(1.1) sn+1 = inf
{
‖T − F‖ : F ∈ Fn

}
.

We call T compact if {sn} ∈ c0. Let 1 6 p < ∞. We call T Schatten p-class if

{sn} ∈ lp. The number sn is the nth singular value of T .

When Ω is the open unit disc, whether Cϕ is compact or Schatten p-class

depends on the value distribution of ϕ near the boundary of Ω. More precisely,

from [10] and [12]:

Definition 1.1. Let ∆ be the open unit disc and suppose ϕ : ∆ → ∆ is

analytic. Define

Nϕ(w) =
∑

ϕ(z)=w

log
1
|z|
.

Nϕ is the Nevanlinna counting function for ϕ.

Theorem 1.2. Suppose ϕ : ∆ → ∆ is analytic with ϕ(0) = 0.
(a) Cϕ is compact on H2(∆) if and only if

lim
w→∂∆

Nϕ(w)
log 1

|w|
= 0.

(b) Cϕ is Schatten p-class on H2(∆), 2 6 p <∞, if and only if∫
∆

[
Nϕ(w)
log 1

|w|

] p
2 dA(w)
(1− |w|2)2

<∞

where dA is Lebesgue area measure.

In [4], Definition 1.1 and Theorem 1.2 (a) were extended to finitely connected

planar domains. The main result of this paper is the extension of Theorem 1.2 (b)

to such domains. Our arguments closely follow those in [12]; in particular, we

prove our extension by connecting the composition operator on the Hardy space

to a Toeplitz operator on a weighted Bergman space. As an added bonus, our

methods allow us to present a different proof of the extension of (a) from that

in [4].
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2. BACKGROUND

2.1. Definitions and conventions. In this paper we are concerned with a
planar domain Ω whose complement consists of a finite number of disjoint non-
trivial continua. Such a domain is conformally equivalent to a domain whose
boundary components are circles. Since the conformal mapping gives an isometry
of the corresponding Hardy spaces, we may assume, and shall do so, that the
components Γ0, . . . ,Γm of ∂Ω are circles, with Γ0 the boundary of the unbounded
component of the complement of Ω.

We let Ωj be the region outside Γj , j = 1, . . . ,m, including the point at ∞,
and Ω0 be the region inside Γ0. A glance at Theorem 1.2 shows that behavior
at the boundary is what concerns us here. Accordingly, we let Aj be a very thin

annulus in Ωj where Γj = ∂Ωj is one component of ∂Aj and we set A∂Ω =
m⋃
j=0

Aj .

Each of the regions Ωj is conformally equivalent to the open unit disc ∆ via a
linear fractional transformation ϕj ; we will assume that ϕj(t0) = 0. By explicitly
writing down the linear fractional transformation φj , it is easy to see that φ′j is
non-vanishing in a full neighborhood of Aj . We will use this fact repeatedly in the
sequel.

We let gΩ(z, t0) denote the Green’s function for Ω with pole at t0. The
weighted Bergman space A2

1,s(Ω) is defined to be those analytic functions f on Ω
for which f has single-valued integral and for which

‖f‖A2
1,s(Ω) =

[
2
π

∫
Ω

|f(z)|2gΩ(z, t0) dA(z)
] 1

2

is finite. Again, the norm depends on t0 but, by the Littlewood-Paley iden-
tity (4.5), the resulting topology does not. Standard techniques ([3]) reveal that
A2

1,s(Ω) is a reproducing kernel Hilbert space; further, if KΩ
a is the reproducing

kernel for the point a ∈ Ω and {en}∞n=1 is an orthonormal basis, then KΩ
a (z) =

∞∑
n=1

en(z)en(a). We denote the normalized reproducing kernel by kΩ
a = KΩ

a /
√
KΩ
a (a).

When we writeH2(Ωj) or A2
1(Ωj) = A2

1,s(Ωj) for the Hardy space or weighted
Bergman space for this region, we will always assume that the norm is taken with
respect to the base point t0.

Let Π : ∆ → Ω be an analytic covering map. The (unique maximal) ultra-
hyperbolic metric for Ω is defined at w = Π(z) ∈ Ω by

λΩ(w) =
1

(1− |z|2)|Π′(z)|
.

It is standard ([6]) that the value of λΩ(w) is independent of the covering map Π
and the particular choice of z ∈ ∆ with Π(z) = w.
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2.2. Distance to the boundary. Let dist(z, ∂Ω) denote the distance from z
to the boundary of Ω. The next result is standard ([7]).

Proposition 2.1. Let U be a bounded, simply connected domain in the
plane. If φ maps U conformally onto ∆ then for all z ∈ U ,

1
4
(1− |φ(z)|2) 1

|φ′(z)|
6 dist(z, ∂U) 6 (1− |φ(z)|2) 1

|φ′(z)|
.

Basically, this means that 1− |φ(z)|2 and dist(z, ∂U) are comparable when φ has
non-vanishing derivative in a full neighborhood of Γ ⊂ ∂U ; in particular, when φ
may be conformally extended across Γ.

Theorem 2.2. For all z ∈ A∂Ω:
(a) gΩ(z, t0) ≈ dist(z, ∂Ω);
(b) λΩ(z) ≈ 1/dist(z, ∂Ω);
(c)KΩ

z (z) ≈ 1/
[
dist(z, ∂Ω)

]3.
Proof. The general idea is to bound gΩ(z, t0), λΩ(z), and KΩ

z (z) above and
below by their counterparts on simply connected domains, and then to estimate
using these more tractable quantities.

Fix a ∈ ∂Ω. Put Ba(ε) = {z : |z − a| < ε} where ε is small. Define
U = Ω ∩ Ba(ε) and note that U ⊂ Ω ⊂ Ωj where a ∈ Γj = ∂Ωj . Let φ be a
conformal map of U onto ∆.

To prove (c): Standard techniques ([3]) reveal that

(2.1) KΩj
z (z) 6 KΩ

z (z) 6 KU
z (z).

So if we can show that KΩj
z (z) and KU

z (z) are both comparable to 1/[dist(z, ∂Ω)]3
for z ∈ U ∩ Ba(ε/2) then we are done, for ∂Ω is compact and by a standard
compactness argument, (c) will be proven.

A straightforward calculation shows that

(2.2) KU
z (z) = K∆

φ(z)(φ(z))|φ′(z)|2 =
(1 + |φ(z)|2)|φ′(z)|2

(1− |φ(z)|2)3
.

Now consider the portion of ∂U defined by ∂Ω ∩ Ba(ε). Since this portion is an
arc of a circle, φ may be conformally extended across ∂Ω ∩ Ba(ε); therefore φ′ is
non-vanishing in a full neighborhood of ∂Ω ∩ Ba(ε/2). Applying Proposition 2.1
to (2.2) we have, for z ∈ U ∩Ba(ε/2),

KU
z (z) ≈ 1[

1− |φ(z)|2
]3 ≈ 1[

dist(z, ∂U)
]3 =

1[
dist(z, ∂Ω)

]3 .
By a similar argument (or by explicitly writing down a linear fractional trans-
formation φj which maps Ωj onto ∆ with φj(t0) = 0), it follows that KΩj

z (z) ≈
1/

[
dist(z, ∂Ω)

]3 for z ∈ U ∩Ba(ε/2). Thus (c) is proven.
Examining the argument above, we clearly only need to establish that gΩ(z, t0)

and λΩ(z) have properties akin to (2.1) and (2.2) to prove (a) and (b). For ultra-
hyperbolic metrics, it is standard ([6]) that:

(d) λΩj
(z) 6 λΩ(z) 6 λU (z);
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(e) λU (z) = λ∆(φ(z))|φ′(z)| = |φ′(z)|
1−|φ(z)|2 .

For the Green’s function, first modify U so that t0 ∈ U (for instance, let U
be a thin tube in Ω containing Ω∩Ba(ε) and t0); next, choose φ so that φ(t0) = 0.
With these modifications, it is standard ([8]) that:

(f) gU (z, t0) 6 gΩ(z, t0) 6 gΩj (z, t0);
(g) gU (z, t0) = g∆(φ(z), φ(t0)) = log 1/|φ(z)|.
Now note that log 1/|φ(z)| ≈ 1− |φ(z)| near ∂U .

2.3. Ultrahyperbolic discs. The ultrahyperbolic length of a smooth curve γ in
Ω is defined to be

∫
γ

λΩ(z) dz. For a, b ∈ Ω, the ultrahyperbolic distance from a to

b, denoted by λΩ(a, b), may then be defined as the infimum over all ultrahyperbolic
lengths of smooth curves from a to b. For a ∈ Ω and r > 0, define

(a) UΩ(a, r) = {z : λΩ(a, z) < r},
(b) |UΩ(a, r)| = 1

π

∫
UΩ(a,r)

dA(z).

We call UΩ(a, r) the ultrahyperbolic disc centered at a with radius r.
When Ω is the open unit disc ∆, U∆(a, r) is just the familiar hyperbolic

disc with center a, radius r; in this case, it is standard ([12]) that U∆(a, r) is a
Euclidean disc with area

(2.3) |U∆(a, r)| = (1− |a|2)2s2

(1− |a|2s2)2
, s = tanh r.

Lemma 2.3. If φj is the conformal map of Ωj onto ∆, then:
(a) φj(UΩj

(z, r)) = U∆(φj(z), r);
(b) |UΩj

(z, r)| ≈ |U∆(φj(z), r)|, z ∈ Aj, 0 < r < 1.

Proof. For (a): It is easy to verify that λΩj (a, b) = λ∆(φj(a), φj(b)); that is,
ultrahyperbolic distance is conformally invariant.

For (b): By the change of variable w = φj(z),

1
π

∫
U∆(φj(a),r)

dA(w) =
1
π

∫
UΩj

(a,r)

|φ′j(z)|2 dA(z).

Since φ′j is non-vanishing in a full neighborhood of Aj , the integral above on the
right is comparable to |UΩj (a, r)|.

The next result may be proved using Theorem 2.2, Lemma 2.3, and standard
estimates ([12]) for hyperbolic discs. For details, see [5] or [11].

Lemma 2.4. (a) For any R2 > 0,

|UΩj
(z, r1)| ≈ |UΩj

(w, r2)|

if r1, r2 < 1, 1/R2 6 r1/r2 6 R2, z ∈ Aj, w ∈ Ω, and λΩj (z, w) < 1.
(b) There exists a constant S > 1 such that

UΩj

(
w,

r

S

)
⊂ UΩ(w, r) ⊂ UΩj

(w, r)
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for all 0 < r < 1, z ∈ Aj, and w ∈ Ω with λΩj
(z, w) < r.

Proposition 2.5. Let 0 < r < 1.
(a) For all z ∈ A∂Ω and w ∈ Ω with λΩ(z, w) < r,

|UΩ(z, r)| ≈ |UΩ(w, r)|.

(b) There exists a constant Cr > 0 such that for all z ∈ A∂Ω,

1
Cr

6
|UΩ(z, r)| 12
gΩ(z, t0)

6 Cr.

(c) There exists a constant Cr > 0 such that for all z ∈ Aj,
1

|UΩ(z, r)| 32
6 Cr inf

w∈UΩ(z,r)
|kΩj
z (w)|2.

Proof. For (a): Using the standard inequality λΩj 6 λΩ and Lemma 2.4,

(2.4) |UΩ(z, r)| ≈ |UΩj (z, r)| ≈ |UΩj (w, r)| ≈ |UΩ(w, r)|.

For (b): Using (2.4), Lemma 2.3 (b), and (2.3) we obtain

|UΩ(z, r)| ≈ |UΩj
(z, r)| ≈ |U∆(φj(z), r)| ≈ (1− |φj(z)|2)2s2,

where s = tanh r. And by Proposition 2.1 and Theorem 2.2,

(2.5) 1− |φj(z)|2 ≈ dist(z, ∂Ωj) = dist(z, ∂Ω) ≈ gΩ(z, t0).

For (c): We will need the following standard estimate ([12]),

(2.6) inf
w∈U∆(z,r)

[
1− |z|2

|1− zw|2

]2

=
(1− s|z|)4

(1− |z|2)2
, s = tanh r.

Using Lemma 2.3 (a), a straightforward calculation reveals that

(2.7)

inf
w∈UΩj

(z,r)
|kΩj
z (w)|2 = inf

φj(w)∈U∆(φj(z),r)
|k∆
φj(z)

(φj(w))|2|φ′j(w)|2

≈ inf
φj(w)∈U∆(φj(z),r)

[
1− |φj(z)|2

|1− φj(z)φj(w)|2

]3

,

since φ′j is non-vanishing in a neighborhood of Aj . Applying (2.6), the quantity

in (2.7) is comparable to 1/
[
1− |φj(z)|2)

]3. So by (2.5) and (b),

1
|UΩ(z, r)| 32

6 Cr inf
w∈UΩj

(z,r)
|kΩj
z (w)|2.

To complete the proof note, by Lemma 2.4 (b), UΩ(z, r) ⊂ UΩj (z, r); so the
definition of infimum shows that

inf
w∈UΩj

(z,r)
|kΩj
z (w)|2 6 inf

w∈UΩ(z,r)
|kΩj
z (w)|2.
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3. COMPACT AND SCHATTEN CLASS TOEPLITZ OPERATORS

3.1. Definitions and conventions. In the sequel, dA will denote Lebesgue
area measure normalized by a factor of 2/π.

Let P : L2(Ω, gΩ(z, t0)dA(z)) → A2
1,s(Ω) denote the orthogonal projection

and let ψ ∈ L∞(Ω,dA). The Toeplitz operator Tψ on A2
1,s(Ω) is defined as

Tψf = P (ψf).

Tψ is clearly bounded. Further, 〈P (ψf),KΩ
z 〉 = 〈ψf, PKΩ

z 〉 = 〈ψf,KΩ
z 〉 so that

Tψ has the integral representation

Tψf(z) =
∫
Ω

ψ(w)f(w)KΩ
w(z)gΩ(w, t0) dA(w).

The goal of this section is to characterize those compact and Schatten class
Toeplitz operators Tψ whose non-negative symbol ψ possesses a certain averaging
property.

Definition 3.1. Let ψ be a non-negative function in L∞(Ω,dA). Fix 0 <
r < 1 and define, for z ∈ Ω,

ψ̂r(z) =
1

|UΩ(z, r)| 32

∫
UΩ(z,r)

ψ(w)gΩ(w, t0) dA(w).

We say ψ has the generalized sub-mean-value property near ∂Ω if there exists a
constant Cr > 0 such that ψ(z) 6 Crψ̂r(z) for all z ∈ A∂Ω.

The extra factor |UΩ(z, r)|1/2 may seem odd, but compensates for the extra
weight gΩ(w, t0): by Proposition 2.5 we know |UΩ(z, r)| ≈ |UΩ(w, r)| when w ∈
UΩ(z, r) and |UΩ(w, r)|1/2 ≈ gΩ(w, t0). Thus

(3.1)

ψ̂r(z) =
1

|UΩ(z, r)|

∫
UΩ(z,r)

ψ(w)
gΩ(w, t0)

|UΩ(z, r)|1/2
dA(w)

≈ 1
|UΩ(z, r)|

∫
UΩ(z,r)

ψ(w) dA(w).

So, at least near ∂Ω, ψ̂r(z) is just the average value of ψ(z) calculated with respect
to an ultrahyperbolic, as opposed to Euclidean, disc.

With this definition, we may now state the main result of this section.

Theorem 3.2. Let ψ be a non-negative function in L∞(Ω,dA) with the
generalized sub-mean-value property near ∂Ω.

(a) Tψ is compact on A2
1,s(Ω) if and only if

lim
z→∂Ω

ψ(z) = 0.

(b) Tψ is Schatten p-class on A2
1,s(Ω), 1 6 p <∞, if and only if∫

Ω

[
ψ(z)

]p[
λΩ(z)

]2 dA(z) <∞.
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In the next two subsections, we derive necessary and sufficient conditions for
a Toeplitz operator to be compact or Schatten class. Then we use these conditions,
coupled with the restriction on the symbol ψ, to prove Theorem 3.2.

3.2. Necessary conditions. The standard argument for the open unit disc
involves estimating the Berezin transform (The Berezin transform of Tψ is defined
for z ∈ Ω by T̃ψ(z) = 〈TψkΩ

z , k
Ω
z 〉.) of Tψ near the boundary. Our argument for

finitely connected domains is essentially the same, except we use “pseudo-Berezin”
transforms to estimate one boundary component at a time.

Definition 3.3. Let Tψ be a positive Toeplitz operator on A2
1,s(Ω) and

let I : A2
1(Ωj) → A2

1,s(Ω) be the inclusion map and I∗ the adjoint of I. Define
Tj : A2

1(Ωj) → A2
1(Ωj) by

Tj = I∗TψI.

Note that for f ∈ A2
1(Ωj),

(3.2) 〈Tjf, f〉 = 〈I∗TψIf, f〉 = 〈TψIf, If〉 = 〈Tψf, f〉.

Hence Tj is also positive. Specializing to f = k
Ωj
z in (3.2) we obtain

(3.3) 〈TjkΩj
z , kΩj

z 〉 = 〈TψkΩj
z , kΩj

z 〉.
Proposition 3.4. Let 1 6 p <∞. If Tψ is a positive Toeplitz operator that

is Schatten p-class on A2
1,s(Ω), then:

(a) Tj is Schatten p-class on A2
1(Ωj);

(b)
∫
Ωj

〈TψkΩj
z , kΩj

z 〉p
[
λΩj

(z)
]2 dA(z) <∞.

Proof. For (a): If {sn} denotes the singular values of Tj and {tn} denotes the
singular values of Tψ, a straightforward argument using the definition of singular
values gives sn 6 tn.

For (b): From [1] and [2], the formulas

(c) 〈TkΩ
z , k

Ω
z 〉p 6 〈T pkΩ

z , k
Ω
z 〉;

(d) trace(T ) =
∫
Ω

〈TkΩ
z , k

Ω
z 〉KΩ

z (z)gΩ(z, t0) dA(z),

are valid for any positive operator T on A2
1,s(Ω). So using (c), Theorem 2.2, and

then (d), we obtain∫
Ω

〈TkΩ
z , k

Ω
z 〉p

[
λΩ(z)

]2 dA(z) 6
∫
Ω

〈T pkΩ
z , k

Ω
z 〉

[
λΩ(z)

]2 dA(z)

6 C

∫
Ω

〈T pkΩ
z , k

Ω
z 〉KΩ

z (z)gΩ(z, t0) dA(z)

= C trace(T p).

By a standard result ([12]) of operator theory, if T is Schatten p-class, then T p is
Schatten 1-class; that is, trace(T p) is finite.

To complete the proof of (b), apply the above chain of inequalities with
Ω = Ωj , T = Tj , and use (3.3).
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3.3. Sufficient conditions. Since the arguments for the open unit disc adapt
readily to finitely connected domains, we will only sketch the proofs of the next
two results.

Proposition 3.5. Let ψ be a non-negative function in L∞(Ω,dA). If ψ ∈
C0(Ω), then Tψ is compact on A2

1,s(Ω).

Proof. Let {fn} be a sequence of functions in A2
1,s(Ω) with ‖fn‖ 6 1 and

fn → 0 uniformly on compact subsets of Ω. We wish to show that 〈Tψfn, fn〉 → 0.
Using hypothesis, we may choose a compact set K ⊂ Ω such that

〈Tψfn, fn〉 =
∫
Ω

ψ(z)|fn(z)|2gΩ(z, t0) dA(z)

6
∫

Ω\K

ψ(z)εgΩ(z, t0) dA(z) +
∫
K

ε|fn(z)|2gΩ(z, t0) dA(z)

6 ε‖ψ‖∞
∫
Ω

gΩ(z, t0) dA(z) + ε

∫
Ω

|fn(z)|2gΩ(z, t0) dA(z).

Since the singularity of gΩ(z, t0) at t0 is integrable, and since ‖fn‖ 6 1,

〈Tψfn, fn〉 6 ε‖ψ‖∞ · CΩ + ε.

By a standard result ([12]) of operator theory, Tψ is compact.

Proposition 3.6. Let ψ be a non-negative function in L∞(Ω,dA) and sup-
pose 1 6 p <∞. If ψ ∈ Lp(Ω, [λΩ]2dA), then Tψ is Schatten p-class on A2

1,s(Ω).

Proof. Let {en} be any orthonormal set in A2
1,s(Ω). We wish to show that∑

n
〈Tψen, en〉p is finite.

A standard calculation reveals that∑
n

〈Tψen, en〉p 6
∫
Ω

∑
n

|en(z)|2[ψ(z)]pgΩ(z, t0) dA(z)

=
∫
Ω

KΩ
z (z)[ψ(z)]pgΩ(z, t0) dA(z).

But KΩ
z (z)gΩ(z, t0) 6 C [λΩ(z)]2 near ∂Ω by Theorem 2.2. Therefore,∑

n

〈Tψen, en〉p 6 C

∫
Ω

[ψ(z)]p[λΩ(z)]2 dA(z) <∞.

By a standard result ([12]) of operator theory, Tψ is Schatten p-class.

3.4. Proof of Theorem 3.2. We begin by connecting the averaging function
for ψ with our “pseudo-Berezin” transform for Tψ.
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Lemma 3.7. Let 0 < r < 1. There exists a constant Cr > 0 such that

ψ̂r(z) 6 Cr〈TψkΩj
z , kΩj

z 〉, z ∈ Aj .

Proof. By Proposition 2.5 (c),

ψ̂r(z) =
1

|UΩ(z, r)| 32

∫
UΩ(z,r)

ψ(w)gΩ(w, t0) dA(w)

6 Cr inf
w∈UΩ(z,r)

|kΩj
z (w)|2

∫
UΩ(z,r)

ψ(w)gΩ(w, t0) dA(w)

= Cr

∫
UΩ(z,r)

ψ(w)
[

inf
w∈UΩ(z,r)

|kΩj
z (w)|2

]
gΩ(w, t0) dA(w).

Therefore,

ψ̂r(z) 6 Cr

∫
Ω

ψ(w)|kΩj
z (w)|2gΩ(w, t0) dA(w) = Cr〈TψkΩj

z , kΩj
z 〉.

We are now ready to prove the main theorem of this section.

Proof. (Proof of Theorem 3.2 (a)) Suppose Tψ is compact. Then 〈Tψk
Ωj
z , k

Ωj
z 〉

→ 0 as z → ∂Ωj since kΩj
z → 0 weakly as z → ∂Ωj . Now by Lemma 3.7,

ψ̂r(z) 6 Cr〈TψkΩj
z , kΩj

z 〉, z ∈ Aj .

Hence ψ̂r(z) → 0 as z → ∂Ωj . But by hypothesis ψ(z) 6 Crψ̂r(z), forcing
ψ(z) → 0 as z → ∂Ωj .

For the converse, write Tψ = Tψ|Ω\A∂Ω + Tψ|A∂Ω . Then Tψ will be compact
if we can show that Tψ|Ω\A∂Ω and Tψ|A∂Ω are compact.

Now by assumption ψ(z) → 0 as z → ∂Ω, so (3.1) implies ψ̂r(z) → 0 as z →
∂Ω. Thus, by Proposition 3.5, T

ψ̂r
is compact. But by hypothesis, ψ(z) 6 Cψ̂r(z)

for z near ∂Ω so that Tψ|A∂Ω 6 T
Cψ̂r

= CT
ψ̂r

. Therefore Tψ|A∂Ω is compact.
It remains to show Tψ|Ω\A∂Ω is compact; but this follows from the standard

argument outlined in Proposition 3.5.

Proof. (Proof of Theorem 3.2 (b)) Suppose Tψ is Schatten p-class. Then by
Lemma 3.7 and Proposition 3.4,∫

Ω

[
ψ̂r(z)

]p[
λΩj

]2 dA 6 Cr

∫
Ωj

〈TψkΩj
z , kΩj

z 〉p
[
λΩj

]2 dA <∞.

Now by Theorem 2.2 λΩj
and λΩ are comparable near ∂Ωj ⊂ ∂Ω since each

is comparable to the reciprocal of the distance to the boundary. Thus ψ̂r is in
Lp(Ω, [λΩ]2dA). But by hypothesis, ψ(z) 6 Crψ̂r(z) for z near ∂Ω so that ψ is in
Lp(Ω, [λΩ]2dA).

The converse follows immediately from Proposition 3.6.
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Remark 3.8. Similar to the situation for the open unit disc, a little more
work shows that, with no extra sub-mean-value assumption on ψ, the conditions
ψ̂r(z) → 0 as z → ∂Ω and ψ̂r ∈ Lp(Ω, [λΩ]2dA) actually characterize the compact
and Schatten class Toeplitz operators Tψ on A2

1,s(Ω) with non-negative symbol ψ.
For details, see [11].

4. COMPACT AND SCHATTEN CLASS COMPOSITION OPERATORS

With the results of Section 3 in place, we need just a few more results before we
can state and prove the main theorem of this paper.
4.1. The sub-mean-value property. The following definition and theorem are
from [4].

Definition 4.1. Let ϕ : Ω → Ω be an analytic function. Define, for w ∈
Ω\{ϕ(t0)},

Nϕ(w) =
∑

ϕ(z)=w

gΩ(z, t0).

Nϕ is the Nevalinna counting function for ϕ.

Theorem 4.2. Suppose ϕ : Ω → Ω is analytic with ϕ(t0) = t0.
(a) For all w ∈ Ω\{t0}, Nϕ(w) 6 gΩ(w, t0).
(b) Suppose f is an analytic function on an open disc D with center at w.

If f(D) ⊂ Ω and t0 /∈ f(D), then

Nϕ(f(w)) 6
1
|D|

∫
D

Nϕ(f(z)) dA(z).

If f(w) = w is the identity map, then (b) asserts that Nϕ has a subharmonic mean
value property on Euclidean discs in Ω which do not contain t0. The following
corollary shows that, near ∂Ω, Nϕ retains a similar property for ultrahyperbolic
discs as well.

Corollary 4.3. Let 0 < r < 1. There exists a constant C > 0 such that
for all w ∈ A∂Ω,

(4.1) Nϕ(w) 6
C

|UΩ(w, r)|

∫
UΩ(w,r)

Nϕ(z) dA(z).

Proof. Let a ∈ Aj and UΩj
(a, r) a hyperbolic disc contained in Aj . For

simplicity, put b = φj(a). If τb(z) = b−z
1−bz

, then it is easy to check that

(4.2) τb(U∆(0, r)) = U∆(b,r) = φj(UΩj
(a, r)).

Applying Theorem 4.2 (b) with f = φ−1
j ◦ τb and D = U∆(0, r),

Nϕ(a) = Nϕ(φ−1
j ◦ τb(0)) 6

1
|U∆(0, r)|

∫
U∆(0,r)

Nϕ(φ−1
j ◦ τb(z)) dA(z).
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Since τb(τb(w)) = w, by (4.2) the change of variable z = τb(w) gives∫
U∆(0,r)

Nϕ(φ−1
j ◦ τb(z)) dA(z) =

∫
U∆(b,r)

Nϕ(φ−1
j (w)|τ ′b(w)|2 dA(w).

Letting s = tanh r and using (2.3) along with standard estimates ([12]),

Nϕ(a) 6
1
s2

∫
U∆(b,r)

Nϕ(φ−1
j (w)|τ ′b(w)|2 dA(w)

6
1
s2

∫
U∆(b,r)

Nϕ(φ−1
j (w))

[
sup

w∈U∆(b,r)

∣∣∣∣ 1− |b|2

(1− bz)2

∣∣∣∣2 ]
dA(w)

=
(1 + s|b|)4

s2(1− |b|2)2

∫
U∆(b,r)

Nϕ(φ−1
j (w)) dA(w)

=
(1 + s|b|)4

(1− |b|2s2)2
1

|U∆(b, r)|

∫
U∆(b,r)

Nϕ(φ−1
j (w)) dA(w).

The factor (1 + s|b|)4/(1 − |b|2s2)2 is bounded by a constant independent of b =
φj(a) and s = tanh r since |φj(a)| < 1 and r < 1. Thus

Nϕ(a) 6
C

|U∆(b, r)|

∫
U∆(b,r)

Nϕ(φ−1
j (w)) dA(w)

=
C

|U∆(φj(a), r)|

∫
UΩj

(a,r)

Nϕ(z)|φ′j(z)|2 dA(z)

where, by (4.2), we have made the change of variable w = φj(z). Since UΩj (a, r) ⊂
Aj and φ′j is non-vanishing in a neighborhood of Aj ,

(4.3) Nϕ(a) 6
C

|U∆(φj(a), r)|

∫
UΩj

(a,r)

Nϕ(z) dA(z).

Now fix an S > 1. Since (4.3) holds for 0 < r < 1, it holds for r/S. So replacing
r with r/S in (4.3) and using Lemma 2.3 (b) and Lemma 2.4 (a),

(4.4) Nϕ(a) 6
C

|UΩj
(a, r/S)|

∫
UΩj

(a,r/S)

Nϕ(z) dA(z).

If S is the constant from Lemma 2.4, then there exists a C > 0 such that
|UΩ(a, r)| 6 C|UΩj

(a, r/S)| and UΩj
(a, r/S) ⊂ UΩ(a, r); so by (4.4),

Nϕ(a) 6
C

|UΩ(a, r)|

∫
UΩ(a,r)

Nϕ(z) dA(z).

4.2. The main theorem. The next lemma provides the crucial link between
composition operators on the Hardy space H2(Ω) and Toeplitz operators on the
weighted Bergman space A2

1,s(Ω).
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Lemma 4.4. Suppose ϕ : Ω → Ω is analytic with ϕ(t0) = t0. Let H2
t0(Ω)

denote the subspace of H2(Ω) functions vanishing at the base point t0 and define

U : H2
t0(Ω) → A2

1,s(Ω) and Dϕ : A2
1,s(Ω) → A2

1,s(Ω)

by Uf(z) = f ′(z) and Dϕf(z) = f(ϕ(z))ϕ′(z). Then:
(a) UCϕU∗ = Dϕ; that is, Cϕ is unitarily equivalent to Dϕ.
(b) Let ψ(w) = Nϕ(w)/gΩ(w, t0). Then D∗

ϕDϕ = Tψ.

Proof. For (a): Let ωt0 denote the harmonic measure on ∂Ω for the base point
t0. It is standard ([9]) that each H2 function f on Ω has boundary values almost
everywhere on ∂Ω, and that the correspondence of f to its boundary values is an
isometry of H2 onto a closed subspace of L2(∂Ω, ωt0). From the Littlewood-Paley
identity ([4]),

(4.5) ‖f‖2
H2(Ω) =

∫
∂Ω

|f |2 dωt0 = |f(t0)|2 +
∫
Ω

|f ′(z)|2gΩ(z, t0) dA(z).

Hence H2
t0(Ω) is unitarily isomorphic to A2

1,s(Ω) via the map Uf = f ′ and (a) now
follows from the chain rule.

For (b): From [4], the change of variable formula∫
Ω

F (ϕ(z)) |ϕ′(z)|2 g(z, t0) dA(z) =
∫
Ω

F (w)Nϕ(w) dA(w)

is valid for any non-negative measurable function F on Ω.
Let f ∈ A2

1,s(Ω). Then 〈D∗
ϕDϕf, f〉 = 〈Dϕf,Dϕf〉 so that

〈D∗
ϕDϕf, f〉 =

∫
Ω

|f(ϕ(z))|2|ϕ′(z)|2gΩ(z, t0) dA(z).

Applying the change of variable formula with F = |f |2, we obtain

〈D∗
ϕDϕf, f〉 =

∫
Ω

|f(w)|2Nϕ(w) dA(w).

On the other hand, ψ(w) = Nϕ(w)/gΩ(w, t0) so that

〈Tψf, f〉 =
∫
Ω

ψ(w)|f(w)|2gΩ(w, t0) dA(w) =
∫
Ω

|f(w)|2Nϕ(w) dA(w).

Hence 〈Tψf, f〉 = 〈D∗
ϕDϕf, f〉 for all f ∈ A2

1,s(Ω).

We are now ready to state and prove the main result of this paper.

Theorem 4.5. Suppose ϕ : Ω → Ω is analytic with ϕ(t0) = t0.
(a) Cϕ is compact on H2(Ω) if and only if

lim
w→∂Ω

Nϕ(w)
gΩ(w, t0)

= 0.
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(b) Cϕ is Schatten p-class on H2(Ω), 2 6 p <∞, if and only if∫
Ω

[
Nϕ(w)
gΩ(w, t0)

] p
2 [
λΩ(w)

]2 dA(w) <∞

where dA is Lebesgue area measure.

Proof. Since H2
t0(Ω) is a subspace of codimension 1 in H2(Ω), the question

of whether Cϕ is compact or Schatten class on H2(Ω) is the same as whether Cϕ
is compact or Schatten class on H2

t0(Ω). Hence, it suffices to consider Cϕ acting
on H2

t0(Ω).
Let

ψ(w) =
Nϕ(w)
gΩ(w, t0)

.

From Lemma 4.4, Cϕ is unitarily equivalent to Dϕ, and D∗
ϕDϕ = Tψ. Therefore,

Cϕ is compact if and only if Tψ is compact and, for 2 6 p < ∞, Cϕ is Schatten
p-class if and only if Tψ is Schatten p

2 -class. So by Theorem 3.2, it simply remains
to check that ψ has the generalized sub-mean-value property near ∂Ω.

Multiplying both sides of (4.1) by 1/gΩ(w, t0),

(4.6)
Nϕ(w)
gΩ(w, t0)

6
C

gΩ(w, t0)|UΩ(w, r)|

∫
UΩ(w,r)

Nϕ(z) dA(z).

Now from Proposition 2.5 (b), |UΩ(w, r)|1/2 6 CrgΩ(w, t0). So by (4.6),

Nϕ(w)
gΩ(w, t0)

6
Cr

|UΩ(w, r)| 32

∫
UΩ(w,r)

Nϕ(z) dA(z)

=
Cr

|UΩ(w, r)| 32

∫
UΩ(w,r)

Nϕ(z)
gΩ(z, t0)

gΩ(z, t0) dA(z),

for all w ∈ A∂Ω. Therefore, ψ has the generalized sub-mean-value property near
∂Ω and the proof is complete.

The material in this paper formed part of the author’s dissertation prepared at

Northwestern University under the direction of Stephen D. Fisher.
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