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Abstract. A Γ-contraction is a pair of commuting operators on Hilbert
space for which the symmetrised bidisc

Γ
def
= {(z1 + z2, z1z2) : |z1| 6 1, |z2| 6 1} ⊂ C 2

is a spectral set. We develop a model theory for such pairs which parallels
a part of the well-known Nagy-Foiaş model for contractions. In particular
we show that any Γ-contraction is unitarily equivalent to the restriction to
a joint invariant subspace of the orthogonal direct sum of a Γ-unitary and a
“model Γ-contraction” of the form (Tψ, Tz) where Tψ, Tz are suitable block-
Toeplitz operators on a vectorial Hardy space, and Γ-unitaries are defined
to be pairs of operators of the form (U1 + U2, U1U2) for some pair U1, U2 of
commuting unitaries.
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0. INTRODUCTION

In this paper we present some operator theory which is an offshoot of a problem
originally posed by engineers. The function theory of the set

Γ def= {(z1 + z2, z1z2) : |z1| 6 1, |z2| 6 1} ⊂ C 2

plays a part in some interpolation problems that arise in H∞ control theory ([12],
[16], [13]). One such is the spectral Nevanlinna-Pick problem ([10]); it is a hard
variant of a classical problem, and leads (in a special case) to the problem of
analytic interpolation from the unit disc to Γ ([5]). Given the effectiveness of
Sarason’s generalized interpolation technique ([17]) for some classical interpolation
problems it is natural to look for an operator-theoretic approach to the function
theory of Γ. A measure of success has come from the study of the family of
commuting pairs of operators for which the symmetrised bidisc Γ is a spectral
set. An understanding of this family has led to the solution of a special case of
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the spectral Nevanlinna-Pick problem ([5], [7]) and also to the discovery of some
surprising facts about the complex geometry of Γ ([6]).

Any commuting pair of operators having Γ as a spectral set will be called
a Γ-contraction. In this paper we concentrate on the operator theory of the fam-
ily of Γ-contractions rather than function-theoretic or geometric aspects. Many
of the fundamental results in the theory of contractions have close parallels for
Γ-contractions. There are Γ-analogues of unitaries, isometries, the Wold decom-
position and completely non-unitary contractions, and there is an analogue of at
least a part of the Sz.-Nagy–Foiaş functional model ([19]). There have been nu-
merous earlier developments of model theories for families of commuting tuples
of operators associated with other sets in Cn ([2], [8], [9]); what is novel here,
we believe, is that the set Γ is both non-convex and inhomogeneous, yet we are
nevertheless able to obtain detailed results.

A Γ-contraction can be obtained by symmetrising any pair of commuting
contractions, just as points of Γ are obtained by applying the “symmetrisation
map”

π : C 2 → C 2, (z1, z2) 7→ (z1 + z2, z1z2)

to the bidisc. However, an important subtlety is that not all Γ-contractions are
obtained in this way (see Examples 1.7 and 2.3). A related fact is that continuous
functions into Γ do not all factor continuously through the bidisc, and indeed
functions that do not so factor are of interest in the applications to interpolation.
Here our main result (Theorem 3.2) provides a model for Γ-contractions. In brief,
every Γ-contraction is the restriction to a common invariant subspace of a Γ-co-
isometry, and every Γ-co-isometry is expressible as the orthogonal direct sum of a
Γ-unitary and a pure Γ-co-isometry, which has a model on a vectorial Hardy space
parametrised by operators of numerical radius less than or equal to one. We leave
open, however, the problem of constructively describing the common invariant
subspaces of Γ-co-isometries in terms of a characteristic operator function or its
analogue.

We denote by D and D the open and closed unit discs in the complex plane
C. Note that Γ = π(D2). We usually denote a typical point of Γ by (s, p), the
variables chosen to suggest “sum” and “product”. We shall also use the notation
(S, P ) for a pair of commuting operators associated in some way with Γ. In this
paper an operator will always be a bounded linear operator on a Hilbert space.
Consider a commuting pair (S, P ) of operators. We shall say that Γ is a spectral
set for (S, P ), or that (S, P ) is a Γ-contraction, if, for every polynomial f in two
variables,

(0.1) ‖f(S, P )‖ 6 sup
Γ
|f |.



A model theory for Γ-contractions 47

Furthermore, Γ is said to be a complete spectral set for (S, P ), or (S, P ) to be a
complete Γ-contraction, if, for every matricial polynomial f in two variables,

‖f(S, P )‖ 6 sup
z∈Γ

‖f(z)‖.

Here, if S and P act on H and the matricial polynomial f is given by f = [fij ]
of type m × n, where each fij is a scalar polynomial, then f(S, P ) denotes the
operator from Hn to Hm with block matrix [fij(S, P )].

We denote the unit circle by T. Note that the distinguished boundary of Γ,
defined to be the Šilov boundary of the algebra of functions which are continuous
on Γ and analytic on the interior of Γ, is π(T 2). We shall use some spaces of
vector- and operator-valued functions. Let E be a separable Hilbert space. We
denote by L(E) the space of operators on E, with the operator norm. H2(E)
will be the usual Hardy space of analytic E-valued functions on D and L2(E) the
Hilbert space of square-integrable E-valued functions on T, with their natural inner
products. H∞L(E) denotes the space of bounded analytic L(E)-valued functions
on D, L∞L(E) the space of bounded measurable L(E)-valued functions on T, each
with the appropriate version of the supremum norm. For ϕ ∈ L∞L(E) we denote
by Tϕ the Toeplitz operator with symbol ϕ, given by

Tϕf = P+(ϕf), f ∈ H2(E),

where P+ : L2(E) → H2(E) is the orthogonal projector. In particular Tz is the
unilateral shift operator on H2(E) (we denote the identity function on T by z)
and Tz is the backward shift on H2(E).

We have defined Γ-contractions by the requirement that the inequality (0.1)
hold for all polynomial functions f in two variables; it might be thought more
natural to require (0.1) to hold for all functions f analytic in a neighbourhood of
Γ. In fact this would give an equivalent condition, by virtue of the polynomial
convexity of Γ ([3], Lemma 2.1). Suppose that (S, P ) is a Γ-contraction on a Hilbert
space H. It is elementary to show that, because of polynomial convexity, the
polynomial joint spectrum σpol(S, P ) is contained in Γ. Here σpol(S, P ) is defined
to be the joint spectrum of (S, P ) relative to the algebra A ([15], 3.5.4), where
A is the closed subalgebra of L(H) generated by S, P and the identity operator
on H. Hence, if f is analytic on a neighbourhood of Γ then f is also analytic
on a neighbourhood of σpol(S, P ), and so f(S, P ) is defined by any version of the
functional calculus for tuples of commuting operators, e.g. 3.5.9 in [15]. Moreover,
it is easy to see that f can be approximated uniformly on a neighbourhood of Γ by
polynomials (equivalently, any symmetric analytic function on a neighbourhood of
the closed bidisc is approximable uniformly on a symmetric neighbourhood of the
closed bidisc by symmetric polynomials, as follows easily from Cauchy’s integral
formula). It follows that inequality (0.1) holds for f . The slightly delicate issues
surrounding the various notions of joint spectrum and functional calculus are not
relevant to this paper, simply because of the polynomial convexity of Γ.
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1. Γ AND Γ-CONTRACTIONS

We begin by recapitulating from earlier papers some facts about the set Γ and
Γ-contractions. We shall need the operator-valued function ρ of commuting pairs
of operators given by

ρ(S, P ) = 2(1− P ∗P )− S + S∗P − S∗ + P ∗S

=
1
2
{(2− S)∗(2− S)− (2P − S)∗(2P − S)} .

Note that (s, p) ∈ Γ if and only if the zeros of the polynomial z2 − sz + p both lie
in D. We are thus in the territory of classical zero location therorems (e.g. [18]).
In fact there are several dissimilar characterizations of Γ.

Theorem 1.1. Let (s, p) ∈ C 2. The following are equivalent:
(i) (s, p) ∈ Γ;
(ii) |s− sp|+ |p|2 6 1 and |s| 6 2;
(iii) 2|s− sp|+ |s2 − 4p|+ |s|2 6 4;
(iv) ρ(αs, α2p) > 0 for all α ∈ D;
(v) |p| 6 1 and there exists β ∈ C such that |β| 6 1 and s = βp+ β;
(vi) |s| 6 2 and, for all α ∈ D,∣∣∣∣2αp− s

2− αs

∣∣∣∣ 6 1;

(vii) for all α ∈ D, 1− αs+ α2p 6= 0 and∣∣∣∣ p− αs+ α2

1− αs+ α2p

∣∣∣∣ 6 1.

Proof. (i) ⇔ (iv) is Theorem 2.2 in [3], (i) ⇔ (iii) is Theorem 1.6 in [6] and
(i) ⇔ (vii) is contained in Theorem 1.5 of [5].

(i)⇒ (ii) Let (s, p) ∈ Γ. Clearly |s| 6 2. Let 0 < r < 1; then (rs, r2p) ∈ int Γ,
the interior of Γ, which is π(D 2). By Schur’s theorem,[

1− r4|p|2 −rs+ r2ps
−rs+ r2ps 1− r4|p|2

]
> 0

and hence
1− r4|p|2 > | − rs+ r2ps|.

Let r → 1 to deduce that (ii) holds.
(ii) ⇒ (i) Suppose (ii). There are two cases.
Case 1. |s| < 2. We have, for all ω ∈ T, 1−|p|2−Re {ω(s− sp)} > 0, whence

(see (ii))
1
4
{(2− ωs)(2− ωs)− (2pω − s)(2pω − s)} > 0.

Since |s| < 2, (2 − ωs)−1 exists for ω ∈ T and so
∣∣∣ 2pω−s2−ωs

∣∣∣ 6 1 for all ω ∈ T. It
follows by the Maximum Modulus Theorem that∣∣∣∣2pα− s

2− αs

∣∣∣∣ 6 1
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for all α ∈ D. Hence |2− αs|2 − |2pα− s|2 > 0 for all α ∈ D, which is to say that
(iv) holds. Hence (s, p) ∈ Γ.

Case 2. |s| = 2. Write s = 2ω, |ω| = 1, and h = 1 − pω2. Then we
have |2ω − 2ωp| + |pω2|2 6 1, that is 2|h| + |1 − h|2 6 1, which simplifies to
|h|2 6 2(Reh − |h|), and this clearly implies |h| = 0 since Reh − |h| 6 0. Thus
s = 2ω and p = ω2, so (s, p) = π(ω, ω) ∈ Γ. We have shown that (ii) ⇔ (i).

(ii) ⇔ (v) Suppose (v). Clearly |s| 6 2 and

s− sp = βp+ β − β|p|2 − βp = β(1− |p|2),
whence |s− sp| 6 1− |p|2. Thus (v) ⇒ (ii).

Conversely, suppose (ii). If |p| < 1 we may define

β =
s− sp

1− |p|2
.

Then |β| 6 1 and βp+ β = s, so that (v) holds. On the other hand, if |p| = 1 we
may put p = eiθ for some θ ∈ R. Note that

|s− sp| 6 1− |p|2 = 0,

so that s = sp and hence se−iθ/2 is real. Since |s| 6 2 we may write se−iθ/2 =
2 cos γ for some γ ∈ R. Let β = ei(γ−θ/2). Then |β| = 1 and s = βp + β. Hence
(ii) ⇒ (v).

(vi) ⇒ (iv) is immediate, and (ii) ⇒ (vi) is essentially the same as the proof
that (ii) ⇒ (i) above.

Note that in proving Case 1 above we established the following refinement
of (i) ⇔ (iv).

Theorem 1.2. Let s, p ∈ C and suppose |s| < 2. Then (s, p) ∈ Γ if and only
if, for all ω ∈ T, ρ(ωs, ω2p) > 0.

We shall also need characterizations of the distinguished boundary of Γ.

Theorem 1.3. Let s, p ∈ C. The following are equivalent:
(i) (s, p) is in the distinguished boundary of Γ;
(ii) |p| = 1 and s = ps and |s| 6 2;
(iii) (s, p) = (2xeiθ/2, eiθ) for some θ ∈ R and some x ∈ [−1, 1].

Proof. (i) ⇔ (iii) Suppose s = λ1 + λ2, p = λ1λ2 where |λ1| = |λ2| = 1.
Then |p| = 1 and so p = eiθ for some θ ∈ R, and λ2 = pλ1 = eiθλ1. Hence

s = λ1 + λ2 = λ1 + eiθλ1 = eiθ/22Re
{
e−iθ/2λ1

}
= 2xeiθ/2

for some x ∈ [−1, 1]. Thus (i) ⇒ (iii). (iii) ⇒ (ii) is obvious. Suppose (ii) holds.
If s = 0 then (s, p) = (0, p) and (i) holds. Otherwise write s = |s|eiθ and note that
p = s/s = ei2θ. The equations λ1 + λ2 = s, λ1λ2 = p imply

(λ1 − λ2)2 = s2 − 4p = −ei2θ(4− |s|2),
and one may solve to obtain

λ1, λ2 =
1
2
eiθ
{
|s| ± i

√
4− |s|2

}
,

and clearly |λ1| = |λ2| = 1. Thus (ii) ⇒ (i).
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Corollary 1.4. The distinguished boundary of Γ is homeomorphic to a
Möbius band.

Proof. The characterization (iii) in the theorem gives the representation

(2xeiθ/2, eiθ) ∈ Γ ↔ (x, θ)

of the distinguished boundary of Γ, where −1 6 x 6 1, 0 6 θ 6 2π and the points
(x, 0) and (−x, 2π) are identified. This correspondence clearly gives a continuous
bijective mapping of the Möbius band (as a quotient space of a rectangle in R2)
onto the distinguished boundary of Γ, with the topology induced by C 2, and since
the Möbius band is compact it follows that the correspondence is a homeomor-
phism.

We remark that Γ is not convex. The points (2, 1) = π(1, 1) and (2i,−1) =
π(i, i) both lie in Γ, but their mid-point (1+ i, 0) = π(1+ i, 0) is not in Γ. It would
be interesting to know whether int Γ is holomorphically equivalent to a convex set.

The next theorem summarises the main results on Γ-contractions established
in [3] and [4].

Theorem 1.5. Let (S, P ) be a pair of commuting operators on a Hilbert
space H. The following statements are equivalent:

(i) (S, P ) is a Γ-contraction;
(ii) (S, P ) is a complete Γ-contraction;
(iii) ρ(αS, α2P ) > 0 for all α ∈ D;
(iv) there exist Hilbert spaces H−,H+ and a commuting pair of normal oper-

ators (S̃, P̃ ) on K def= H−⊕H⊕H+ such that the algebraic joint spectrum σ(S̃, P̃ )
is contained in the distinguished boundary of Γ and S̃, P̃ are expressible by operator
matrices of the form

S̃ ∼

[( ∗ ∗ ∗
0 S ∗
0 0 ∗

)]
and P̃ ∼

[( ∗ ∗ ∗
0 P ∗
0 0 ∗

)]
with respect to the orthogonal decomposition K = H− ⊕H ⊕H+;

(v) for all α ∈ D,

‖(2αP − S)(2− αS)−1‖ 6 1;

(vi) for all α ∈ D, 1− αS + α2P is invertible and

‖(P − αS + α2)(1− αS + α2P )−1‖ 6 1.

Moreover, if the spectral radius of S is less than 2 then the following statement
is also equivalent to (i) –(vi):

(iii′) ρ(ωS, ω2P ) > 0 for all ω ∈ T.

Proof. The equivalence of (i) to (v) is contained in Theorem 1.5 of [4] while
the equivalence of (i) and (vi) is given in Theorem 1.5 of [5]. The final statement
is proved just as in Case 1 of (ii) ⇒ (i) in Theorem 1.1. Indeed, suppose S has
spectral radius less than 2 and (iii′) holds. We have

(2− ωS)∗(2− ωS)− (2ω2P − ωS)∗(2ω2P − ωS) > 0.
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Since 2 − ωS is invertible it follows that ‖(2ω2P − ωS)(2 − ωS)−1‖ 6 1 for all
ω ∈ T. Again by the Maximum Modulus Principle, ‖(2α2P −αS)(2−αS)−1‖ 6 1
for all α ∈ D, and this may be re-expanded to give ρ(αS, α2P ) > 0 for all α ∈ D.
Thus (iii′) ⇒ (iii).

Clearly (iii) ⇒ (iii′), and so the statements are equivalent.
Note that the equivalence of (iii) and (v) is immediate from the factoriza-

tion (ii).

Remark 1.6. (i) Statement (iv) in Theorem 1.5 is sometimes expressed:
(S, P ) has a normal dilation to the distinguished boundary of Γ.

(ii) Without the spectral radius assumption on S, (iii) and (iii′) would not
be equivalent, even for scalar S and P . If S = 2 + 1/2, P = 2 × 1/2 then (iii) is
false but (iii′) is true.

Example 1.7. (Symmetrisation of pairs of contractions) An easy way to
construct a Γ-contraction is to take S = A+B, P = AB where A,B are commuting
contractions. One might wonder if all Γ-contractions arise in this way. In fact they
do not. Such Γ-contractions have the property that S2−4P has a square root which
commutes with S and P (indeed, this characterizes them). If P is a contraction it
follows from condition (iii′) that (0, P ) is a Γ-contraction, but if P has no square
root then (0, P ) cannot be of the stated form.

A more interesting example of this phenomenon is given below in Exam-
ple 2.3.

Recall that the numerical radius of an operator T on a Hilbert space H is
defined to be

w(T ) = sup{|〈Tx, x〉| : ‖x‖H 6 1}.

Corollary 1.8. Let S be an operator. (S, 0) is a Γ-contraction if and only
if w(S) 6 1.

Proof. By (i) ⇔ (iii) of Theorem 1.5, (S, 0) is a Γ-contraction if and only if
2− 2Re (αS) > 0 for all α ∈ D, which is to say Re 〈αSx, x〉 6 1 for all α ∈ D and
unit vectors x, and this is equivalent to w(S) 6 1.

More generally, condition (iii′) can be expressed in terms of the numerical
radius whenever ‖P‖ < 1, for then we may conjugate ρ(ωS, ω2P ) by (1−P ∗P )−1/2

to get the equivalent condition

2− 2Re
{
ω(1− P ∗P )−1/2(S − S∗P )(1− P ∗P )−1/2

}
> 0

for all ω ∈ T. We obtain the following:

Corollary 1.9. Let (S, P ) be a commuting pair of operators such that
‖P‖ < 1 and the spectral radius of S is less than 2. Then (S, P ) is a Γ-contraction
if and only if

w
(
(1− P ∗P )−1/2(S − S∗P )(1− P ∗P )−1/2

)
6 1.
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2. Γ-UNITARIES AND Γ-ISOMETRIES

Unitaries, isometries and co-isometries are important special types of contractions.
There are natural analogues of these classes for Γ-contractions. To define them
we introduce, for any pair S, P of operators on a Hilbert space H, the notation
C∗(S, P ) for the C∗-subalgebra of L(H) generated by S, P and the identity opera-
tor. If S, P are commuting normal operators, then by Fuglede’s theorem C∗(S, P )
is a commutative C∗-algebra, and for such S, P we denote by σ(S, P ) the joint
spectrum of (S, P ) relative to the algebra C∗(S, P ).

Definition 2.1. Let S, P be commuting operators on a Hilbert space H.
We say that the pair (S, P ) is

(i) a Γ-unitary if S and P are normal operators and the joint spectrum
σ(S, P ) of (S, P ) is contained in the distinguished boundary of Γ;

(ii) a Γ-isometry if there exists a Hilbert space K containing H and a Γ-
unitary (S̃, P̃ ) on K such that H is invariant for both S̃ and P̃ , and S = S̃|H,
P = P̃ |H;

(iii) a Γ-co-isometry if (S∗, P ∗) is a Γ-isometry.

It is indeed true that the unitary operators (in the usual sense) are precisely
the normal operators whose spectra in the C∗-algebras they generate lie in the unit
circle, and so definition (i) above appears a natural generalization. On the other
hand, one might expect an analogue of the standard polynomial-type definition
of a unitary operator: U∗U = UU∗ = 1. The following result shows there is no
conflict here.

Theorem 2.2. Let S, P be commuting operators on a Hilbert space H. The
following are equivalent:

(i) (S, P ) is a Γ-unitary;
(ii) P ∗P = 1 = PP ∗ and P ∗S = S∗ and ‖S‖ 6 2;
(iii) there exist commuting unitary operators U1, U2 on H such that

S = U1 + U2, P = U1U2.

Proof. (i) ⇒ (iii) Let (S, P ) be a Γ-unitary. By the Spectral Theorem for
commuting normal operators there is a spectral measure E(·) on σ(S, P ) such that

S =
∫

σ(S,P )

z1E(dz), P =
∫

σ(S,P )

z2E(dz),

where z1, z2 are the co-ordinate functions on C 2. Pick a measurable right inverse
τ of the restriction of π to T 2, so that τ maps the distinguished boundary of Γ to
T 2. Write τ = (τ1, τ2), and let

Uj =
∫

σ(S,P )

τj(z)E(dz), j = 1, 2.

Then U1, U2 are commuting unitary operators on H and

U1 + U2 =
∫

σ(S,P )

(τ1 + τ2)(z)E(dz) =
∫

σ(S,P )

z1E(dz) = S.
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Similarly U1U2 = P . Thus (i) ⇒ (iii).
(iii) ⇒ (ii) is obvious. Suppose (ii) holds. Then P is normal, and since

S∗ = P−1S, so is S. Thus S and P are commuting normal operators and they
generate a commutative C∗-algebra C∗(S, P ). The Gelfand representation iden-
tifies C∗(S, P ) with C(σ(S, P )), and Ŝ, P̂ are the restrictions to σ(S, P ) of the
co-ordinate functions on C 2. Consider any point z = (s, p) of σ(S, P ). Then
Ŝ(z) = s, P̂ (z) = p. By (ii) and properties of the Gelfand transform,

(P̂ )−P̂ = 1 = P̂ (P̂ )−, (P̂ )−Ŝ = (Ŝ)−, ‖Ŝ‖ 6 2.

Applying these relations at the point z we obtain

|p| = 1, ps = s, |s| 6 2.

By Theorem 1.3 it follows that z lies in the distinguished boundary of Γ. Thus
(ii) ⇒ (i).

The equivalence of (i) and (iii) in Theorem 2.2 amounts to saying that the
Γ-unitaries are simply the symmetrisations of commuting unitary pairs. Does an
analogous statement hold for Γ-isometries? We know from Example 1.7 that it
does not for Γ-contractions. Certainly, if V1, V2 are commuting isometries then
π(V1, V2) is a Γ-isometry, but the following shows that not all Γ-isometries arise
in this way.

Example 2.3. (Symmetric H2) Let H be the subspace of the Hardy space
H2 of the bidisc comprising the symmetric functions. Let S, P be the operations
on H of multiplication by z1 + z2, z1z2 respectively. It is clear that that (S, P )
is a Γ-isometry on H, being the restriction of an obvious Γ-unitary on L2(T 2)
to a common invariant subspace. However, (S, P ) cannot be written in the form
π(T1, T2) for any pair of commuting operators. For suppose S = T1+T2, P = T1T2.
Then

S2 − 4P = (T1 − T2)2.

Let X = T1 − T2: then X commutes with S and P , and the last equation implies
that X2 is multiplication by (z1−z2)2. Commutation with S and P implies that X
is multiplication by the bounded symmetric analytic function ψ = X1, and hence
we have ψ2 = (z1 − z2)2. However, there is no continuous symmetric function ψ
on the bidisc such that ψ2 = (z1 − z2)2 (consider the sets E± = {(z1, z2) ∈ D 2 :
ψ(z1, z2) = ±(z1 − z2)}). Thus there can be no such pair (T1, T2).

Recall that an isometry on a Hilbert space H is said to be a pure isometry if
there is no non-trivial subspace of H on which it acts as a unitary operator. Pure
isometries are unitarily equivalent to shift operators (of arbitrary multiplicity),
and the Wold decomposition theorem asserts that every isometry is the orthogonal
direct sum of a unitary and a pure isometry ([19], Theorem I.1.1). We shall say
that a commuting pair (S, P ) is a pure Γ-isometry if (S, P ) is a Γ-isometry and P
is a pure isometry. Pure Γ-isometries can be modelled by Toeplitz operators, as
follows.
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Theorem 2.4. Let (S, P ) be commuting operators on a separable Hilbert
space H. (S, P ) is a pure Γ-isometry if and only if there exist a separable Hilbert
space E, a unitary operator U : H → H2(E) and an operator A on E such that
w(A) 6 1 and

(2.1) S = U∗TϕU, P = U∗TzU

where

(2.2) ϕ(z) = A+A∗z, z ∈ D.

Proof. Suppose that S, P are the restrictions to a common invariant subspace
H of a Γ-unitary (S̃, P̃ ) on a superspace K of H. By Theorem 2.2, P̃ ∗S̃ = S̃∗,
and by compression to H it follows that P ∗S = S∗; likewise, the fact that ‖S̃‖ 6 2
tells us that ‖S‖ 6 2. Since P is a pure isometry and H is separable, we may
identify H with H2(E), for some separable Hilbert space E, and P (up to unitary
equivalence) with the shift operator Tz on H2(E). Since S commutes with the shift
operator it has the form S = Tϕ for some ϕ ∈ H∞L(E). The relations P ∗S = S∗

and ‖S‖ 6 2 yield

TzTϕ = T ∗ϕ, ‖ϕ‖∞ 6 2.

The former relation implies that, for all z ∈ T, zϕ(z) = ϕ(z)∗, and consideration
of Fourier series shows that ϕ(z) = A + A∗z for some operator A on E. For any
θ ∈ R,

‖2Re (eiθA)‖ = ‖eiθA+ e−iθA∗‖ = ‖A+A∗e−i2θ‖ 6 2,

whence w(A) 6 1.
Conversely, suppose S, P are given by equations (2.1) and (2.2), where w(A)

6 1. We may assume that U is the identity. Let Mϕ,Mz be the multiplication
operators on L2(E) with symbols ϕ, z respectively; then it is easy to see from
Theorem 2.2 that (Mϕ,Mz) is a Γ-unitary. S, P are the restrictions to the common
invariant subspace H2(E) of Mϕ,Mz, and hence (S, P ) is a Γ-isometry. Since P
is a shift, (S, P ) is a pure Γ-isometry.

Our next theorem contains analogues of both the Wold decomposition and
the above characterization of Γ-unitaries. First we need a simple observation.

Lemma 2.5. Let U, V be a unitary and a pure isometry on Hilbert spaces
H1,H2 respectively, and let T : H1 → H2 be an operator such that TU = V T.

Then T = 0.

Proof. By iteration we have, for any positive integer n, TUn = V nT and
hence U∗nT ∗ = T ∗V ∗n. Thus T ∗ vanishes on kerV ∗n, and since

⋃
n

kerV ∗n is

dense in H2 we have T ∗ = 0.
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Theorem 2.6. Let S, P be commuting operators on a Hilbert space H. The
following statements are equivalent:

(i) (S, P ) is a Γ-isometry;
(ii) there is an orthogonal decomposition H = H1⊕H2 into common reducing

subspaces of S and P such that (S|H1, P |H1) is Γ-unitary and (S|H2, P |H2) is a
pure Γ-isometry;

(iii) P ∗P = 1 and P ∗S = S∗ and ‖S‖ 6 2;
(iv) ‖S‖ 6 2 and, for all ω ∈ T, ρ(ωS, ω2P ) = 0.

Proof. (i) ⇒ (iii) Suppose that (S̃, P̃ ) is a Γ-unitary on a space K ⊃ H,H

is a common invariant subspace of S̃ and P̃ and S, P are the restrictions of S̃, P̃
to H. By Theorem 2.2,

P̃ ∗P̃ = 1, P̃ ∗S̃ = S̃∗, S̃∗S̃ 6 4.

On compressing to H we obtain

P ∗P = 1, P ∗S = S∗, S∗S 6 4.

Thus (i) ⇒ (iii).
(iii) ⇒ (iv) is obvious. If ρ(ωS, ω2P ) = 0 for all ω ∈ T then on integrating

with respect to ω we obtain 1 − P ∗P = 0 and thence also S∗ − P ∗S = 0. Thus
(iii) ⇔ (iv).

(iii) ⇒ (ii). It is easy to reduce to the case that H is separable. Suppose (iii)
holds. By the Wold decomposition we may write P = U ⊕ V on H = H1 ⊕ H2

where H1,H2 are reducing subspaces for P,U is unitary and V is a pure isometry.
With respect to this decomposition let

S ∼
[
S11 S12

S21 S22

]
.

The relation SP = PS shows that S21U = V S21. Hence, by Lemma 2.5, S21 = 0.
Since P ∗S = S∗, [

U∗S11 U∗S12

0 V ∗S22

]
=
[
S∗11 0
S∗12 S∗22

]
.

It follows that S12 = 0, and so H1,H2 are reducing for S. We have US11 = S11U ,
U is unitary, U∗S11 = S∗11 and ‖S11‖ 6 2. Hence, by Theorem 2.2, (S11, U) is
Γ-unitary — that is, (S|H1, P |H1) is Γ-unitary.

We claim that (S22, V ) is a pure Γ-isometry on H2. Indeed, since V is a pure
isometry, we can identify it with the shift operator Tz on a vectorial H2 space,
H2(E) say, for some separable Hilbert space E. Since S22 commutes with V ≡ Tz,
S22 has the form Tϕ for some ϕ ∈ H∞L(E). The relation V ∗S22 = S∗22 then gives
TzTϕ = Tϕ∗ , whence, for all z ∈ T,

(2.3) zϕ(z) = ϕ(z)∗.

It follows from consideration of Fourier series that ϕ(z) = A + A∗z for some
operator A on E, and from the fact that

‖ϕ‖∞ = ‖S22‖ 6 ‖S‖ 6 2

we can infer that w(A) 6 1. Hence, by Theorem 2.4 (S22, V ) is a pure isometry.
That is, (S|H2, P |H2) is a pure isometry. Thus (iii) ⇒ (ii).

It is trivial that (ii) ⇒ (i).
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Corollary 2.7. Let S, P be commuting operators. (S, P ) is a Γ-co-iso-
metry if and only if

PP ∗ = 1, PS∗ = S and ‖S‖ 6 2.

Any contraction can be expressed as the orthogonal direct sum of a unitary
operator and a completely non-unitary contraction ([19], Theorem I.3.2). We shall
now show that, for any Γ-contraction (S, P ), if we split P up in this way, then S
decomposes into the direct sum of operators on the same subspaces.

Theorem 2.8. Let (S, P ) be a Γ-contraction on a Hilbert space H. Let
H1 be the maximal subspace of H which reduces P and on which P is unitary.
Let H2 = H 	 H1. Then H1 and H2 reduce S, (S|H1, P |H1) is a Γ-unitary and
(S|H2, P |H2) is a Γ-contraction for which P |H2 is completely non-unitary.

Proof. Let S = [Sij ]2i,j=1, P = diag{P1, P2} with respect to the decompo-
sition H = H1 ⊕ H2, so that P1 is unitary and P2 is completely non-unitary. It
follows that if x ∈ H2 and

‖Pn2 x‖ = ‖x‖ = ‖P ∗n2 x‖, n = 1, 2, . . .

then x = 0.
The fact that S and P commute tells us that

S11P1 = P1S11, S12P2 = P1S12,(2.4)
S21P1 = P2S21, S22P2 = P2S22.(2.5)

By Theorem 1.5, for all ω ∈ T,

(2.6)

0 6 ρ(ωS, ω2P ) = 2
[

0 0
0 1− P ∗2 P2

]
− ω

[
S11 − S∗11P1 S12 − S∗21P2

S21 − S∗12P1 S22 − S∗22P2

]
− ω

[
S∗11 − P ∗1 S11 S∗21 − P ∗1 S12

S∗12 − P ∗2 S21 S∗22 − P ∗2 S22

]
.

Consideration of the (1, 1) block reveals that S11 = S∗11P1. Since (S, P ) is a Γ-
contraction, ‖S‖ 6 2 and hence also ‖S11‖ 6 2. By Theorem 2.2, (S11, P1) is a
Γ-unitary.

Now examine the (1, 2) block in the inequality (2.6). It yields

ω(S12 − S∗21P2) + ω(S∗21 − P ∗1 S12) = 0

for all ω ∈ T, and hence

(2.7) S12 = S∗21P2, S∗21 = P ∗1 S12.

Thus S21 = S∗12P1, and together with the first equation in (2.5), this implies that

S∗12P
2
1 = S21P1 = P2S21 = P2S

∗
12P1,

and hence

(2.8) S∗12P1 = P2S
∗
12.

By iterating the equations in (2.4) and (2.8) we find that, for any n > 1,

S12P
n
2 = Pn1 S12, S12P

∗n
2 = P ∗n12 S12.
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Thus
S12P

n
2 P

∗n
2 = Pn1 S12P

∗n
2 = Pn1 P

∗n
2 S12 = S12,

S12P
∗n
2 Pn2 = P ∗n2 S12P

n
1 = P ∗n2 Pn1 S12 = S12,

and so we have
Pn2 P

∗n
2 S∗12 = S∗12 = P ∗n2 Pn2 S

∗
12.

It follows that, for any x ∈ H1 and n > 1,

‖P ∗n2 S∗12x‖ = ‖S∗12x‖ = ‖Pn2 S∗12x‖.
Since P2 is completely non-unitary, we must have S∗12x = 0, and so S12 = 0. By
(2.7), S21 = 0 too. Thus H1 and H2 reduce S as claimed. All that remains to
prove is the statement that (S22, P2) is a Γ-contraction; it is immediate from the
definition that the restriction of a Γ-contraction to any common reducing subspace
is again a Γ-contraction.

In view of this theorem there is no need to introduce “completely non-Γ-
unitary Γ-contractions”: they coincide with Γ-contractions (S, P ) for which P is
completely non-unitary in the usual sense. Since Γ-unitaries correspond (by The-
orem 2.2) to pairs of commuting unitaries, the study of the general Γ-contraction
is reduced to the study of those for which P is completely non-unitary.

3. A MODEL FOR Γ-CONTRACTIONS

An important ingredient in Nagy-Foiaş model theory is the fact that every contrac-
tion has a co-isometric extension. An analogous statement holds for Γ-contractions.

Theorem 3.1. Let (S, P ) be a Γ-contraction on a Hilbert space H. There
exists a Hilbert space K containing H and a Γ-co-isometry (S[, P [) on K such
that H is invariant under S[ and P [, and S = S[|H,P = P [|H.

Proof. It is immediate from the definition of Γ-contractions that (S∗, P ∗) is
also a Γ-contraction. By Theorem 1.5 there exist Hilbert spaces H−,H+ and a
Γ-isometry (S̃, P̃ ) on H− ⊕H ⊕H+ such that

S̃ ∼

[ ∗ ∗ ∗
0 S∗ ∗
0 0 ∗

]
, P̃ ∼

[ ∗ ∗ ∗
0 P ∗ ∗
0 0 ∗

]
.

The space H− ⊕H is invariant under S̃ and P̃ , and so (S̃|H− ⊕H, P̃ |H− ⊕H) is
a Γ-isometry. Let S[ = (S̃|H− ⊕H)∗, and P [ = (P̃ |H− ⊕H)∗. Then (S[, P [) is a
Γ-co-isometry on H− ⊕H, and

S[ ∼
[
∗ 0
∗ S

]
, P [ ∼

[
∗ 0
∗ P

]
.

Thus H is invariant under S[ and P [, and S = S[|H, P = P [|H as required.

We can now give a model for Γ-contractions analogous to the well-established
models of contractions (e.g. [19]). Roughly speaking, every Γ-contraction is the
restriction to a common invariant subspace of the orthogonal direct sum of a Γ-
unitary and the adjoint of a pure Γ-isometry (Tϕ, Tz), as described in Theorem 2.4.
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Theorem 3.2. Let (S, P ) be a Γ-contraction on a Hilbert space H. There
exist a Hilbert space K containing H, a Γ-co-isometry (S[, P [) on K and an
orthogonal decomposition K1 ⊕K2 of K such that:

(i) H is a common invariant subspace of S[ and P [, and S = S[|H,P =
P [|H;

(ii) K1 and K2 reduce both S[ and P [;
(iii) (S[|K1, P

[|K1) is a Γ-unitary;
(iv) there exist a Hilbert space E and an operator A on E such that w(A) 6 1

and (S[|K2, P
[|K2) is unitarily equivalent to (Tψ, Tz) acting on H2(E), where

ψ ∈ L∞L(E) is given by

(3.1) ψ(z) = A∗ +Az, z ∈ T.

Proof. Theorem 3.1 guarantees the existence of K and of a Γ-co-isometry
(S[, P [) satisfying (i). Apply Theorem 2.6 to the Γ-isometry (S[∗, P [∗) on K: by
the equivalence of (i) and (ii) there is an orthogonal decomposition K = K1 ⊕K2

into common reducing subspaces of S[ and P [ so that (S[∗|K1, P
[∗|K1) is a Γ-

unitary, and (S[∗|K2, P
[∗|K2) is a pure Γ-isometry. On applying Theorem 2.4 to

(S[∗|K2, P
[∗|K2) we obtain

S[|K2 ∼ Tψ, P [|K2 ∼ Tz,

acting on H2(E), for suitable E and ψ, as in statement (iv).

This theorem may be regarded as the analogue for Γ-contractions of the first
of the two stages in the construction of the Nagy-Foiaş model of contractions. To
carry out the second stage, and so obtain a genuine functional model for the general
Γ-contraction, one would need to provide a description in suitably concrete terms of
the common invariant subspaces of Γ-coisometries, perhaps along the lines of that
given in the Nagy-Foiaş theory by the characteristic operator function. Consider
for example the special case of a Γ-contraction (S, P ) which extends to a pure
Γ-coisometry (S[, P [) (so that K1 = {0} in the decomposition in Theorem 3.2).
Here P [ is a coisometric extension of P , but there is no reason to think it is
minimal, and so one should not expect E and H to be given by the characteristic
operator function of P . Identifying K (= K2) with H2(E), we observe that H is
a subspace of H2(E) invariant under the backward shift, and so is expressible in
the form H = H2(E) 	 ΦH2(E∗) for some separable Hilbert space E∗ and some
L(E∗, E)-valued inner function Φ. Since H is invariant under Tψ, with ψ given by
equation (3.1), it must be that ΦH2(E∗) is invariant under T ∗ψ, that is,

(3.2) (A+A∗z)Φ(z) = Φ(z)F (z)

for some F ∈ H∞L(E∗). Conversely, if E and E∗ are separable Hilbert spaces, A ∈
L(E) satisfies w(A) 6 1, Φ is an inner L(E∗, E)-valued function and the equation
(3.3) holds for some F ∈ H∞L(E∗), then we obtain a Γ-contraction by restricting
(TA∗+Az, Tz) to H = H2(E)	ΦH2(E∗). To obtain a satisfactory description of Γ-
contractions in the non-residual case (K1 = {0}) one would need a characterization
of all possible 4-tuples (E,E∗, A,Φ) satisfying the above conditions. We do not at
present have a constructive description of such 4-tuples.
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