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Abstract. The notion of the angular derivative of a holomorphic self-map
b of the unit disk has been generalized to that of an angular derivative of b
relative to an inner function u. In this paper, we provide three more conditions
equivalent to the existence of an angular derivative of b relative to u, and use
these notions to provide a generalization of Julia’s lemma.

Keywords: Angular derivative, Hardy space, Aleksandrov measure.

MSC (2000): 46E22, 46E30.

1. INTRODUCTION

Relative angular derivatives came into being as a generalization of the notion of
the angular derivative of a holomorphic function on the unit disk. In this paper, we
will further analyze the notion of an angular derivative of a holomorphic self-map
of the unit disk relative to a nonconstant inner function.

Let b be a holomorphic self-map of the unit disk, that is, an analytic function
on the unit disk D of the complex plane with |b| < 1 on D. We will take u to be our
nonconstant inner function — a holomorphic function on D with |u| = 1 almost
everywhere on ∂D. This notation will remain fixed.

The analysis and definition of relative angular derivatives comes primarily
from the viewpoint of the Aleksandrov measures µλ and νλ (λ ∈ ∂D), which we
derive from our functions b and u, respectively. These measures are defined and
discussed in Section 2. Throughout this paper, we will use m to denote the usual
normalized Lebesgue measure on the unit circle. We will also use the notation µac

and µs to denote the absolutely continuous and singular parts of the measure µ
(= µ1) with respect to m (similarly for µac

λ and µs
λ). For any function f on the unit

disk D, fr will denote the function on the boundary ∂D such that fr(eiθ) = f(reiθ)
for r < 1.

The relationship between Aleksandrov measures and angular derivatives has
recently been developed by many people. The most direct connection comes es-
sentially from [4], and is developed more in Chapter 7 of [3] and Section VI-7
of [6],
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Theorem 1.1. The function b has angular derivative at a point z0 ∈ ∂D
(where |b(z0)| = 1) exactly where its corresponding Aleksandrov measure µλ has
an atom, and µλ({z0}) = 1/|b′(z0)|.

Others can be found in [9], in which the author has used Aleksandrov mea-
sures to introduce the notion of a relative angular derivative, [2], in which Alek-
sandrov measures are used to give a very nice way to describe the essential norm
of a composition operator, and [8], in which the author has also used Aleksan-
drov measures to generalize other theorems which give properties of composition
operators and composition operator differences in terms of angular derivatives.

In this paper we aim to develop further this type of useful generalization
of angular derivatives by studying the more broad category of relative angular
derivatives.

Section 2 contains some background material about the Aleksandrov mea-
sures. In Section 3, we are reminded how the angular derivative was generalized
to become the relative angular derivative. It is in this section that we present the
theorem from [9] which lists six conditions, all of which are equivalent, any one of
which can be used as a definition of a relative angular derivative.

The first goal of this paper, in Section 4, is to use the properties of the
family of Aleksandrov measures, {µλ}λ∈∂D, to prove that three other conditions
are each equivalent to the six which define a relative angular derivative. These
new conditions arise by consideration of the behavior of the boundary values of
the generalized difference quotient relative to the measures µλ for λ ∈ ∂D.

In Section 5, we see how other results, such as Julia’s lemma, can be gener-
alized by methods similar to those used to create relative angular derivatives.

2. THE ALEKSANDROV MEASURES

For λ ∈ ∂D, the function Re(λ+b
λ−b ) is positive, and, as the real part of an analytic

function, harmonic (on the disk, D). It is thus the Poisson integral of a positive
measure on ∂D, which we will call µλ. We have, then,

Re
(λ + b(z)

λ− b(z)

)
=

∫
∂D

P (θ, z) dµλ(eiθ) = Pµλ(z)

and the Herglotz integral representation,

λ + b(z)
λ− b(z)

=
∫
∂D

H(θ, z) dµλ(eiθ) + i Im
λ + b(0)
λ− b(0)

.

Note that for z ∈ D, the Poisson kernel, P (θ, z) = 1−|z|2
|eiθ−z|2 , is the real part of the

Herglotz kernel, H(θ, z) = eiθ+z
eiθ−z

. The measure µ1 we shall simply call µ. The
measure ν is similarly defined to correspond with the inner function u.

The following are some properties of the Aleksandrov measures defined above:

(i) all positive Borel measures on ∂D are associated with functions in this
way;
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(ii) the absolutely continuous part of µ is given by 1−|b|2
|1−b|2 times the normal-

ized Lebesgue measure (on ∂D);
(iii) the measure µ is singular if and only if b is an inner function, i.e., |b| = 1

almost everywhere on ∂D;
(iv) for µs

λ-a.e. ξ ∈ ∂D we have Pµλ(ξ) = ∞ and thus b(ξ) = λ;

3. RELATIVE ANGULAR DERIVATIVES

In [9], the relative angular derivatives were defined by extending the notion of
the angular derivative of the function b by replacing the identity function z by
an arbitrary (nonconstant) inner function u in the denominator of the standard
difference quotient, b(z)−b(z0)

z−z0
. The behavior of this generalized difference quotient,

1−b(z)
1−u(z) , was then studied.

The main theorem from [9] which provided the basis for the definition of the
relative angular derivative was:

Theorem 3.1. The following conditions are equivalent:
(i) ν � µ and dν

dµ ∈ L2(µ);

(ii) 1−b
1−uku

0 ∈ H(b) (the de Branges-Rovnyak space);

(iii) 1−b
1−uku

w ∈ H(b) for all w ∈ D;

(iv)
∫

∂D
| 1−br

1−ur
|dν stays bounded as r ↗ 1;

(v) 1−b
1−u ∈ H2 and 1−b

1−u ∈ H2(µac);

(vi) 1−b
1−u ∈ H2 and 1−b

1−u ∈ H2(µ).

If any of the above hold, then we say that b has an angular derivative relative
to u.

Our goal now is to continue the study of the boundary values of the gener-
alized difference quotient, 1−b

1−u , relative to the measures µλ, and to show

Theorem 3.2. The following are equivalent, and each is equivalent to the
six conditions in Theorem 3.1:

(i) 1−b
1−u ∈ H2(µac) and there is a function h ∈ L1(m) such that for almost

every λ ∈ ∂D we have
∫

∂D
| 1−b
1−u |

2 dµλ < h(λ);

(ii) there is a function h ∈ L1(m) such that for almost every λ ∈ ∂D we
have

∫
∂D

dµλ

|1−u|2 < h(λ)
|1−λ|2 ;

(iii) there is a constant C such that for all λ ∈ ∂D \ {1},
∫

∂D

dµλ

|1−u|2 < C
|1−λ|2 .

These three new conditions, then, will work as well as the original six, to
define the notion of relative angular derivative.
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4. THE FAMILY OF ALEKSANDROV MEASURES {µλ}λ∈∂D

In this section we will explore the relationship between our conditions for b to
have an angular derivative relative to u and the family of Aleksandrov measures
{µλ}λ∈∂D. We will make use of a theorem of A.B. Aleksandrov, from [1]:

Theorem 4.1. ∫
∂D

µλ dm(λ) = m,

where by this we mean that any f integrable with respect to Lebesgue measure is
defined µλ-a.e. and integrable with respect to µλ for almost every λ ∈ ∂D, and∫

∂D

f dm =
∫
∂D

( ∫
∂D

f dµλ

)
dm(λ).

We will also need the converse to this theorem,

Theorem 4.2. If the nonnegative Borel function f is defined µλ-a.e. and
integrable with respect to µλ for almost every λ ∈ ∂D, and∫

∂D

( ∫
∂D

f dµλ

)
dm(λ) < ∞,

then f is integrable with respect to Lebesgue measure and∫
∂D

f dm =
∫
∂D

( ∫
∂D

f dµλ

)
dm(λ).

Proof. Consider the functions fM (for any positive real M), defined by

fM (z) =
{

[c]lf(z), if f(z) < M ,
M, otherwise.

The function fM is clearly integrable with respect to Lebesgue measure (on
∂D) since it is bounded, so we have, by the theorem of Aleksandrov,∫

∂D

fM dm =
∫
∂D

( ∫
∂D

fM dµλ

)
dm(λ) 6

∫
∂D

( ∫
∂D

f dµλ

)
dm(λ) = K

for some positive number K. Hence
∫

∂D
fM dm 6 K for all M . This gives us

that f is integrable (with integral 6 K, even), then we can use the theorem of
Aleksandrov again to get∫

∂D

f dm =
∫
∂D

( ∫
∂D

f dµλ

)
dm(λ).

This completes the proof.
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When we apply Aleksandrov’s theorem to the boundary function of
∣∣∣ 1−b
1−u

∣∣∣2,
we get, if this function is integrable,∫

∂D

( ∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµλ

)
dm(λ) =

∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dm.

I.e., the function h defined for almost every λ ∈ ∂D by∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµλ = h(λ)

is an L1 function. Similarly, applying the converse of Aleksandrov’s theorem, if

the function h as defined above is in L1, then we know that
∣∣∣ 1−b
1−u

∣∣∣2 is integrable

with respect to Lebesgue measure, so 1−b
1−u ∈ L2, which gives us 1−b

1−u ∈ H2, since
1−b
1−u ∈ N+. This and part (v) of Theorem 3.1 give us

Theorem 4.3. The function b has an angular derivative relative to u if and
only if there is some h ∈ L1(m) such that∫

∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµλ = h(λ) and
1− b

1− u
∈ H2(µac).

This is part (i) of Theorem 3.2. Note: The condition 1−b
1−u ∈ H2(µac) is

equivalent to 1−b
1−u ∈ L2(µac), which is the same as∫

∂D

1− |b|2

|1− u|2
dm < ∞.

Next, we need

Theorem 4.4. Assume that
∫

∂D

1−|b|2
|1−u|2 dm < ∞. Then there are positive

constants c1 and c2 (independent of λ ∈ ∂D\{1}) such that, when the term on the
right hand side is finite,∫

∂D

|1− λ|2

|1− u|2
dµλ < c1

∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµλ

and ∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµλ < c2

∫
∂D

|1− λ|2

|1− u|2
dµλ.

Proof. We will prove this theorem in two stages. First, consider the state-
ment of the theorem above for integrals with respect to the singular part of µλ,

or µs
λ. Since b(ξ) = λ for µs

λ-a.e. ξ ∈ ∂D, the two integrals,
∫

∂D

∣∣∣ 1−b
1−u

∣∣∣2 dµs
λ and∫

∂D

|1−λ|2
|1−u|2 dµs

λ are equal (whenever either is < ∞).
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In order to prove the theorem for the same integrals with respect to the
absolutely continuous part of µλ, or µac

λ , we will introduce the functions f = 1−|b|2
|1−u|2

and g = 1−λ
λ−b . We now have∫

∂D

|1− λ|2

|1− u|2
dµac

λ =
∫
∂D

|1− λ|2

|1− u|2
1− |b|2

|λ− b|2
dm =

∫
∂D

f |g|2 dm

and∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµac
λ =

∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 1− |b|2

|λ− b|2
dm =

∫
∂D

f

∣∣∣∣ 1− b

λ− b

∣∣∣∣2 dm =
∫
∂D

f |1 + g|2 dm.

For the theorem, we are assuming
∫

∂D

1−|b|2
|1−u|2 dm < ∞, or

∫
∂D

f dm < ∞.

Theorem 4.4 then follows from the use of the triangle inequality in L2(f dm).

Finally, we can use this theorem to prove

Theorem 4.5. The function b has an angular derivative relative to u if and
only if there is some function h ∈ L1(m) such that for almost every λ ∈ ∂D we
have ∫

∂D

dµλ

|1− u|2
<

h(λ)
|1− λ|2

.

Proof. The proof is straightforward now. If b has an angular derivative rela-
tive to u, then, by Theorems 4.3 and 4.4, we have some function h ∈ L1(m) such
that

∫
∂D

|1−λ|2
|1−u|2 dµλ < h(λ), which proves one direction of the theorem. To prove

the other direction, assume there is a function h ∈ L1(m) with
∫

∂D

dµλ

|1−u|2 < h(λ)
|1−λ|2

for almost all λ ∈ ∂D. Then pick any λ for which h(λ) is defined and the above
holds, and we then have, since |λ− b|−1 > 1

2 ,∫
∂D

dµλ

|1− u|2
<

h(λ)
|1− λ|2

→
∫
∂D

1− |b|2

|1− u|2|λ− b|2
dm <

h(λ)
|1− λ|2

→
∫
∂D

1− |b|2

|1− u|2
dm < some constant.

This, plus Theorems 4.3 and 4.4 give us what we want, and our theorem is proved.
This is part (ii) of the Theorem 3.2.

Sarason, in Section IV-17 of [6], proves an even stronger version of part of
this last theorem. He proves (the equivalent of):
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Theorem 4.6. If b is a nonextreme point of the unit ball of H∞, and b has
an angular derivative relative to u, then there is a positive constant C such that
for all λ ∈ ∂D \ {1}, ∫

∂D

dµλ

|1− u|2
<

C

|1− λ|2
.

He shows, in fact, that we may take C to be 2
(

1+|u(0)|
1−|u(0)|

)∥∥∥ dν
dµ

∥∥∥2

L2(µ)
.

D. Suarez [11] has recently shown that Theorem 4.6 above is true in the
case where b is extreme (for a slightly larger constant C), if we consider only the
absolutely continuous part of µλ. This is similar to what Sarason did in proving the
theorem, except that in the case where b is nonextreme, µλ is absolutely continuous
for almost all λ, so the proof in the absolutely continuous case is sufficient to give
us the result for all µλ. When b is extreme, µλ does not necessarily have to be
absolutely continuous for any λ, which can happen when, for example, b is inner.

Sarason [7] then showed that this stronger version is true for arbitrary holo-
morphic self-maps of the disk, by proving:

Theorem 4.7. If b has an angular derivative relative to u, then there is a
positive constant C such that for all λ ∈ ∂D \ {1},∫

∂D

dµλ

|1− u|2
<

C

|1− λ|2
.

The following is Sarason’s proof, which he has allowed to be presented here:
First, we use a lemma by Poltoratskii in [5].

Lemma 4.8. For each λ ∈ ∂D, H(b) ⊂ L2(µλ), and the inclusion operator
has norm at most 2.

Next we have the following theorem:

Theorem 4.9. If b has an angular derivative relative to u, then for λ ∈
∂D \ {1}, the function 1

1−u is well defined almost everywhere with respect to µλ

(by nontangential limits), and it belongs to L2(µλ), with∥∥∥∥ 1
1− u

∥∥∥∥2

L2(µλ)

6
20

|1− λ|2

(
1 + |u(0)|
1− |u(0)|

)2∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µλ)

.

Proof. Fix λ in ∂D \ {1}. We have

Vb

(
dν

dµ

)
= (1− b)K

(
dν

dµ
µ

)
= (1− b)K(ν)

=
1− b

1− u
Vu(1) =

1− u(0)u
1− u(0)

(
1− b

1− u

)
.(4.1)

Since dν
dµ ∈ L2(µ), we have Vb

(
dν
dµ

)
∈ H(b), so by the lemma, 1−u(0)u

1−u(0)

(
1−b
1−u

)
is in L2(µλ) and thus well defined almost everywhere with respect to µλ. Hence
so is the function 1

1−u , because b is almost never 1 with respect to µλ.
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The lemma also tells us that 1−u(0)u

1−u(0)

(
1−b
1−u

)
has norm in L2(µλ) of at most

2‖ dν
dµ‖L2(µ). Hence the function 1−b

1−u is in L2(µλ), with norm not greater than

2
(

1+|u(0)|
1−|u(0)|

)∥∥∥ dν
dµ

∥∥∥
L2(µλ)

. Since b = λ almost everywhere with respect to µs
λ, we can

conclude that ∥∥∥∥ 1
1− u

∥∥∥∥2

L2(µs
λ
)

6
4

|1− λ|2

(
1 + |u(0)|
1− |u(0)|

)2∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µλ)

.

By equation (4.1) and the lemma,

4
∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µλ)

>

(
1− |u(0)|
1 + |u(0)|

)2 ∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµ >

(
1− |u(0)|
1 + |u(0)|

)2 ∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 dµac

=
(

1− |u(0)|
1 + |u(0)|

)2∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 1− |b|2

|1− b|2
dm=

(
1− |u(0)|
1 + |u(0)|

)2∫
∂D

1
|1− u|2

(1− |b|2) dm.

Hence,

(4.2)
∫
∂D

1
|1− u|2

(1− |b|2) dm 6 4
(

1 + |u(0)|
1− |u(0)|

)2∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µ)

.

Again, by the lemma,∥∥∥∥ 1− b

1− u

∥∥∥∥
L2(µac

λ
)

6

∥∥∥∥ 1− b

1− u

∥∥∥∥
L2(µλ)

6 2
(

1 + |u(0)|
1− |u(0)|

)∥∥∥∥ dν

dµ

∥∥∥∥
L2(µ)

,

which can be written

(4.3)
∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 1− |b|2

|λ− b|2
dm 6 4

(
1 + |u(0)|
1− |u(0)|

)2∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µ)

.

Since 1−b
λ−b = 1 + 1−λ

λ−b , we have

1
|λ− b|2

6
2

|1− λ|2

(
1 +

∣∣∣∣ 1− b

λ− b

∣∣∣∣2).

This, in conjunction with equations (4.2) and (4.3) gives∥∥∥∥ 1
1− u

∥∥∥∥2

L2(µac
λ

)

=
∫
∂D

1
|1− u|2

1− |b|2

|λ− b|2
dm

6
2

|1− λ|2

[ ∫
∂D

1
|1− u|2

(1− |b|2) dm +
∫
∂D

∣∣∣∣ 1− b

1− u

∣∣∣∣2 1− |b|2

|λ− b|2
dm

]

6
16

|1− λ|2

(
1 + |u(0)|
1− |u(0)|

)2∥∥∥∥ dν

dµ

∥∥∥∥2

L2(µ)

.

Combining the estimates for the squares of the norm of 1
1−u in L2(µs

λ) and
L2(µac

λ ), we obtain the desired inequality in Theorem 4.9.
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This is then sufficient to prove Theorem 4.7, which we can also state as:

Theorem 4.10. If b has an angular derivative relative to u, then the mea-
sure 1

|1−u|2 µλ is finite (for λ ∈ ∂D \ {1}), with the square of its norm no greater

than 20
|1−λ|2

(
1+|u(0)|
1−|u(0)|

)2∥∥∥ dν
dµ

∥∥∥2

L2(µ)
.

When we put Theorem 4.7 together with Theorem 4.5 we get the following

somewhat unexpected theorem:

Theorem 4.11. There is a function h in L1(m) with∫
∂D

dµλ

|1− u|2
<

h(λ)
|1− λ|2

for almost every λ ∈ ∂D if and only if there is a constant C such that for all

λ ∈ ∂D \ {1}, ∫
∂D

dµλ

|1− u|2
<

C

|1− λ|2
.

We might want an even stronger result than the one above. In the case of

ordinary angular derivatives, we have the theorem in Section VI-10 of [6]:

Theorem 4.12. If, for the point z0 ∈ ∂D, there is some λ ∈ ∂D such that∫
∂D

dµλ

|1−z0z|2 < ∞, then b has an angular derivative at the point z0.

The generalization of this theorem would be the following:

Conjecture 4.13. If, for some inner function u, there is some λ ∈ ∂D
such that

∫
∂D

dµλ

|1−u|2 < ∞, then b has an angular derivative relative to u.

This conjecture, together with Theorem 4.7, would give us the following

somewhat surprising result:

Conjecture 4.14. If, for some inner function u, there is some λ ∈ ∂D
such that

∫
∂D

dµλ

|1−u|2 < ∞, then there is a constant C such that for all λ ∈ ∂D \ {1},

∫
∂D

dµλ

|1− u|2
<

C

|1− λ|2
.
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5. GENERALIZATIONS OF JULIA’S LEMMA

For a holomorphic self-map of the disk b with an angular derivative at the point
z0, we have (see [6], VI-6) the theorem known as Julia’s Lemma, which says that
for all z ∈ D

|b(z)− b(z0)|2

1− |b(z)|2
6 c

|z − z0|2

1− |z|2

for the constant c = |b′(z0)|.
We wish to generalize this lemma, just as we did the standard difference quo-

tient, by replacing the identity function by an arbitrary inner function. Assuming
as we did earlier that b(z0) = 1, we replace z by u(z) (where we here require
u(z0) = 1, too), and write

|1− b(z)|2

1− |b(z)|2
6 c

|1− u(z)|2

1− |u(z)|2
.

We ask if the above is true (for all z ∈ D) for a suitable constant c, where
here we will now assume that b has an angular derivative relative to u, that is,
that ν � µ and dν

dµ ∈ L2(µ).
To answer this, we note that

Pµ(z) =
∫
∂D

P (θ, z) dµ = Re
(

1 + b(z)
1− b(z)

)
=

1− |b(z)|2

|1− b(z)|2
,

and similarly for ν and u, so that we can rewrite the previous inequality as

1
Pµ(z)

6 c
1

Pν(z)
or

Pν(z)
Pµ(z)

6 c.

This leads us to

Theorem 5.1. For b a holomorphic self-map of the disk, and u an inner
function, if b has an angular derivative relative to u, then there is a constant c
such that

(5.1)
|1− b(z)|2

1− |b(z)|2
6 c

|1− u(z)|2

1− |u(z)|2

for all z ∈ D if and only if dν
dµ ∈ L∞(µ), in which case we may take c to be

∥∥∥ dν
dµ

∥∥∥
∞

.

Proof. The proof of this theorem is based on writing the inequality as Pν(z)
Pµ(z) 6

c, where ν = dν
dµµ, so we can write the inequality now as

Pν(z)
Pµ(z)

=
P dν

dµν(z)

Pµ(z)
=

∫
∂D

P (θ, z) dν
dµ dµ∫

∂D P (θ, z) dµ
6 c.

Since P (θ, z) is real and positive, we know that if dν
dµ ∈ L∞(µ), then∫

∂D

P (θ, z)
dν

dµ
dµ 6

∥∥∥∥ dν

dµ

∥∥∥∥
∞

∫
∂D

P (θ, z) dµ,
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so for the choice of c = ‖ dν
dµ‖∞, the inequality (5.1) holds.

To prove the opposite direction, we assume that dν
dµ 6∈ L∞(µ), i.e., that for

any constant c, there is a set of positive µs-measure on which dν
dµ > c. We will

then have, since the Poisson kernel is an approximate identity, for µs-a.e. ξ in such
a set,

Pν(z)
Pµ(z)

=
P dν

dµµ(z)

Pµ(z)
→ dν

dµ
(ξ) > c

as z → ξ nontangentially. Hence no constant c can make the desired inequality
true for all z ∈ D. This completes the proof of the theorem.

We can look at the restriction of the above theorem in the same special case
we were studying earlier, i.e., where u(z) = z0z for some z0 ∈ ∂D. Then we have

Theorem 5.2. (Julia’s Lemma) For a holomorphic self-map of the disk b
with an angular derivative at the point z0,

|b(z)− b(z0)|2

1− |b(z)|2
6 c

|z − z0|2

1− |z|2

for all z ∈ D where we can take c = |b′(z0)|.

Proof. This is an application of Theorem 5.1 with the function b(z0)b and
u(z) = z0z. Again, we get ν = δz0 , and since b has an angular derivative at z0, µ
has an atom at z0, and we have ν � µ and dν

dµ ∈ L2(µ). In fact, by a result in
the proof of Theorem 15 in [9], we have dν

dµ (z0) = |b′(z0)|, and is zero at all other

points, so
∥∥∥ dν

dµ

∥∥∥
∞

= dν
dµ (z0) = |b′(z0)|, and the theorem applies. The theorem

gives us directly that for all z ∈ D

|1− b(z0)b(z)|2

1− |b(z0)b(z)|2
6

∥∥∥∥ dν

dµ

∥∥∥∥
∞

(
|1− z0z|2

1− |z0z|2

)
and this, given that |b(z0)| = 1 (since b has an angular derivative at z0) is easily
seen to be equivalent to

|b(z)− b(z0)|2

1− |b(z)|2
6 |b′(z0)|

|z − z0|2

1− |z|2
.

This completes the proof of Julia’s lemma as a special case of the Theorem 5.1.

Another way to look at our generalization of Julia’s lemma is to see that we
showed, for appropriate b and u,

|1−b(z)|2
1−|b(z)|2
|1−u(z)|2
1−|u(z)|2

=
Pν(z)
Pµ(z)

or

(5.2)
|1−b(z)|
1−|b(z)|
|1−u(z)|
1−|u(z)|

=

(
1+|b(z)|
1+|u(z)|

)(
Pν(z)
Pµ(z)

)
| 1−b(z)
1−u(z) |

.
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The left side of the equality above is the ratio of two terms. The top, |1−b(z)|
1−|b(z)| is,

as z → ξ for some ξ ∈ ∂D, in some sense, the angle at which b(z) approaches b(ξ).
(Note that b(ξ) = 1 for ν-a.e. ξ). Similarly, the lower term is the same for u. The
right side of the equality approaches 1 as z → ξ nontangentially for ν-a.e. ξ ∈ ∂D.
This is true because as z → ξ nontangentially for ν-a.e. ξ ∈ ∂D, both b(z) and
u(z) → 1, so 1+|b(z)|

1+|u(z)| → 1. Also, we know 1−b(z)
1−u(z) →

dν
dµ (ξ), which is nonzero for

ν-a.e. ξ, and, as we have seen before, Pν(z)
Pµ(z) →

dν
dµ (ξ). Our conclusion is

Theorem 5.3. If b has an angular derivative relative to u, then for ν-a.e.
ξ ∈ ∂D, as z → ξ nontangentially, the angle at which b(z) approaches 1 is the
same (in the limit) as the angle at which u(z) approaches 1.

A different way to look at equation (5.2) is to write it as

1− |b(z)|
1− |u(z)|

=
| 1−b(z)
1−u(z) |

2(
1+|b(z)|
1+|u(z)|

)(
Pν(z)
Pµ(z)

) → dν

dµ
(ξ)

as z → ξ nontangentially, for ν-a.e. ξ. This is true since as z → ξ nontangentially,
for ν-a.e. ξ,

∣∣∣ 1−b(z)
1−u(z)

∣∣∣ → dν
dµ (ξ), 1+|b(z)|

1+|u(z)| → 1, and Pν(z)
Pµ(z) →

dν
dµ (ξ). Since dν

dµ ∈
L1(ν) this gives us

Theorem 5.4. If b has an angular derivative relative to u, then the function
on ∂D whose values are the nontangential limits of 1−|b|

1−|u| is in L1(ν) and its norm
is equal to ‖ dν

dµ‖L1(ν), or ‖ dν
dµ‖

2
L2(µ).

Remark 5.5. Because of the above theorem, we might want to add the
condition

the boundary function of
1− |b|
1− |u|

is in L1(ν)

to the list of conditions equivalent to the assertion that b has an angular derivative
relative to u. We cannot do this, however, because the converse of the above
theorem does not hold. Pick, for example, b(z) = −z and u(z) = z. 1−|b|

1−|u| = 1 ∈
L1(ν), (note that again we define the boundary values of 1−|b|

1−|u| as the nontangential
limits of values in the disk) but because ν = δ1 and µ = δ−1 we do not have ν � µ.
In this case, however, −b has an angular derivative relative to u. We can pick b
and u, however, so that ξ̄b will not have an angular derivative relative to u for any
ξ ∈ ∂D. Such an example can be found by taking b(z) = z3 and u(z) = z2. Then
the boundary function of 1−|b|

1−|u| = 1−|z3|
1−|z2| = (1−|z|)(1+|z|+|z|2)

(1−|z|)(1+|z|) = 3
2 (everywhere on

∂D), but µ has atoms at the cube roots of unity, whereas ν has atoms at the square
roots of unity, so ν 6� µ, therefore b does not have an angular derivative relative
to u, nor, it is clear, would ξ̄b have an angular derivative relative to u for any
ξ ∈ ∂D.
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