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Abstract. We briefly review the theory of non-commutative Hp-spaces and
suggest a possible non-commutative analogue of the disc algebra. We then
pass to the theory of composition operators and proceed to identify some
of the basic algebraic principles underlying the theory of these operators
on classical Hardy spaces. This framework is then generalised to the non-
commutative setting. Here we succeed in describing what may be regarded
as non-commutative analogues of composition operators. Building on these
ideas it is shown that even in this very general context one yet finds what
effectively constitutes operator theoretic remnants of the Littlewood Subor-
dination Principle (see Proposition 2.4 and Theorem 4.12). In conclusion we
investigate the connection between linear isometries on non-commutative Hp

spaces and analogues of composition operators.
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1. INTRODUCTION

The classical Hardy spaces Hp(D), 1 6 p < ∞, where D is the open unit disc are
Banach spaces of analytic functions on the unit disc which satisfy the condition

sup
0<r<1

2π∫
0

|f(reit)|pdt < ∞.

The Banach algebra H∞(D) of bounded analytic functions on the unit disc ap-
pears as a dense subspace of each of these spaces. By taking radial limits each of
these spaces may be identified with the subspaces Hp(T) of Lp(T) consisting of
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p-integrable functions whose negative Fourier coefficients vanish. (Here T = ∂D
denotes the circle group.) In fact, if indeed 1 < p < ∞, Hp(T) appears as a topo-
logically complemented subspace of Lp(T). For details see the book of Hoffman
([15]). Analogues of these spaces may variously be defined on Dn (n Cartesian
copies of the open disc), Dn (the open unit ball of Cn), and P+ (the upper half-
plane). For a concise description of these spaces see ([35], pp 8–9).

The theory of composition operators is a dynamic and rapidly growing field
which may be studied in the many different contexts. In the present context of
the spaces Hp(E), a bounded linear operator C is called a composition operator
if there exists a transformation T : E → E such that C(f) = f ◦ T for each
f ∈ Hp(E).

We may then write C = CT with the transformation T being thought of as
the symbol of the composition operator. In the setting of the spaces Hp(D) the
theory of composition operators relates very closely to the theory of analytic self-
maps on the unit disc. The fact that any analytic self-map on the open disc induces
a composition operator on Hp(D), 1 6 p < ∞, is a consequence of the classical
Littlewood Subordination Principle which basically tells us that if T (0) = 0, then

2π∫
0

|f(T (reit))|pdt 6

2π∫
0

|f(reit)|pdt

for each 0 < p < ∞, each f ∈ Hp(D) and each 0 6 r < ∞. (The restriction
T (0) = 0 may be circumvented by bringing the Möbius transformation

S : D → C, z 7→ T (0)− z

1− T (0)z

into play.) The interested reader is referred to [17] for further details. In the
multivariable context of E = Dn and E = Dn the theory of composition operators
exhibits a connection to the theory of Carleson measures rather than general an-
alytic self-maps on E. Further details may be found in for example [35]. (Since
it is not the purpose of this paper to present either a detailed introduction to the
theory, nor an exhaustive bibliography, we content ourselves with presenting the
references [17] and [35] as representative samples of what may be found in the
literature. Of course many other excellent references like [34] and [8] abound.)

To put the present theory in context we present a brief discussion of the
evolution of the “non-commutative” theory. (In doing so the fair apportioning of
credit will not always be easy. Sincere apologies are offered to any who feel slighted
in the process.) A fuller discussion of the evolution may be found in [24]. In the
fifties the theory of Hardy spaces developed in two directions. On the one hand
there is the work of Masani and Wiener on matrix valued functions ([26], [27]) and
on the other that of Helson and Lowdenslager in the setting of compact groups
with ordered duals ([13]). This eventually led to the weak∗ Dirichlet algebras of
functions of Srinivasan and Wang ([36]). The first step towards the approach of
non-selfadjoint operator algebras seems to have been the work of Kadison and
Singer on triangular operator algebras ([19]). In a watershed paper, Arveson in
1967 ([1]) introduced the notion of a subdiagonal algebra in order to unify the
perspectives of [13], [19], and [26]. Basically, a subdiagonal algebra is a subalgebra
of a von Neumann algebra which plays the role of a non-commutative analogue
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of a weak∗ Dirichlet algebra and which has many of the structural properties of
the space H∞(D). With the concept of a non-commutative H∞ in place, one may
then appeal to the theory of non-commutative Lp spaces associated with some von
Neumann algebra, and by analogy with the commutative setting, define the Hp’s
to be the closure of H∞ in the relevant Lp(M)-spaces.

Building on the work of Arveson, the first explicit systematic study of non-
commutative analogues of Hardy spaces (within the framework under present con-
sideration) seems to have been the work of Zsidó ([39], [40], [41]). However his
work was in the specific context of spectral subspaces relative to the action of some
group of ∗-automorphisms. The refinement of a more general formalism for such
objects appears to have been a subsequent partly independent development. In
the nature of such situations, aspects of the more recent theory seem to be more
general rediscoveries of earlier work by Zsidó. Compare for example Theorem
5.2 from [24] (an important step in the non-commutative Riesz-Bochner theory)
and Lemma 4.1 from [41]. The theory of non-commutative Hp-spaces has in the
interim matured to the point where a description and analysis of analogues of com-
position operators appears to be plausible. In for example [24] one finds a Riesz
factorisation theorem, a Riesz-Bochner theorem on the existence and boundedness
of harmonic conjugates, direct sum decompositions and duality. In a follow-up pa-
per, a non-commutative concept of a BMO was introduced ([25]). On a related
note the development of the concept of a Shilov boundary of an arbitrary oper-
ator space ([14], [5]) opens up many new opportunities for further enriching the
theory along classical lines (see for example the discussion of the Shilov bound-
ary of H∞(D) in [15]). (Building on ideas of Arveson ([2], [3]) it seems to have
been Hamana ([14]) who first introduced the concept of a Shilov boundary of an
arbitrary operator space. For a full discussion of the evolution of the idea, see the
paper of Blecher ([5]).)

The objective of this present paper is then to identify and study a plausible
non-commutative concept of a composition operator within the structure of non-
commutative Hp-spaces in a way that canonically extends the classical theory. As
such it is the fourth in a series of papers aimed at initiating a theory of composition
operators in a wide range of non-commutative contexts. See also [20], [22] and [21].
Besides taking a step towards the eventual characterisation of linear isometries on
non-commutative Hp-spaces, the results in this paper establish a very general
systematic framework (a kind of template) within which one may study a wide
range of more specialised settings. In fact, despite the generality of these results,
many of the standard results regarding composition operators on Hp(D)-spaces
may be canonically extracted from this present cycle of results. Future possibilities
include the study of this problem in the category of operator spaces. Given the
additional structure in this category like the notion of a (non-commutative) Shilov
boundary ([14], [5]), it is possible that some of the assymetries of the present effort
may be eliminated and that a rich and varied theory awaits the brave soul who
dares to venture in these uncharted waters.

Given a unital Banach algebra A with identity I, under the term irreducible
representation of A we understand a continuous homomorphism π : A → B(X),
where B(X) is the set of all bounded linear operators on some Banach space X,
such that π(A) is an irreducible subalgebra of B(X) in the sense of admitting only
trivial invariant subspaces. The (Jacobson) radical, rad(A), of A is the intersection
of the kernels of all such representations of A. (See also 4.2.16 and 4.3.1 in [29].)
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A Jordan morphism between two Banach algebras A and B is a linear mapping
ϕ : A → B which preserves the Jordan product, specifically ϕ(ab+ba) = ϕ(a)ϕ(b)+
ϕ(b)ϕ(b) for all a, b ∈ A. What seems to be a meta-theorem in the theory of
composition operators is that in a wide variety of contexts a bounded operator on
a function space is a composition operator precisely when it is multiplicative in the
sense of behaving like a homomorphism whenever this makes sense. In passing to
the non-commutative context this principle of multiplicativity seems to translate
to precisely the preservation of the Jordan product.

Unless otherwise specified, we will generally assume M⊂ B(h) (h a Hilbert
space) to be a von Neumann algebra equipped with a finite normalised faithful
normal trace τ . At an intuitive level this construct of course fulfills the role of
a non-commutative L∞(T). If now we denote the set of orthogonal projections
in M by PM and the operators affiliated to M by M, the set of τ -measurable
operators affiliated to M is defined to be

M̃ = {a ∈M : ∀ ε > 0 ∃ e ∈ PM such that e(h) ⊂ D(a) and τ(I− e) < ε)}.

We may then write L∞(M, τ) = M and Lp(M, τ) = {a ∈ M̃ : τ(|a|p) < ∞},
1 6 p < ∞ ([28]). It is well known that this definition coincides with other
traditional formulations of non-commutative Lp-spaces (see for example [10], [38]).
Since in the present context there is therefore no danger of confusion we will
simply write Lp(M) = Lp(M, τ), 1 6 p 6 ∞. As in the commutative setting
an application of the non-commutative Hölder inequality ([10], Theorem 4.2) to
the fact that τ(I) = 1 yields the observation that Lp injects continuously into
Lq whenever 1 6 q 6 p 6 ∞. For any subset S of Lp(M) we will write S∗
for the set {a ∈ Lp(M) : a∗ ∈ S}. Now, given a von Neumann algebra M and
a von Neumann subalgebra N , an expectation from M onto N is defined to be
a positive identity preserving linear operator Φ : M → N which satisfies the
property Φ(xy) = xΦ(y) for all x ∈ N and y ∈ M. A comprehensive survey of
the fundamentals of the theory of expectations may be found in Section 6 of [1].
We are now finally ready to introduce the non-commutative analogue of H∞(T).

Definition 1.1. Let A be a weak∗-closed unital subalgebra of M, and Φ
a faithful normal expectation from M onto the diagonal von Neumann algebra
D = A∩A∗. We deem A to be a finite maximal subdiagonal subalgebra of M with
respect to Φ if:

(i) A+A∗ is weak∗ dense in M;
(ii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ A;
(iii) τ ◦ Φ = τ .

To see that the work of Zsidó on spectral subspaces (referred to earlier) falls
within the ambit of this formalism, we refer the interested reader to the discussion
on p. 115 of [40] and to for example Theorem 5.1 of [41]. In this regard the context
of say [40] may be identified as a special case of the present context by setting
B∞ = Φ and XB((0, 1]) = A. (Here we have used the notation of [40].)

Observe that in the present context a subalgebra A of the type defined above
is automatically maximal among those subalgebras satisfying (i) and (ii) ([9]).
Given a finite maximal subdiagonal subalgebra of M we will by analogy with the
classical setting write H∞(M) = A. If now M appears as the double commutant
of some a priori given concrete unital C∗-algebra C, then such a C presents a
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reasonable non-commutative analogue of C(T), and hence by analogy with the
classical setting Ã = H∞(M)∩C may then be regarded as a non-commutative disc
algebra. By the non-commutative Hölder inequality ([10], Theorem 4.2) L∞(M),
and hence H∞(M), appears as a subalgebra of each Lp(M), 1 6 p < ∞, since
τ(I) = 1. We may therefore define Hp(M), 1 6 p < ∞, to be the ‖ · ‖p-closure
of H∞(M) in Lp(M). Again by Theorem 4.2 of [10] it is then easy to see that
more generally Hp injects continuously into Hq whenever 1 6 q 6 p 6 ∞. This
framework proves to be general enough to cover a wide range of perspectives, yet
retains sufficient structure to admit of a relatively detailed theory. The interested
reader is referred to [24] for further concrete examples.

Now let H∞
0 (M) = {x ∈ H∞ : Φ(x) = 0}. It is an easy consequence of the

multiplicative condition on Φ that H∞
0 is in fact an ideal in H∞. For 1 6 p < ∞

we may now define Hp
0 (M) to be the ‖ · ‖p-closure of H∞

0 in Lp(M). In direct
analogy with the classical case, Lp(M), 1 < p < ∞, may be decomposed into a
topological direct sum Lp(M) = Hp ⊕ (Hp

0 )∗ = Hp
0 ⊕ Lp(D) ⊕ (Hp

0 )∗. If p = 2
the decomposition is even orthogonal. (A proof for the case p = 2 may be found
in [23] and for the case p 6= 2 in [24].) For any 1 6 p 6 ∞ the spaces Hp and Hp

0
may be described by the following useful formulae ([32], Section 3):

Hp = H1 ∩ Lp(M) = {x ∈ Lp(M) : τ(xy) = 0 for all y ∈ H∞
0 }(1.1)

Hp
0 = H1

0 ∩ Lp(M) = {x ∈ Lp(M) : τ(xy) = 0 for all y ∈ H∞}.(1.2)

Now, suppose that M indeed appears as the double commutant of some a
priori given unital C∗-algebra C. Given H∞(M), we denote H∞ ∩ C, the non-
commutative analogue of the disc algebra, by Ã. In the classical setting where
indeed C = C(T) and where Ã = A(D) is the disc algebra, one form of the classical
theorem of F. and M. Riesz asserts that if A(D) is regarded as a subspace of C(T),
then on canonically embedding L1(T) (and hence H1

0 ⊂ L1) in the continuous
dual of C(T), H1

0 appears as precisely the annihilator of A(D) (see for example
Theorem 1.1, [30]). Amongst other facts this of course implies that in this setting
H1

0 appears as a weak∗-closed subspace of the dual of C(T). However, even in a
commutative context, important aspects of the above result fail in more general
settings, and hence a full non-commutative analogue of this result is possibly too
much to hope for. (See for example the discussion on p. 56 and Exercise 11 (d),
p. 60, in the book of Hoffman ([5]).) Nevertheless, in spite of these difficulties,
a weaker version of this identification of the annihilator of Ã does even in the
non-commutative context seem to be contained in the identities listed above. (To
avoid confusion we will denote the commutant of C by C′ and the continuous dual
by C].)

Theorem 1.2. Let M, C, H∞(M) and Ã = H∞(M) ∩ C be as before. Let
L1(M) (and hence H1

0 (M) ⊂ L1(M)) be canonically embedded in C] by identifying
each a ∈ L1(M) with the functional x → τ(ax). If, as a subspace of L∞(M) = M,
the space Ã is σ(M,M])-dense in H∞(M), then, with respect to this embedding,
H1

0 is σ(C], C)-dense in

Ã⊥ = {ω ∈ C] : ω(a) = 0 for every a ∈ Ã}
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(the polar of Ã) and is a relatively σ(C], C)-closed subspace of L1(M) (i.e. H1
0 =

Ã⊥ ∩ L1(M)).

(Recall that, by standard results, the process of identifying each a ∈ L1(M)
with the functional x → τ(ax) identifies L1(M) with the predual M] of M ([38],
Proposition II.15). Each of these functionals in turn restrict without change of
norm to an ultra-weakly continuous functional on C ([18], 7.4.2 and 10.1.11).)

Proof. We first show that H1
0 is a relatively σ(C], C)-closed subspace of

L1(M) under the given hypothesis. To this end, suppose that we are given
a ∈ L1(M) and {aλ} ⊂ H1

0 such that

(1.3) τ(aλx) → τ(ax) for all x ∈ C.

By (1.2) above, we then have that

0 = τ(aλx) → τ(ax) = 0 for each x ∈ H∞ ∩ C.

Now, since a ∈ L1(M), it follows from the discussion preceding the proof that
the functional x → τ(ax) is σ(M,M])-continuous on all of M. Thus, by the
hypothesis, the canonical extension of this functional to M annihilates not just
Ã = H∞(M) ∩ C, but H∞(M), the σ(C], C)-closure of Ã. Hence, by (1.2) above,
we must have that a ∈ H1

0 .
To show that H1

0 is σ(C], C)-dense in Ã⊥, the bipolar theorem assures us
that we need only show that the polar of H1

0 in C is precisely Ã. Now, if a ∈ Ã,
then by (1.1) above τ(xa) = 0 for every x ∈ H∞

0 . However, since a ∈ Ã ⊂ M,
the functional x → τ(xa) is continuous on L1(M) (see for example Theorem 4.2
in [10]). Thus, since H∞

0 is ‖ · ‖1-dense in H1
0 , it easily follows that τ(xa) = 0 for

every x ∈ H1
0 .

Conversely, suppose we are given a ∈ C such that τ(xa) = 0 for all x ∈ H1
0 .

Since H∞
0 ⊂ H1

0 , it then trivially follows from (1.1) that a ∈ H∞, i.e. that a ∈
Ã = H∞(M) ∩ C.

For the sake of completeness we note the existence of what appears to be a
rather different non-commutative version of the F. and M. Riesz theorem in the
context of spectral subspaces of one-parameter groups of ∗-automorphisms. (See
Theorem 5.3, [4] and Theorem 4.1, [40].)

2. SURVEY OF CLASSICAL FRAMEWORK

Our main objective in this section is not just to survey the general theory of
composition operators on classical Hardy spaces, but to do so with a view to
identifying basic algebraic structure underlying and characterising the theory in
the various classical settings. Success in obtaining such an abstract algebraic
description of the basic theory in these contexts could then justifiably serve as
the foundation for extending the theory in a natural way to significantly more
general contexts. The encapsulation of the essentials of the theory in a context
encompassing many as yet uninvestigated specialised settings could in turn serve
as a useful tool for the development of the theory in such settings.
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Proposition 2.1. The point evaluations δz, z ∈ D, of H∞(D) correspond
to precisely those irreducible representations (multiplicative functionals) of H∞(D)
which extend continuously to some (to all) Hp(D), 1 6 p < ∞. (See for example
Proposition 2 in [17].)

From pp. 8–9 of [35] it is clear that at least the one direction of the above
equivalence holds for the cases Hp(E) where E = Dn, Dn or P+ (the upper half-
plane) as well.

Proposition 2.2. ([35], 3.1.1, 3.2.1) For each of the cases E = Dn, Dn or
P+, a bounded linear map C : Hp(E) → Hp(E), 1 6 p < ∞, is a composition
operator if and only if given any z ∈ E we may find w ∈ E so that δz ◦C = δw. (In
the case E = D the above two conditions are equivalent to C acting multiplicatively
on Hp.)

In, at least, the case of H∞(D) the argument of Proposition 3 from [17] may
easily be adapted to show that:

Proposition 2.3. For any bounded linear operator C : H∞(D) → H∞(D)
the following are equivalent:

(i) C is a composition operator on H∞;
(ii) C is a multiplicative map (hence a homomorphism since H∞(D) is a

Banach algebra) whose adjoint maps the set {δz : z ∈ D} back into itself;
(iii) C is an identity preserving homomorphism which on composition with

an irreducible representation of H∞(D) which extends continuously to some (al-
ternatively, to all) Hp(D), 1 6 p < ∞, yields another irreducible representation of
the same type.

Proof. The implication (i) ⇒ (ii) is obvious whereas the equivalence (ii) ⇔
(iii) follows from Proposition 2.1. To see that (i) follows from (ii) observe that
if (ii) holds we may define a map T : D → D by T (z) = wz where for any given
z ∈ D, wz ∈ D is selected so that δz ◦C = δwz

. It is then an exercise to show that
(Cf)(z) = (f ◦ T )(z) for every z ∈ D and every f ∈ H∞(D).

The above proposition affords a mechanism of identifying those operators
which appear as composition operators. Turning our attention to identifying the
transformations which induce composition operators we obtain results of the fol-
lowing type:

Proposition 2.4. Let T : D → C be given. Then the following are equiva-
lent:

(i) for some 1 6 p < ∞ T induces a composition operator CT : Hp → Hp;
(ii) T induces a composition operator CT : H∞ → H∞ which extends con-

tinuously to Hp → Hp for some 1 6 p < ∞;
(iii) for each 1 6 q < ∞ T induces a composition operator CT : Hq → Hq.

Proof. The proof follows from for example Proposition 3 in [17] and the
remark following it. Observe that if (i) holds then T must map D back into itself
(by Proposition 2.1) and hence CT will map H∞ back into itself in a ‖ · ‖∞-
continuous way.
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Remark 2.5. The above proposition (together with some by now fairly stan-
dard norm estimates) is equivalent to the Littlewood Subordination Principle and
may thus be regarded as an operator theoretic formulation thereof (see for example
the discussion on p. 231 of [17] for details). The appearance of similar behaviour in
more general contexts may thus justifiably be regarded as a generalised Littlewood
Subordination Principle.

3. THE DEFINITION OF COMPOSITION OPERATORS

ON NON-COMMUTATIVE Hp-SPACES

Given a possibly non-commutative Hardy space Hp(M) corresponding to some
von Neumann algebra the main objective in this section is to identify a plausible
definition of composition operators in this context. Whichever way one wishes to
describe such objects, “plausibility” of such a description would at least demand
that it yield exactly the standard theory in the special cases of the more classical
Hardy spaces like Hp(E) where E is one of Dn or Dn. Part of this process of iden-
tifying a plausible description is therefore the encoding of much of the information
in the previous section in Banach algebraic terms. In this programme the identi-
fication of linear maps which in some sense “preserve” irreducible representations
is therefore essential.

Proposition 3.1. Let B, B̃ be unital commutative semisimple Banach alge-
bras. Then C : B → B̃ is an identity preserving homomorphism if and only if for
any irreducible representation π of B̃, π ◦ C is an irreducible representation of B.

Proof. Since here irreducible representations correspond to non-zero multi-
plicative functionals, the “only if” statement is obvious. Conversely, given a, b ∈ B
note that if for each irreducible representation π of B̃ we have that π ◦ C(ab) =
π ◦ C(a) · π ◦ C(b) = π(C(a)C(b)), then surely π(C(ab) − C(a)C(b)) = 0, i.e.
C(ab) − C(a)C(b) ∈ rad(B) = {0}. Similarly, we may conclude that C(IB) = IB̃
in this case.

To pass from the commutative to the non-commutative a comparison of
Propositions 2.3 and 3.1 suggests that at the level of Hp(M) (as defined in [24])
we identify “composition operators” from H∞(M) into H∞(M) with bounded
linear operators C : H∞ → H∞ whose adjoints not only preserve the set of
all irreducible representations of H∞(M) but also map the subset of all those
irreducible representations which extend continuously to some (alternatively, to
all) Hp(M), 1 6 p < ∞, back into itself. The latter set then plays the role of
a “non-commutative open disc” with the difference between the two sets playing
the role of a non-commutative version of the Shilov-boundary of the disc-algebra
(see [15], pp. 160, 173). To clarify these ideas, a non-commutative version of
Proposition 2.1 needs to be investigated. This will be done in the next section.
For the moment, we compile some classical results to present a non-commutative
version of Proposition 3.1.
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Proposition 3.2. Let B, B̃ be unital Banach algebras and C : B → B̃ a
linear operator.

(i) If for any irreducible representation π of B̃, π ◦ C is an irreducible
(anti-)representation of B, then πrad(B̃) ◦ C is an identity-preserving Jordan mor-

phism. (Here πrad(B̃) is the canonical quotient map B̃ → B̃/(rad(B̃)).)

(ii) If π : B̃ → B(X) is a continuous representation of B̃ and if C is a
Jordan morphism for which π(C(B)) is either dense ([29], 6.3.7) or else a subspace
for which the extended enveloping Lie-ring is again a ring ([16]), then π ◦ C is
either a homomorphism or an anti-morphism.

Proof. (i) Given any irreducible representation π of B̃, π◦C is either a homo-
morphism or an anti-morphism. Hence, for each a, b ∈ B, π necessarily annihilates
C(ab+ba)−C(a)C(b)−C(b)C(a). It follows that C(ab+ba)−C(a)C(b)−C(b)C(a)
belongs to rad(B̃) for each a, b ∈ B. For the sake of argument we may therefore
suppose that rad(B̃) = {0}. Since C is then a Jordan morphism we have that
C(a) = C(I)C(a)C(I) for all a ∈ B (see for example the identities on p. 212 of
[6]). Thus C(I) acts as a multiplicative identity on C(B). Alongside the fact that
for each irreducible representation π of B̃, π ◦ C(B) is an irreducible subalgebra
of B(Xπ), this implies that π(I) = π(C(I)) for every such representation. Thus
I− C(I) ∈ rad(B̃) = {0}.

(ii) Let π : B̃ → B(Xπ) be an irreducible representation such that π ◦ C(B)
contains the finite ranks and such that the (extended) enveloping Lie-ring of π ◦
C(B) is again a ring ([16], pp. 493, 495). This ring is then primitive with minimal
ideals ([16], p. 489). But then π ◦C is a Lie (anti-)morphism and hence an (anti-)
morphism by Theorem 21 in [16]. To see this, observe that in the anti-morphism
case

π ◦ C(ab) =
1
2
(π ◦ C([a, b] + (ab + ba)))

=
1
2
([π ◦ C(b), π ◦ C(a)] + (π ◦ C(a)π ◦ C(b) + π ◦ C(b)π ◦ C(a)))

= π ◦ C(b) · π ◦ C(a).

The remaining case follows from Section 6.3.7 of [29].

The above proposition suggests a connection with identity-preserving Jordan-
morphisms in the non-commutative setting. A problem we face in this setting is
that the Banach algebra H∞(M) need not be semi-simple. Consider for example
the following:

Example 3.3. Let M = M2(C) and let H∞(M) =
{[

a b
0 c

]
: a, b, c ∈ C

}
.

The only maximal ideal (and hence radical) of H∞ would seem to be
{[

0 x
0 y

]
:

x, y ∈ C} . The algebra M = M2(C) already acts irreducibly on C2 whereas

H∞(M) does not. (It leaves the subspace
{[

w
0

]
: w ∈ C

}
invariant.) Thus

the non-commutative version of Section II.4.1 from [12] fails in that not every
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irreducible representation of L∞(M) engenders an irreducible representation of
H∞(M).

To circumvent any potential difficulties arising from the possible lack of semi-
simplicity of H∞(M) we take our cue from Proposition 3.2 and opt to rather
try and describe composition operators on non-commutative Hp-spaces in terms
of identity-preserving Jordan morphisms. In the commutative setting it is clear
that if we are given a homomorphism C : B → B̃ and a non-zero multiplicative
functional δ : B̃ → C (irreducible representation), π ◦ C will automatically be
an irreducible representation of B (non-zero multiplicative functional) provided C
preserves the identity. By analogy with this setting we may therefore dispense
with the requirement of irreducibility of π ◦ C in the non-commutative setting
without compromising anything in the commutative. A plausible definition of a
composition operator on H∞(M) would then be an identity preserving contractive
Jordan morphism C on H∞(M) such that:

(i) for any irreducible representation π of H∞(M), π◦C is either a morphism
or an anti-morphism;

(ii) for some 1 6 p < ∞, π ◦ C extends continuously to Hp(M) whenever π
extends continuously to Hp(M).

The subset of all such Jordan morphisms which extend continuously to con-
tinuous operators Hp(M) → Hp(M) may then justifiably be regarded as compo-
sition operators from Hp(M) to Hp(M). Note that in this framework the expec-
tation Φ associated with H∞(M) also qualifies as a “composition operator” from
Hp(M) to Hp(M) for each 1 6 p 6 ∞ ([24], 3.1, 3.2, 3.9).

Though not immediately obvious there is a measure of positivity encoded in
the above definition of composition operators. If indeed our Jordan morphism C is
contractive then for any state ω of M, ω ◦C is the restriction of a state on M. To
see this observe that if C is identity-preserving and contractive then for any state
ω of M we have ‖ω ◦C‖ 6 1 and ω ◦C(I) = 1. Any norm-preserving extension νω

of ω ◦ C (à la Hahn-Banach) will therefore be a state ([6], 2.3.11). In particular,
the restriction of C to D = A ∩A∗ = L∞(D) then proves to be order-preserving.
Now, let B be a linear complement of D in A = H∞(M). With B∗ denoting the
set of all elements of M appearring as adjoints of elements of B, it is an exercise
to show that then A∗ = D ⊕ B∗ and hence that A + A∗ = B ⊕ D ⊕ B∗. Given
a contractive identity preserving Jordan morphism C : H∞(M) → M, we may
therefore extend C to a map C̃ on all of A+A∗ by setting C̃ = C on A = B ⊕D
and defining the action on B∗ by C̃(a) = C(a∗)∗ for every a ∈ B∗. Since C is order-
preserving on D, it follows that C̃ as defined above preserves adjoints. In fact,
C̃ is even order-preserving and contractive on A + A∗. Each identity-preserving
contractive Jordan-morphism C on H∞(M) = A therefore appears as a restriction
of a positive map on A+A∗. To see that C̃ is in fact positive, let ω be a state of
M and νω the afore-mentioned state-extension of ω ◦ C to M. For each a ∈ B∗,
we then necessarily have

νω(a) = νω(a∗) = ω ◦ C(a∗) = ω(C(a∗)∗) = ω ◦ C̃(a)

(since a∗ ∈ B). Thus νω|A+A∗ = ω ◦ C̃. Since C̃ maps states onto restrictions
of states, it is order preserving and contractive. (To see that C̃ is contractive,
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observe that if we are given a ∈ A+A∗ we may select ω so that ω(C̃(a)) = ‖C̃(a)‖
whence ‖C̃(a)‖ 6 ‖ω ◦ C̃‖ ‖a‖ = ‖a‖.)

4. A NON-COMMUTATIVE LITTLEWOOD SUBORDINATION PRINCIPLE

Throughout this section we will assume M to be a von Neumann algebra with
finite normalised faithful normal trace τ . Our primary task in this section is to
obtain a non-commutative version of Proposition 2.4. As alluded to earlier, such a
result may justifiably be regarded as a (noncommutative) operator theoretic ver-
sion of the Littlewood Subordination Principle (see Remark 2.5). The “lemmas”
that ultimately prove to be vital in affording such a result are the non-commutative
factorisation results of Marsalli and West ([24], 4.2 and 4.3). To obtain the pro-
posed theorem we will however require sharper versions of these results.

Theorem 4.1. ([24]) Let 1 6 p 6 ∞. For any ε > 0 and z ∈ Lp(M) there
exists hi ∈ Hp(M) and vi ∈M with i = 1, 2 such that:

(i) z = h1v1 = v2h2;
(ii) ‖vi‖∞ 6 1;
(iii) ‖hi‖p < (1 + ε)‖z‖p;
(iv) hi is invertible and h−1

i ∈ H∞;
(v) if indeed z ∈ L∞(M) as well, then hi ∈ H∞.

Proof. All but the final statement is contained in 4.2 of [24]. We therefore
need only show how this may be obtained. First let 2 6 p 6 ∞. Observe that in
the notation of the proof in [24] we have that |y|2 = y∗y = δ2I + z∗z = δ2I + |z|2
and hence that |y|2 ∈ L∞(M) if z ∈ L∞(M) = M. But then surely |y| ∈ L∞(M)
and therefore y ∈ L∞(M). As noted in the proof of 4.2 in [24], hi = a−1

i and y
have the same singular function which by 2.5 (i) in [10] is sufficient to imply that
a−1

i = hi ∈ L∞(M) if y ∈ L∞(M).
Now suppose 1 6 p < 2. Given the polar decomposition z = v|z| =

v|z|1/2|z|1/2 we have v|z|1/2, |z|1/2 ∈ L2p(M) since z ∈ Lp(M). Thus since 2p > 2
it follows from the first part of the proof that |z|1/2 = w2g2 say with w2 ∈ M1

(the unit ball of M), g2 ∈ H2p, g−1
2 ∈ H∞ and ‖g2‖2p < (1 + ε)1/2‖ |z|1/2‖2p =

(1 + ε)1/2‖z‖1/2
p . Moreover, if z ∈ L∞(M), then surely |z|1/2 ∈ L∞(M) in which

case g2 may be selected so that g2 ∈ H∞ as well.
Now since v|z|1/2 ∈ L2p(M) with w2 ∈ L∞(M), we have v|z|1/2w2 ∈

L2p(M) with v|z|1/2w2 ∈ L∞(M) whenever z = v|z| ∈ L∞(M). Thus, again by
the first part, we may select w1 and g1 so that v|z|1/2w2 = w1g1 with ‖w1‖∞ 6 1,
g1 ∈ H2p, g−1

1 ∈ H∞, ‖g1‖2p < (1 + ε)1/2‖z‖1/2
p , and with g1 ∈ H∞ if in addition

z ∈ L∞(M). Arguing as in 4.2 of [24], observe that if z ∈ L∞(M) ∩ Lp(M) we
then have by 4.1 of [24] and the above that h2 = g1g2 ∈ Hp ∩H∞.

With the above modification of 4.2 of [24] at our disposal, we can now suitably
modify the non-commutative Riesz Factorisation Theorem of [24]. In this regard,
note that apart from the additional statement regarding H∞ in the present version,
the case r = 1 boils down to 4.3 of [24].
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Theorem 4.2. (Riesz Factorisation Theorem) Let 1 6 r, p, q 6 ∞ be given
with 1

r = 1
p + 1

q . Given f ∈ Hr and ε > 0, there exist g ∈ Hp and h ∈ Hq such
that f = gh and ‖f‖r 6 ‖g‖p‖h‖q < (1 + ε)‖f‖r. If in addition f ∈ H∞ we may
select g and h so that g, h ∈ H∞. If f ∈ H1

0 we can arrange that g ∈ Hp
0 . If

f ∈ Hr
0 and 1 < p 6 ∞ we can arrange that either g ∈ Hp

0 or h ∈ Hq
0 .

Proof. The proof of 4.3 in [24] generalises readily to the present context. To
see the statement regarding H∞, let f ∈ Hr ∩ H∞ ⊂ Lr(M) ∩ L∞(M) and let
p 6= r. (In the case p = r we let f = g and h = I). If f = v|f | = v|f |r/p|f |r/q is
the polar decomposition of f , we then surely have x = v|f |r/p ∈ Lp(M)∩L∞(M)
and y = |f |r/q ∈ Lq(M) ∩ L∞(M). By Theorem 4.1 we may then select v ∈ M
and h ∈ Hq ∩H∞ such that ‖v‖∞ 6 1, h−1 ∈ H∞ and ‖h‖q 6 (1 + ε)‖y‖q. Then
f = xy = (xv)h = gh with g = xv ∈ L∞(M) if f ∈ H∞. The rest of the proof
now follows as in 4.3 of [24].

As a first step towards a non-commutative subordination principle we present
what is effectively a non-commutative version of Proposition 2.1.

Theorem 4.3. Let B be a Banach algebra and π : H∞(M) → B a continu-
ous homomorphism or anti-morphism. Then the following are equivalent:

(i) For some 1 6 p < ∞, π extends ‖ · ‖p-continuously to a continuous map
π : Hp(M) → B;

(ii) For each 1 6 p < ∞, π extends ‖ · ‖p-continuously to a continuous map
π : Hp(M) → B.

The above equivalence holds in particular for (irreducible) (anti-)represen-
tations of H∞(M).

Proof. For the sake of argument, let π : H∞(M) → B be a homomorphism.
It suffices to show that for some arbitrarily given 1 < p < ∞, π remains continuous
when H∞(M) = A is equipped with the norm ‖ · ‖p if and only if the same
statement is valid for the norm ‖ · ‖1.

First of all, let 1 < p < ∞ be given and suppose that

(4.1) ‖π(a)‖ 6 ‖π‖p‖a‖p for all a ∈ H∞(M).

If in fact p > 2, then given any f ∈ H∞(M) and any ε > 0 we may apply
Theorem 4.2 to obtain g, h ∈ H∞(M) so that f = gh with ‖g‖p‖h‖p 6 (1 +
ε)‖f‖p/2. But then by (4.1)

‖π(f)‖ = ‖π(g)π(h)‖ 6 ‖π‖2p‖g‖p‖h‖p 6 ‖π‖2p(1 + ε)‖f‖p/2.

Since both f and ε > 0 were arbitrary, it follows that if (4.1) holds and if 2 6 p,
then

(4.2) ‖π(a)‖ 6 ‖π‖2p‖a‖p/2 for all a ∈ H∞(M).

Thus, on applying this process inductively if necessary, it follows that we may
then assume that (4.1) holds for some p with 1 6 p < 2. But since τ(I) = 1,
Hölder’s inequality then ensures that L2(M) injects continuously into Lp(M) and
hence that H2(M) injects continuously into Hp(M). It follows that (4.1) holds
for p = 2. But then by (4.2) we must have that

(4.3) ‖π(a)‖ 6 ‖π‖22‖a‖1 for all a ∈ H∞(M)
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as required. Conversely, note that by Hölders inequality each Hp(M), 1 6 p 6 ∞,
injects into H1(M). Thus, if (4.3) holds, then for each 1 6 p < ∞ we will have
that

‖π(a)‖ 6 ‖π‖1‖a‖p for all a ∈ H∞(M).

Remark 4.4. It is tempting to conjecture that if B is a C∗-algebra the above
result will even hold for Jordan-morphisms. In this regard observe that if as in the
proof we have f = gh with π a Jordan-morphism, we would still be able to estimate
‖π(f)‖ = ‖π(gh)‖ in terms of ‖π(g)‖ ‖π(h)‖ if indeed π(gh − hg) is normal. To
see this observe that by Theorem 1 in [16] we would then have

‖π(gh)‖ =
∥∥∥1

2
(π([g, h]) + π(gh + hg))

∥∥∥ =
1
2
(‖π([g, h])‖+ ‖π(g)π(h) + π(h)π(g)‖)

6
1
2
(‖π([g, h])2‖1/2 + 2‖π(g)‖ ‖π(h)‖

=
1
2
‖[π(g), π(h)]2‖1/2 + ‖π(g)‖ ‖π(h)‖ 6 2‖π(g)‖ ‖π(h)‖.

(Here normality is used to ensure that ‖π([g, h])‖ = ‖π([g, h])2‖1/2.)

With Theorem 4.3 now at our disposal, it is clear that the suggested definition
of a composition operator in Section 3 is unambiguous. We proceed to verify a
series of lemmas with the eventual goal of obtaining the promised non-commutative
version of Proposition 2.4.

Lemma 4.5. Let ϕ : B → C be a Jordan-morphism, B a Banach algebra,
and C a C∗-algebra in its reduced atomic representation ([18], p. 740). If ϕ has the
property that for each irreducible representation π of C, π ◦ϕ is either a homomor-
phism or an anti-morphism, then there exists a projection e ∈ C′∩C′′ such that ϕe

is a homomorphism and ϕI−e an anti-morphism. In addition, we then have that∣∣∣∣ϕ( k∏
n=1

hn

)∣∣∣∣p 6

∣∣∣∣ k∏
n=1

ϕ(hn)
∣∣∣∣p +

∣∣∣∣ k∏
n=1

ϕ(hk+1−n)
∣∣∣∣p

for any 0 < p < ∞ and any finite set of elements h1, h2, . . . , hk in B.

Proof. Let P0 be a maximal set of pure states for which the associated ir-
reducible representations are pairwise inequivalent ([18], 10.3.7). (These generate
a reduced atomic representation of C.) Corresponding to each ω ∈ P0, we have
a “support projection” eω ∈ C′ ∩ C′′ with eωCeω a ∗-isomorphic copy of πω(C),
eωeρ = 0 if ω 6= ρ, and I =

∑
ω∈P0

eω. (For details see for example Proposition 6 in

[22].) Thus, by the hypothesis, it follows that for each ω ∈ P0, eωϕeω is either a
homomorphism or an anti-morphism. Hence, let e be the sum of all the eω’s for
which eωϕeω is a homomorphism. Since ϕ =

∑
ω∈P0

eωϕeω, the first part follows.

Now let h1, . . . , hk ∈ B be given. By the above

(4.4) ϕ

( k∏
n=1

hn

)
=

( k∏
n=1

ϕ(hn)
)

e +
( k∏

n=1

ϕ(hk+1−n)
)

(I− e).
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For any element a ∈ C, it is an exercise to show that |a|2n = |ae|2n + |a(I− e)|2n

for all n ∈ N whence q(|a|2) = q(|ae|2)e+ q(|a(I−e)|2)(I−e) for all polynomials q.
Selecting suitable polynomials it follows from the Stone-Weierstrass theorem and
the functional calculus for positive elements that in fact |a|p = |ae|p + |a(I− e)|p
where p is an arbitrarily given positive real. Thus, it follows from (4.4) above that∣∣∣∣ϕ( k∏

n=1

hn

)∣∣∣∣p =
∣∣∣∣ k∏

n=1

ϕ(hn)
∣∣∣∣pe +

∣∣∣∣ k∏
n=1

ϕ(hk+1−n)
∣∣∣∣p(I− e)

6

∣∣∣∣ k∏
n=1

ϕ(hn)
∣∣∣∣p +

∣∣∣∣ k∏
n=1

ϕ(hk+1−n)
∣∣∣∣p

as required.

Lemma 4.6. Let 1 6 p < ∞ be given and let ϕ : H∞(M) → H∞(M) be
a Jordan morphism such that π ◦ ϕ is either a morphism or an anti-morphism
for each irreducible representation π of L∞(M). If ϕ extends to a bounded map
ϕ : Hp(M) → Hp(M) with norm ‖ϕ‖p, then for any integer 0 < k 6 p, ϕ extends
to a map ϕ : Hp/k(M) → Hp/k(M) with norm not exceeding 2(‖ϕ‖p)k. If in
fact ϕ is either a morphism or an anti-morphism, the norm of the induced map
ϕ : Hp/k(M) → Hp/k(M) does not exceed (‖ϕ‖p)k.

Proof. We prove only the one statement. Since the statement regarding the
moduli in Lemma 4.5 is independent of the representation we conclude that∣∣∣∣ϕ( k∏

n=1

hn

)∣∣∣∣q 6

∣∣∣∣ k∏
n=1

ϕ(hn)
∣∣∣∣q +

∣∣∣∣ k∏
n=1

ϕ(hk+1−n)
∣∣∣∣q

for all 0 < q < ∞ and all h1, . . . , hk ∈ H∞(M).
Now let ε > 0 and f ∈ H∞(M) be given. On applying Theorem 4.2 in-

ductively we may select h1, h2, . . . , hk ∈ H∞(M) such that f = h1h2 · · ·hk with
k∏

n=1
‖hn‖p < (1+ε)k−1‖f‖p/k. Thus, on applying the above inequality for the case

q = 1, it follows from Lemma 4.6 and 4.1 of [24] that

‖ϕ(f)‖p/k =
∥∥∥∥ϕ

( k∏
n=1

hn

)∥∥∥∥
p/k

6

∥∥∥∥ ∣∣∣∣ k∏
n=1

ϕ(hn)
∣∣∣∣ +

∣∣∣∣ k∏
n=1

ϕ(hk+1−n)
∣∣∣∣ ∥∥∥∥

p/k

6

∥∥∥∥ k∏
n=1

ϕ(hn)
∥∥∥∥

p/k

+
∥∥∥∥ k∏

n=1

ϕ(hk+1−n)
∥∥∥∥

p/k

6 2
k∏

n=1

‖ϕ(hn)‖p

6 2(‖ϕ‖p)k
k∏

h=1

‖hn‖p 6 2(‖ϕ‖p)k(1 + ε)k−1‖f‖p/k.

Since ε > 0 was arbitrary, the required estimate holds on the dense subspace
H∞(M) of Hp/k(M).
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Remark 4.7. If as in the case of the spaces Hp(D) each irreducible repre-
sentation of L∞(M) restricts to an irreducible representation of H∞(M) ([12],
II.4.1), the conditions imposed on the previous lemma would of course fall within
the ambit of the proposed definition of “composition operators” in Section 3. How-
ever, as was pointed out earlier, this is not generally true in the non-commutative
context (see Example 3.3).

A similar observation to that in Remark 4.4 suggests that possibly Lemma 4.6
may be extended to general Jordan morphisms ϕ : H∞(M) → H∞(M).

In the following lemma the requirement of normality is an all too obvious
restriction. In settings where the statement regarding the positive extension of
contractive Jordan morphisms on H∞(M) is automatically true, this alternative
goes a long way to obviating this restriction. We will ultimately see that this
extension property holds in particular for the spaces Hp(D).

Lemma 4.8. Let ϕ : H∞(M) → H∞(M) be a continuous identity preserv-
ing Jordan morphism extending continuously to a map ϕ : Hp(M) → Hp(M),
1 6 p < ∞, with norm ‖ϕ‖p. For any k ∈ N and any a ∈ H∞(M) such that ϕ(a)
is normal we have that

(4.5) ‖ϕ(a)‖pk 6 (‖ϕ‖p)1/k‖a‖pk.

If 1 < p < ∞ and if in addition ϕ is contractive on H∞(M), it extends to a
unique bounded hermitian map ϕ̃ on Lp(M) which is positive on the dense subspace
A+A∗ = H∞(M)+H∞(M)∗ of Lp(M). If ϕ̃ is positive on all of Lp(M) we get

(4.6) ‖ϕ(a)‖p2k 6
√

2(‖ϕ̃‖p)1/2k

‖a‖p2k

for all k ∈ N and all a ∈ H∞(M). If moreover ϕ̃ satisfies the condition

(P) ϕ̃(|a∗|2
k

+ |a|2
k

) > |ϕ̃(a∗)|2
k

+ |ϕ̃(a)|2
k

for all k ∈ N and all a ∈M, we obtain the estimate

‖ϕ(a)‖p2k 6 (2‖ϕ̃‖p)1/2k

‖a‖p2k , a ∈ H∞(M), k ∈ N.

(Note: All positive maps on C∗-algebras with ϕ̃(I) 6 I satisfy condition
(P) for the case k = 1 (see 7.3 in [37]). The full condition (P) does however
fail for general positive maps and seems in some way to be connected to the
decomposability of the map in question. For an example of a positive map which
fails condition (P), we refer to Choi’s example of an indecomposable positive map
on the algebra of 3× 3 complex matrices ([7] and cf. [31], p. 294). This map fails
the inequality for the case k = 2 and the matrix with α22 = 4, α13 = 1, and all
other entries zero.)
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Proof. Let a ∈ H∞(M) be given such that ϕ(a) is normal. Then for any
k ∈ N we have

‖ϕ(a)‖pk = (‖ |ϕ(a)|k‖p)1/k = (‖ |ϕ(a)k| ‖p)1/k = (‖ϕ(ak)‖p)1/k

6 (‖ϕ‖p‖ak‖p)1/k 6 (‖ϕ‖p)1/k‖a‖pk.

(The last inequality follows from a repeated application of Hölder’s inequality.)
Now let 1 < p < ∞ and let ϕ be an identity-preserving contractive Jordan
morphism on H∞(M). The fact that ϕ uniquely extends to a positive map on
H∞(M) + H∞(M)∗ was discussed at the end of Section 3. In particular, ϕ then
acts positively on the von Neumann algebra D = A ∩ A∗. Now since D appears
as a dense subspace of Lp(D) and since Hp(M) = Hp

0 (M) ⊕ Lp(D) ([24], 6.2),
the continuous action of ϕ on Hp(M) (and hence also on Lp(M)) ensures that
the unique extension of ϕ to Hp(M) acts positively on Lp(D). The extension of
ϕ to a hermitian map ϕ̃ on Lp(M) can now be done along the same lines as the
construction in Section 3 by setting

ϕ̃(a) = ϕ(a∗)∗, a ∈ (Hp
0 )∗

and applying 6.2 of [24]. Since this construction canonically contains the con-
struction in Section 3, ϕ̃ constructed as above will on restriction to A+A∗ yield
precisely the map in Section 3. The ‖ · ‖p-boundedness of ϕ̃ follows from the
‖ · ‖p-boundedness of ϕ, of the relevant projections in 6.2 of [24], and of the
conjugate-linear map a → a∗.

Given 1 6 q < ∞ recall that the symmetric q-modulus ([20]) of an element
a ∈M is given by

|a|q =
(1

2
(|a|q + |a∗|q)

)1/q

.

Observe that |a|q 6 2|a|qq whence |a| 6 21/q|a|q. If indeed ϕ̃ acts positively on all
of Lp(M) it will surely map ‖ · ‖∞-boundedly M into M (0 6 a 6 ‖a‖∞I ⇒ 0 6
ϕ̃(a) 6 ‖a‖∞I). By Størmer’s version of the generalized Schwarz inequality ([37],
7.3) we also have

ϕ̃(a)∗ϕ̃(a) + ϕ̃(a)ϕ̃(a)∗ 6 ϕ̃(a∗a + aa∗), a ∈M.

An inductive application of this fact in the context of the symmetric 2-modulus
now yields

‖ |ϕ̃(a)|2‖p2k 6 (‖ϕ̃(|a|2
k

2 )‖p)1/2k

, a ∈M, k ∈ N.

To see that the above inequality is generally valid observe that since the p-norm
respects order and since ϕ̃(b)2 6 ϕ̃(b2) for any b ∈ M+, it follows for any fixed
k ∈ N and any b ∈ M+ that ‖ϕ̃(b)‖p2k = (‖ϕ̃(b)2‖p2k−1)1/2 6 (‖ϕ̃(b2)‖p2k−1)1/2.
Proceeding inductively we see that

‖ϕ̃(b)‖p2k 6 (‖ϕ̃(b2k

)‖p)1/2k

, b ∈M+, k ∈ N.

Now since |ϕ̃(a)|22 = 1
2 (|ϕ̃(a)|2+|ϕ̃(a∗)|2) 6 1

2 ϕ̃(|a|2+|a∗|2) = ϕ̃(|a|22) for all a ∈M,
it is clear that then ‖ |ϕ̃(a)|2‖p2k = (‖ |ϕ̃(a)|22‖p2k−1)1/2 6 (‖ϕ̃(|a|22)‖p2k−1)1/2. On
taking b = |a|22 in the previous inequality and combining it with the above, it now
follows that

‖ |ϕ̃(a)|2‖p2k 6 ((‖ϕ̃
(
(|a|22)2

k−1
)‖p)1/2k−1)1/2 = (‖ϕ̃(|a|2

k

2 )‖p)1/2k

, a ∈M, k ∈ N
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as required.
Consequently, given a ∈ H∞(M), positivity of ϕ̃ and the fact that |ϕ(a)| 6√

2|ϕ̃(a)|2 yields

‖ϕ(a)‖p2k = ‖ |ϕ(a)| ‖p2k 6
√

2‖ |ϕ̃(a)|2‖p2k

6
√

2(‖ |ϕ̃(a)|2
k

2 ‖p)1/2k

6
√

2(‖ϕ̃(|a|2
k

2 )‖p)1/2k

6
√

2(‖ϕ̃‖p)1/2k

‖ |a|2‖p2k 6
√

2(‖ϕ̃‖p)1/2k

‖a‖p2k .

(The final inequality is a consequence of 4.10 from [20] and the fact that p2k > 2.)
Observing that |a| 6 21/2k |a|2k , a similar proof using |a|2k instead of |a|2 will
suffice in the case that ϕ̃ satisfies condition (P).

The positivity requirement in the previous lemma could possibly be relaxed
slightly. If the hermitian extension ϕ̃ appears as the difference of two positive maps,
similar estimates may be obtained by individually applying the lemma to each of
the positive components of ϕ̃. Now, if ϕ̃ linearly maps L∞(M) into L∞(M), it is
necessarily ‖·‖∞-continuous on L∞(M) by the closed graph theorem and hence in
this case the question regarding the achievability of such a decomposition reduces
to the L∞ case. (That the induced map has a closed graph may be seen from
the continuity of ϕ̃ on Lp(M) and the fact that L∞(M) continuously injects into
Lp(M)). (See also Theorem 4.14.)

Lemma 4.9. Let 1 < p 6 ∞ be given and let (qn) be a sequence of reals

in [1, p[ increasing to p. Then a ∈ Lp(M) if and only if a ∈
∞⋂

n=1
Lqn(M) and

sup
n
‖a‖qn

< ∞. In this case lim
n
‖a‖qn

= ‖a‖p.

Proof. Since in the present context τ(I) = 1, Hölder’s inequality ([10], 4.2)
suffices to show that Lp(M) contractively injects into each of the Lqn(M)’s thereby
establishing the one direction of the first statement. For the converse as well as
the final statement it is evident from 2.5 (i), 2.6 and 2.8 of [10] that the general
case follows from the Lp[0, 1] setting where it is probably fair to say that results
of this nature are “standard”.

Lemma 4.10. Let 1 6 p < ∞ be given and let (qn) be a sequence of reals

in ]p,∞[ decreasing to p. Given a ∈
∞⋃

n=1
Lqn(M) ⊂ Lp(M), we have that ‖a‖p =

lim
n
‖a‖qn

.

Proof. Observe that Lqn(M) ⊂ Lqn+1(M) ⊂ Lp(M) for each n ∈ N since
τ(I) = 1. Once more an application of 2.6 and 2.8 of [10] reduces this to the case
Lp[0, 1] where such results are “standard”.
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Lemma 4.11. Let p ∈]0,∞[ be given. There exist sequences (km), (nm),
(`m) ⊂ N such that 2m

km
decreases to p and 2nm

`m
increases to p.

Proof. Given p > 0 write 1
p in binary form, i.e.

1
p

=
∑
i6n

εi2i,

where n is the largest integer such that 1
p > 2n and εi ∈ {0, 1} for each integer

i 6 n. Given m > max{−n, 0}, the terms
∑

−m6i6n

εi2i clearly increase to 1
p as

m →∞ and can moreover easily be seen to be of the form∑
−m6i6n

εi2i =
km

2m

where km ∈ N by merely writing the sum over the common denominator 2m.
(More precisely km =

∑
−m6i6n

εi2i+m.)

Thus 2m

km
as constructed above decreases to p. To see the second statement

let (qm) ⊂]0, p[ be any sequence of distinct reals increasing to p. On applying the
first part we see that for any m > 1 we may find nm, `m ∈ N so that

qm 6
2nm

`m
< qm+1.

The result follows.

With all the necessary lemmas now at our disposal we are finally in a position
to verify the promised extension of Proposition 2.4. A comparison of the next two
results clearly reveals that in the absence of commutativity a measure of positivity
(of the map ϕ̃) is required to afford a result analogous to Proposition 2.4. This
implicit reliance on positivity is moreover quite natural in that it reflects the state
of affairs in the classical case (see Theorem 4.14).

Theorem 4.12. Let ϕ : H∞(M) → H∞(M) be a contractive identity pre-
serving Jordan morphism such that:

(α) π ◦ ϕ is either a homomorphism or anti-morphism for each irreducible
representation of L∞(M) ⊃ H∞(M); and

(β) for some 1 < p < ∞, ϕ extends to a bounded map ϕ : Hp(M) → Hp(M).
If the canonical hermitian extension ϕ̃ to all of Lp(M) (see Lemma 4.8) is even
positive, then for any other 1 6 q < ∞, ϕ will induce a unique closed operator
ϕ : D(ϕ) ⊂ Hq(M) → Hq(M) with the properties that:

(i) D(ϕ) ⊃
⋃

r>q
Hr(M);

(ii) for any r > q, ϕ restricts to a bounded map ϕ : Hr(M) → Hq(M);
(iii) for any q > s > 1, ϕ extends uniquely to a bounded map

ϕ : Hq(M) → Hs(M).
If ϕ̃ : Lp(M) → Lp(M) satisfies the slightly stronger condition (P) in Lemma 4.8,
then ϕ : Hq(M) → Hq(M) itself is a bounded everywhere defined operator.
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Proof. Let 1 < q < ∞ be given and suppose that ϕ̃ : Lp(M) → Lp(M) is
positive. (Apart from the fact that (iii) is vacuously satisfied if q = 1, the proof
for this case is entirely analogous to the one presently under consideration.) Now
for any k,m ∈ N such that p2m

k > 1 it follows from Lemmas 4.6 and 4.8 that ϕ
induces a unique bounded map

ϕ : Hvp(M) → Hvp(M), where v =
2m

k

with norm
‖ϕ‖vp 6 2(‖ϕ‖p2m)k 6 2(

√
2)k(‖ϕ̃‖p)k/2m

.

Therefore, it follows from Lemma 4.11 and for example [32], and cf. (4.1) in [24]
that for a suitably selected sequence (vm) of rationals decreasing to q

p we have
that ϕ extends to a bounded map ϕ : Hpvm → Hpvm for each m ∈ N. But since
pvm > q, ϕ in fact induces a unique bounded map ϕ : Hpvm → Hq for each m ∈ N.
Now recall that in this setting Hu(M) injects into Hw(M) whenever u > w. It
therefore follows from what we have just verified that for each r > q, ϕ induces
a unique bounded map from Hr(M) into Hq(M) and hence a linear map from⋃
r>q

Hr(M) ⊂ Hq(M) into Hq(M). (One need only note that for each r > q it is

possible to find some pvm with r > pvm > q and argue from there.) If ϕ̃ satisfied
property (P) then for say vm = 2m

km
we would have

‖ϕ‖pvm
6 2(‖ϕ‖p2m)km 6 2(2‖ϕ̃‖p)km/2m

= 2(2‖ϕ̃‖p)1/vm .

Now since ‖ϕ̃‖p > 1 (to see this note that ϕ̃(I) = I) and 1
vm

increases to p
q , it

follows that (2‖ϕ̃‖p)1/vm increases to (2‖ϕ̃‖p)p/q. Thus if ϕ̃ satisfies property (P)
then for each pvm > q and each a ∈ Hpvm , the induced bounded map ϕ : Hpvm →
Hpvm satisfies the inequality

‖ϕ(a)‖q 6 ‖ϕ(a)‖pvm
6 2(2‖ϕ̃‖p)p/q‖a‖pvm

.

If now we pass to the dense subspace
∞⋃

m=1
Hpvm =

⋃
r>q

Hr of Hq and apply

Lemma 4.10, we see that the aforementioned linear map from this subspace into
Hq will in fact be ‖ · ‖q − ‖ · ‖q continuous if ϕ̃ : Lp → Lp satisfies property (P).

It remains to show that in general positivity of ϕ̃ : Lp → Lp is sufficient
to guarantee the validity of (iii) and the closability of the induced linear map
from

⋃
r>q

Hr ⊂ Hq into Hq. However, closability of this map proves to be a

consequence of the fact that for any q > s > 1, ϕ extends uniquely to a bounded
map ϕ : Hq → Hs. To see this latter fact apply Lemma 4.11 to find a rational
v = 2m

k so that q > pv > s. By Lemmas 4.6 and 4.8, ϕ induces a unique bounded
map from Hpv into Hpv. Since in addition Hq injects continuously into Hpv and
Hpv continuously into Hs, this yields the required bounded map ϕ : Hq → Hs.
(Uniqueness follows from the density of H∞ and the fact that this map is an
extension of the Jordan morphism ϕ : H∞ → H∞.)
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Theorem 4.13. Let M be commutative and ϕ : H∞ → H∞ a contractive
identity preserving homomorphism. If for some 1 6 p < ∞, ϕ extends to a bounded
map ϕ : Hp → Hp, it does so for each 1 6 p < ∞.

Proof. In this setting all elements of H∞ are normal. The proof is therefore
essentially a simplification of the proof of Theorem 4.12 using the normality criteria
in Lemma 4.8 rather than positivity.

In hindsight the applicability of Theorem 4.12 is directly dependent on our
ability to verify the positivity criteria. In this regard, it would therefore be useful
to know if the map ϕ̃ in Lemma 4.8 acts positively on all of Lp(M) for 1 <
p < ∞ instead of just on A + A∗. Had A + A∗ been a subalgebra instead of
a subspace an appeal to something like the Kaplansky density theorem would
have been conceivable. As it is, we have to content ourselves with the following
observation regarding the case Hp(D) in support of the suspicion that ϕ̃ may
indeed be order-preserving on all of Lp(M).

Theorem 4.14. Let 1 6 p < ∞ and let CT : Hp(D) → Hp(D) be a compo-
sition operator induced by the analytic map T : D → D. Then CT extends uniquely
to an order-preserving map C̃T on Lp(T).

Proof. First assume that T (0) = 0 and that |T (z)| < 1 almost everywhere
on T. Then CT extends to the integral operator KT on Lp(T) with kernel

k(eis, eit) =
1− |T (eis)|2

|eit − T (eis)|2

(see [33]). By the assumption on T it is clear that k(eis, eit) > 0 almost every-
where and hence that KT is order-preserving on Lp(T). By the uniqueness of the
hermitian extension we must have C̃T = KT .

More generally, if all we know is that T (0) = 0, it follows from Proposition 1
of [33] that C̃T exists (even if p = 1) and is the strong limit of order-preserving in-
tegral operators and hence itself order-preserving. (To see this, note that for every
f ∈ Lp(T) and g ∈ Lp∗(T) with f, g > 0 we have (C̃T (f), g) = lim

r↗1
(KrT (f), g) > 0.)

For general T we bring the Möbius transformation

S(z) =
T (0)− z

1− T (0)z

into play. With S as above, ST (0) = 0 and S2T = T . (For details see Prerequisites
in [17].) Hence CT = CST CS . By the uniqueness of the hermitian extension we
must have C̃T = C̃ST C̃S provided C̃S exists. Now, since by the first part of the
proof C̃ST exists and is order-preserving, we need only show that C̃S exists and
is order-preserving to conclude the proof. But since S maps ∂D onto ∂D in an
analytic way, S in fact induces a composition operator on Lp(T) by means of the
formula

eit → f(S(eit))
by 2.1.2 in [35]. This operator can be shown to extend CS in a natural way
(consider radial limits; [15], pp. 38, 39, 136) and is order-preserving. (To see this,
note that f(S(eit)) > 0 for all t whenever f(eit) > 0 for all t since S(∂D) = ∂D.)
This operator is therefore nothing but the unique hermitian extension C̃S of CS .
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In concluding this section we present a generalisation of the fact that a
bounded map C : Hp(D) → Hp(D) is a composition operator if and only if it is
multiplicative.

Proposition 4.15. Let 1 6 p < ∞ be given and let ϕ : Hp(M) → Hp(M)
be continuous and multiplicative in the sense that ϕ(ab+ba) = ϕ(a)ϕ(b)+ϕ(b)ϕ(a)
whenever a, b, ab, and ba all belong to Hp(M). Given any a ∈ H∞(M) ⊂ Hp(M),
we have that ϕ(a) ∈ H∞(M) whenever ϕ(a) is normal in which case ‖ϕ(a)‖∞ 6
‖a‖∞. In particular, if M is commutative ϕ restricts to a contractive, homomor-
phism from H∞(M) into H∞(M).

Proof. By the hypothesis we have ϕ(an) = ϕ(a)n for all n ∈ N whenever
a ∈ H∞(M). If ϕ(a) is normal, we may therefore argue as in the first part of
the proof of Lemma 4.8 to see that then ‖ϕ(a)‖pn 6 (‖ϕ‖p)1/n‖a‖pn. On letting
n → ∞ this yields ‖ϕ(a)‖∞ 6 ‖a‖∞ by Lemma 4.9. The final statement follows
from the fact that if M is commutative then the fact that Hp(M) appears as a
subspace of the commutative ∗-algebra M̃ of τ -measurable operators ensures that
all elements of Hp(M) are necessarily normal. Thus, by the above ϕ in this case
then acts homomorphically on all of H∞(M).

5. APPLICATIONS TO ISOMETRIES ON Hp

In this final cycle of results we investigate the relationship between identity preserv-
ing linear isometries on non-commutative Hp-spaces and “composition operators”.
Though we do not quite manage to achieve a general non-commutative character-
isation of such isometries, our results are sufficiently strong to imply results of
this nature for isometries that have H∞ as an invariant subspace. In fact, for
identity preserving isometries this H∞-invariance proves to be all but equivalent
to “multiplicativity”. Though much work remains to be done, this partial success
strongly hints at the tenability of a general non-commutative characterisation. A
serious obstacle to be overcomed in this regard is the absence of a satisfactory
non-commutative analog of the elementary inner function ı : z → z, z ∈ D. In
fact, it is precisely the presence of this selfsame inner function that affords the by
now classical characterisation of linear isometries on Hp(D), p 6= 2, by guarantee-
ing a sufficient degree of H∞-invariance for identity preserving isometries in this
context. (See the first part of the proof of Theorem 1 in [11] for details.) Our
main result amounts to a non-commutative extension of Proposition 2 from [11].

Theorem 5.1. Let M,W be von Neumann algebras with finite normalised
faithful (normal) traces τ and ν respectively. Let A be a subalgebra ofW containing
the identity and ϕ an identity-preserving transformation from A into M such that
for some 1 6 p < ∞ with p 6= 2 we have

τ(|ϕ(a)|p) = ν(|a|p) for all a ∈ A.

Then for each a ∈ A we have that

τ(|ϕ(a)|2) = ν(|a|2)
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with ϕ(a2)− ϕ(a)2 belonging to the annihilator of ϕ(A) in the sense that ϕ(a2)−
ϕ(a)2 ∈ {x ∈ M : τ(ϕ(b)∗x) = 0, b ∈ A}. Moreover ϕ(a)∗ = ϕ(a∗) if in addition
a∗ ∈ A. If both a and ϕ(a) are normal then ϕ(a2) = ϕ(a)2.

The above result is of course particularly applicable to the case of identity-
preserving isometries on Hp(M) with 1 6 p < ∞ and p 6= 2, which map H∞(M) =
Hp(M) ∩ L∞(M) back into H∞(M).

Proof. Let a, b ∈ A be given. Since by hypothesis ϕ(I + za) = I + zϕ(a) we
have

τ(|I + zϕ(a)|p) = ν(|I + za|p)
for all z ∈ C. Now, for r > 0 small enough, we have that ‖za+ z̄a∗+|z|2|a|2‖∞ < 1
and ‖zϕ(a) + z̄ϕ(a)∗ + |z|2|ϕ(a)|2‖∞ < 1 whenever |z| 6 r. Since the function
λ → (1+λ)p/2 is analytic in the open unit disc it therefore follows from the analytic
functional calculus that

|I + za|p = (I + (za + z̄a∗ + |z|2|a|2))(p/2) =
∞∑

k=0

(p
2

k

)
(za + z̄a∗ + |z|2|a|2)k

for all |z| 6 r where the convergence of the series is absolute. We may now
expand each term of the form (za + z̄a∗ + |z|2|a|2)k and suitably rearrange terms
to get a series of the form

∑
i,j

ziz̄jαij where each αij is a suitable combination of

permutations of ai(a∗)j . This rearrangement also converges absolutely. To see this
observe that given αij with i + j > m each permutation of ai(a∗)j appearing in
αij results from an expansion of some term in∑

k>bm/2c

(p
2

k

)
(za + z̄a∗ + |z|2|a|2)k.

An application of the triangle inequality now yields∑
i+j>m

|ziz̄j | ‖αij‖ 6
∑

k>bm/2c

(p
2

k

)
(2|z| ‖a‖+ |z|2‖a‖2)k

with the right hand side converging to zero as m → ∞ when |z| 6 r and say
r 6 1

3‖a‖ . Recall that here ν(I) = 1. Thus L1(W) ⊇ W implying that ν extends
to a continuous linear functional on W. By continuity we then have that

(5.1) ν(|I + za|p) = ν

( ∑
i,j>0

ziz̄jαij

)
=

∑
i,j>0

ziz̄jν(αij)

for all |z| 6 r. A similar construction with respect to ϕ(a) now yields an expression
of the form

(5.2) τ(|I + zϕ(a)|p) =
∑

i,j>0

ziz̄jτ(βij)

for all |z| 6 r where each βij is obtained from combinations of permutations of
ϕ(a)i(ϕ(a)∗)j in exactly the same way that αij was obtained from combinations
of permutations of ai(a∗)j . Since by hypothesis the two power series in (5.1) and
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(5.2) agree on the disc of radius r, we must have τ(βij) = ν(αij) for each i, j > 0.
Now, for 0 6 i 6 2, 0 6 j 6 1, the trace property ensures that say ν applied
to any permutation of ai(a∗)j yields exactly ν((a∗)jai) with a similar statement
holding for τ . Consequently, since the fact that p 6= 2 ensures that

( p
2
k

)
is non-zero

for at least 0 6 k 6 2, the terms αij and βij will in fact be non-zero for 0 6 i 6 2
and 0 6 j 6 1. By the aforementioned observation regarding the trace property,
it therefore follows that

(5.3) ν((a∗)jai) = τ((ϕ(a)∗)jϕ(a)i), 0 6 i 6 2, 0 6 j 6 1, a ∈ A.

Now, since ν(a∗a) = τ(ϕ(a)∗ϕ(a)) for all a ∈ A, it follows from the polarisation
identity for inner products that

(5.4) ν(b∗a) = τ(ϕ(b)∗ϕ(a)), a, b ∈ A
and therefore by (5.3) and (5.4) that

(5.5) τ(ϕ(a)∗ϕ(a2)) = ν(a∗a2) = τ(ϕ(a)∗ϕ(a)2), a ∈ A.

Now, replace a by za + b in the equality above. A consideration of the coefficients
of the z2 term of the resultant polynomial yields the fact that

(5.6) τ(ϕ(b)∗ϕ(a2)) = τ(ϕ(b)∗ϕ(a)2), a, b ∈ A
as required. To show that ϕ(a∗) = ϕ(a)∗ whenever a, a∗ ∈ A, it suffices to show
that ϕ(a) = ϕ(a)∗ whenever a∗ = a ∈ A. To this end suppose a = a∗ ∈ A. By
(5.3) with j = 0 and i = 2, and (5.4) with b = a we then have

τ(|ϕ(a)∗ − ϕ(a)|2) = 2τ(ϕ(a)∗ϕ(a))− τ((ϕ(a)∗)2)− τ(ϕ(a)2)

= 2τ(ϕ(a)∗ϕ(a))− τ(ϕ(a)2)− τ(ϕ(a)2) = 2ν(a∗a)− ν(a2)− ν(a2) = 0.

Since τ is faithful, we must have |ϕ(a)∗ − ϕ(a)|2 = 0 and hence ϕ(a)∗ − ϕ(a) = 0
in this case. Finally, suppose that both a ∈ A and ϕ(a) are normal. By what we
have just verified

τ(ϕ(a2)∗ϕ(a)2) = τ(ϕ(a2)∗ϕ(a2))

and by duality

τ((ϕ(a)∗)2ϕ(a2)) = τ(ϕ(a2)∗ϕ(a)2) = τ(ϕ(a2)∗ϕ(a2)).

This in turn is sufficient to imply that τ(|ϕ(a)2−ϕ(a2)|2)=τ(|ϕ(a)2|2)−τ(|ϕ(a2)|2).
By the normality of ϕ(a) this yields τ(|ϕ(a)2−ϕ(a2)|2) = τ(|ϕ(a)|4)−τ(|ϕ(a2)|2).
On considering (5.3) we see that

τ(|ϕ(a2)|2) = ν(|a2|2) = ν(|a|4)

by the normality of a and the fact that a2 ∈ A. If indeed we can show that
τ(|ϕ(a)|4) = ν(|a|4), then surely |ϕ(a)2−ϕ(a2)|2 = 0 (and hence ϕ(a)2−ϕ(a2) = 0)
by the faithfulness of τ . It remains to show that τ(|ϕ(a)|4 = ν(|a|4) if both a and
ϕ(a) are normal. To see this fact recall that

( p
2
2

)
6= 0 since p 6= 2. Thus, the trace

property together with normality ensures that the coefficients of the |z|4 = z̄2z2

terms in (5.1) and (5.2) are respectively non-zero multiples (by the same constant)
of ν(|a|4) and τ(|ϕ(a)|4). Since the two series agree on a neighbourhood of 0, we
must have ν(|a|4) = τ(|ϕ(a)|4) as required.
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Proposition 5.2. Let 1 6 p < ∞ where p 6= 2, and let ϕ be an identity pre-
serving linear isometry on Hp(M). If ϕ(H∞) ⊂ H∞, ϕ necessarily preserves both
adjoints and the Jordan product (where defined) on Lp(D) = Hp(M) ∩Hp(M)∗,
and furthermore induces a unique linear identity preserving isometry ϕ̃ on H2(M)
such that ϕ|Hp∩H2 = ϕ̃|Hp∩H2 . If in addition ϕ is surjective, it preserves the Jor-
dan product even on H∞(M) ⊂ Hp(M). If ϕ is surjective and ϕ(H∞) = H∞,
it extends to an adjoint-preserving isometric linear bijection on all of L2(M).
Conversely, if ϕ preserves the Jordan product on H∞(M), then given any a ∈
H∞(M), ϕ(a) ∈ H∞(M) whenever ϕ(a) is normal. In particular, if M is com-
mutative, H∞(M) is an invariant subspace of ϕ if and only if ϕ acts multiplica-
tively on H∞(M).

Proof. Let ϕ be given. In the case that ϕ is known to preserve the Jordan
product on H∞, the statements related to the necessity of the invariance of H∞

under the action of ϕ are contained in Proposition 4.15. Hence suppose that
ϕ(H∞) ⊂ H∞.

It is now a direct consequence of Theorem 5.1 that ϕ preserves adjoints on the
dense subspace D of Lp(D) as well as squares of elements a ∈ H∞(M) for which
both a and ϕ(a) are normal. This is clearly sufficient to ensure the multiplicativity
of ϕ on H∞ in the commutative case ([29], 6.3.2). More generally, the fact that
ϕ then certainly preserves squares on the selfadjoint portion of the selfadjoint
subalgebra D is sufficient to ensure that ϕ preserves the Jordan product on all of
D. (The identity (a+b)2−a2−b2 = ab+ba may be used to verify the preservation
of the Jordan product of selfadjoint elements. By linearity this fact then extends
to all of D.)

A further direct consequence of Theorem 5.1 is that ϕ|H∞ extends uniquely
to an identity preserving isometry ϕ̃ on H2. We therefore need only show that
ϕ|Hp∩H2 = ϕ̃|Hp∩H2 . To see this, suppose for the sake of argument that 2 <
p < ∞. Given any a ∈ Hp ∩ H2, select {an} ⊂ H∞ such that {an} converges
to a in Hp. Since in this case Hp injects continuously into H2, the sequence
{an} converges to a in H2 as well. But then, by continuity, {ϕ(an)} = {ϕ̃(an)}
converges to ϕ(a) in Hp and hence also in H2. This clearly suffices to show that
ϕ̃(a) = ϕ(a).

It remains to investigate the case where ϕ is surjective.
Now, given any a ∈ H∞, the fact that H∞ is an invariant subspace of ϕ

clearly suffices to verify that ϕ(a2)−ϕ(a)2 ∈ H∞. Thus by the non-commutative
Hölder inequality ([10], 4.2) x → τ((ϕ(a2)−ϕ(a)2)∗x) canonically defines a contin-
uous linear functional ω on each Hq, 1 6 q < ∞. By 6.3 of [24] we need only show
that ω = 0 on some Hq with 1 < q < ∞ in order to see that ϕ(a2)−ϕ(a)2 = 0. As a
functional on Hp, ω must by Theorem 5.1 be in the annihilator of (ϕ(H∞)) ⊂ Hp.
Since ϕ is surjective, it will map the dense subspace H∞ of Hp onto the dense
subspace ϕ(H∞) of ϕ(Hp) = Hp. Thus ϕ(H∞) will of necessity have a trivial
annihilator implying that ω = 0 on Hp. If 1 < p < ∞ then on taking p = q it
follows that ϕ(a2) = ϕ(a)2. For the case p = 1 the same conclusion follows by
taking q = 2 and observing that H2 ⊂ H1. Thus ϕ preserves the Jordan product
on H∞ ([29], 6.3.2).
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Finally, suppose that ϕ is surjective and that ϕ(H∞) = H∞. On applying
what we have just verified to both ϕ and ϕ−1, we conclude that there exist isome-
tries ϕ̃ and ϕ̃−1 on H2 which act as inverses to each other on the dense subspace
Hp ∩ H2. By continuity, ϕ̃ is therefore clearly invertible with ϕ̃−1 = ϕ̃−1. By
the first part of the theorem we know that both ϕ̃ and ϕ̃−1 will leave the self-
adjoint portion of H2(M), viz L2(D), invariant. Clearly, this can only be the case
if ϕ̃(L2(D)) = L2(D). It is known that L2(M) decomposes into the orthogonal
direct sum L2(M) = H2

0 ⊕ L2(D) ⊕ (H2
0 )∗ ([23]). Thus, since ϕ̃ is a surjective

isometry, that is a unitary operator, on the Hilbert space H2 = H2
0 ⊕ L2(D), we

also have that ϕ̃(H2
0 ) = ϕ̃(L2(D)⊥) = L2(D)⊥ = H2

0 . We may now linearly ex-
tend ϕ̃ to all of L2(M) by defining the action on (H2

0 )∗ by ϕ̃(a) = ϕ̃(a∗)∗ for each
a ∈ (H2

0 )∗. From what we have already verified, it now readily follows that this
extension isometrically respectively maps each of the orthogonal subspaces H2

0 ,
L2(D), and (H2

0 )∗ of L2(M) back onto themselves. It is now an exercise to show
this is sufficient to ensure that ϕ̃ acts isometrically on all of L2(M). Since ϕ̃ is
known to preserve adjoints on L2(D), it also readily follows from the definition of
the extension that in fact it preserves adjoints on all of L2(M).

Remark 5.3. In the commutative setting it is possible to show that any
identity preserving linear isometry on Hp, p 6= 2, induces an isometry on H2

apart from any considerations regarding the invariance of H∞ (see Proposition 1
in [11]). In fact, it is precisely this fact alongside the action of such maps on the
function ı : z → z that suffices to establish the invariance of H∞ (and thereby
multiplicativity of ϕ) in the setting of Hp(D), p 6= 2. (See the first part of the proof
of Theorem 1 in [11].) Given the apparent absence of a satisfactory analogue of ı
in more general Hp spaces, any attempt at showing that even here ϕ automatically
leaves H∞ invariant would have to rely on more ingenious techniques (even in the
case of a commutative von Neumann algebra M).
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