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Abstract. Let (A, G, α) be a C∗-dynamical system. In Section 2, we first
treat the discrete group action case. We suppose that G acts freely on the
spectrum of A. Then it is shown that A has the weak Banach-Saks property,
if and only if G is discrete and the C∗-crossed product A×α G has the weak
Banach-Saks property.

In Section 3, we shall consider the compact group action case. Let G
be a compact group and consider the following conditions (1)–(3):

(1) A has the weak Banach-Saks property;
(2) A×α G has the weak Banach-Saks property;
(3) the fixed point algebra Aα of A has the weak Banach-Saks property.

Then it is shown that we have (1) ⇒ (2) ⇒ (3).
Furthermore we suppose that G is (compact) abelian. Then it is shown

that the implication (3) ⇒ (2) holds, and that if A is of type I and if α is
pointwise unitary, the implication (2) ⇒ (1) holds.
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1. INTRODUCTION

In [1], Banach and Saks showed that every bounded sequence in Lp([0, 1]) with
1 < p < ∞ has a subsequence whose arithmetic means converge in the norm
topology. More generally, if every bounded sequence in a Banach space X has
a subsequence whose arithmetic means converge in the norm topology, we say
that X has the Banach-Saks property. It is known that Banach spaces with the
Banach-Saks property are reflexive. It hence follows that L1([0, 1]) can not have
the Banach-Saks property.
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Let X be a Banach space. If given any weakly null sequence {xn} in X, one
can extract a subsequence {xn(k)} such that

lim
k→∞

1
k
‖xn(1) + · · ·+ xn(k)‖ = 0,

we say that X has the weak Banach-Saks property. It was shown by Szlenk ([14])
that L1([0, 1]) has the weak Banach-Saks property.

Recently, Chu ([2]) has studied C∗-algebras with the weak Banach-Saks prop-
erty in detail as a noncommutative extension of characterisations of the Banach
space, of complex continuous functions on a compact Hausdorff space, with the
weak Banach-Saks property. Actually he has obtained the following characteriza-
tion of C∗-algebras with the weak Banach-Saks property.

Theorem. ([2], Theorem 2) Let A be a C∗-algebra. Then the following
conditions are equivalent:

(1) A has the weak Banach-Saks property;
(2) A is scattered and c0(A) does not contain an isometric copy of C0(ωω)

where ωω denotes the set [0, ωω) of ordinals preceding ωω with the order topology;
(3) A is scattered and does not contain an isometric copy of C0(ωω);
(4) there exists some natural number k such that σ(a)(k) is empty for every

self-adjoint a ∈ A, where σ(a) denotes the spectrum of a;
(5) A is of type I and Â(k) is empty for some natural number k, where

Â(0) = Â, the spectrum of A, and Â(n) is the n-th derived set of Â, consisting of
the accumulation points of Â(n−1).

Furthermore, at the end of [2], Chu has shown that a C∗-algebras A has the
weak Banach-Saks property if and only if there are closed ideals I1 ⊂ I2 ⊂ · · ·
· · · ⊂ In ⊂ A such that I1 and all the successive quotients are dual C∗-algebras.
We shall use this characterization in order to obtain our main result in Section 2.

Let (A,G, α) be a C∗-dynamical system. By a C∗-dynamical system, we
mean a triple (A,G, α) consisting of a C∗-algebra A, a locally compact group G
and a group homomorphism α from G into the automorphism group of A such
that G 3 t → αt(x) is continuous for each x in A in the norm topology. Denote by
A×α G the C∗-crossed product of A by G (see [10] for the details). In this paper,
we discuss when A×α G has the weak Banach-Saks property provided that A has
the weak Banach-Saks property. For this, in Section 2 we shall suppose that the
action of G induced by α is free on the spectrum Â of A. First we show that if A
is a dual C∗-algebra, A×α G is also a dual C∗-algebra. In this case, furthermore
the topology of G is necessarily determined. In fact, we shall see that G becomes
a discrete group. Using such a result on dual C∗-algebras, in the sequel we show
that, under the assumption that G should act freely on the spectrum Â of A, A has
the weak Banach-Saks property if and only if A×α G has the weak Banach-Saks
property and G is discrete.

In Section 3, we consider the case where G is a compact group. If G acts
freely on Â, then the stability group at every point in Â is trivial. Hence the
situation opposite to such a case is that the stability group at every point in Â
coinsides with G, and as the case where such a situation occurs, we shall pay our
attention to the case where the action of G on A is pointwise unitary.
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Let (A,G, α) be a C∗-dynamical system and let G be a compact group. We
consider the following conditions (1)–(3).

(1) A has the weak Banach-Saks property.
(2) A×α G has the weak Banach-Saks property.
(3) The fixed point algebra Aα of A has the weak Banach-Saks property.

Then we shall show that (1) ⇒ (2) ⇒ (3). Furthermore we suppose that G
is (compact) abelian. Then we shall show that the implication (3) ⇒ (2) holds
and that, if A is of type I and if α is pointwise unitary, the implication (2) ⇒ (1)
holds.

2. DISCRETE GROUP ACTION CASE

For a C∗-algebra A, we denote again by Â the spectrum of A, that is, the set
of (unitary) equivalence classes [π] of nonzero irreducible representations π of A

equipped with the Jacobson topology. We note that Â is a locally compact space,
not necessarily a Hausdorff space. However, we will pay our attention later to
the case where Â is a Hausdorff space. The reader is referred to [3], [10] for the
spectrum of a C∗-algebra.

We recall that a C∗-algebra A is called dual if and only if it is isomorphic to
a C∗-subalgebra of the C∗-algebra of compact operators on some Hilbert space,
or equivalently, every maximal abelian subalgebra of A is generated by minimal
projections ([3], 4.7.20, or [7]). As is easily seen, A is a type I C∗-algebra with
discrete spectrum Â if and only if it is a c0-sum of C∗-algebras of compact oper-
ators. Thus the C∗-algebra A is dual if and only if it is a type I C∗-algebra with
discrete spectrum Â (see [7], Lemma 2.3 and Lemma 2.4).

Let (A,G, α) be a C∗-dynamical system. If A is dual, then it is a C∗-algebra
of type I. Hence, type I-ness is necessary for A ×α G to be a dual C∗-algebra.
For this, we need to impose some conditions to α in order to derive type I-ness
of A ×α G. Now we exhibit such conditions here. Given a C∗-dynamical system
(A,G, α), α induces the natural action of G on Â which is defined by

(t, [π]) ∈ G× Â → [π ◦ αt−1 ] ∈ Â.

This map makes G into a topological transformation group acting on Â. Through-
out this paper, as an action of G on the spectrum of a C∗-algebra, we consider
only the natural action of G defined in the above way . For [π] ∈ Â, we denote by
S[π] the stability group at [π], which is defined by S[π] = {t ∈ G | [π ◦αt−1 ] = [π]}.
If all stability groups are trivial, i.e., S[π] consists only of the identity of G at every
[π] ∈ Â, it is said that G acts freely on Â. If the map

(t, [π]) ∈ G× Â → ([π], [π ◦ αt−1 ]) ∈ Â× Â

is proper in the sense that inverse images of compact sets are compact, it is said
that G acts properly on Â.
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Lemma 2.1. Let (A,G, α) be a C∗-dynamical system. Suppose that G acts
freely on Â. If there exists a point [π] in Â such that {[π]} ⊂ Â is an open subset,
then G is a discrete group. In particular, if Â is discrete, G is a discrete group.

Proof. It suffices to show that the identity e of G is an open subset. When
we fix [π], the map t ∈ G → [π ◦αt−1 ] ∈ Â is continuous. Since the identity e of G
is just the inverse image of [π] by the above map, {e} is an open subset in G.

Lemma 2.2. Let (A,G, α) be a C∗-dynamical system. If Â is discrete and if
G acts freely on Â, then G acts properly on Â.

Proof. Since G acts freely on Â, we can easily check that the map

(t, [π]) ∈ G× Â → ([π], [π ◦ αt−1 ]) ∈ Â× Â

is injective. So the inverse image of a finite subset by this map is also a finite set.
Since the product topology of Â× Â is discrete, every compact subset in Â× Â is
a finite set. Hence the inverse image of any compact subset of Â×Â is compact.

We are ready to mention when the C∗-crossed product of a type I C∗-algebra
becomes a type I C∗-algebra. Let (A,G, α) be a C∗-dynamical system and let A
be a type I C∗-algebra with Hausdorff spectrum. It is seen from the proof of
Theorem 1.1 (1) in [12] that if G acts freely and properly on Â, then A ×α G is
of type I. However, in the case where Â is discrete, if we assume only that G acts
freely on Â, G automatically does properly on Â by Lemma 2.2. Then A ×α G
becomes a type I C∗-algebra.

Theorem 2.3. Let (A,G, α) be a C∗-dynamical system. Suppose that G

acts freely on Â. Then the following conditions are equivalent:
(i) A is a dual C∗-algebra;
(ii) G is discrete and A×α G is a dual C∗-algebra.

Proof. (i) ⇒ (ii) Since A is a dual C∗-algebra, Â is discrete. Hence it follows
from Lemma 2.1 that G is discrete. Since A is of type I and G acts freely on Â,
A ×α G is a type I C∗-algebra. Furthermore, it follows from Theorem 1.1 (1) of
[12] that (A×α G)̂ is homeomorphic to the G-orbit space Â/G of Â by G. Since
we easily see that Â/G is also discrete, A×α G is a dual C∗-algebra.

(ii) ⇒ (i) Since G is discrete, A is a C∗-subalgebra of A ×α G. Since any
C∗-subalgebra of a dual C∗-algebra is dual by definition, A is a dual C∗-algebra.

Let (A,G, α) be a C∗-dynamical system and let I be an α-invariant ideal of
A. Then I ×α G is a closed ideal of A ×α G. Note that the converse also holds.
In fact, if, for an α-invariant C∗-subalgebra B of A, B ×α G is a closed ideal of
A×α G, then B is an ideal of A (see [8]).

For each x ∈ A, we denote by [x] the image of x under the canonical quotient
map from A onto A/I. Define an action α of G on A/I by

αt([x]) = [αt(x)]
for x ∈ A. Thus we obtain the C∗-dynamical system (A/I,G, α), and α induces the
natural action of G on Â/I. It is well-known that the quotient (A×α G)/(I ×α G)
is isomorphic to (A/I) ×α G (for example, [5], Proposition 12). The following
lemma plays an important role in the proof of Theorem 2.6.
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Lemma 2.4. Let (A,G, α) be a C∗-dynamical system and let I be an α-
invariant closed ideal of A. If G acts freely on Â, then G acts freely on Î and on
Â/I, respectively.

Proof. Note that there are a canonical homeomorphism from Î onto Â \
hull(I) and a canonical one from Â/I onto Â \ Î ([10], Theorem 4.1.11). It is
easy to check that such homeomorphisms are G-equivariant. Hence, when we
regard Î and Â/I as subsets of Â, a straightforward discussion shows that the
stability group of any point [π] in Î (respectively Â/I) is equal to that of [π] in
Â \ hull(I) ⊂ Â (respectively Â \ Î ⊂ Â). Thus, freeness of the action of G on Â

yields that G acts freely on Î and on Â/I, respectively.

Let X be a topological space. Then we recall that the n-th derived set
X(n) of X is defined as follows: Put X(0) = X and define X(n) as the set of all
accumulation points of X(n−1).

Now we mention a remark regarding Lemma 1 in [2] and adopt the notation
used therein. Suppose that a locally compact group G acts on X as a home-
omorphism group. Suppose that the n-th derived set X(n) is empty for some
natural number n. Since the image of an accumulation point by any homeomor-
phism is an accumulation point again, X(k) is G-invariant for each natural number
k. Hence the open subsets Yn−1 ⊂ Yn−2 ⊂ · · · ⊂ Y1 ⊂ X given in Lemma 1 in
[2] are G-invariant, which is easily seen from the proof of Lemma 1 in [2] and
Yn−1, Yn−2 \ Yn−1, . . . , X \ Y1 are all discrete in the relative topology.

The following proposition is a generalization of Chu’s characterization fol-
lowing his theorem mentioned in the introduction, which plays an essential role in
proving Theorem 2.6. In fact, if we take the trivial group as G, Proposition 2.5
below is nothing but Chu’s characterization.

Proposition 2.5. Let (A,G, α) be a C∗-dynamical system. Then the fol-
lowing conditions are equivalent:

(i) A has the weak Banach-Saks property.
(ii) There is a finite chain of α-invariant ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ A such

that I1, I2/I1, I3/I2, . . . , A/In are dual C∗-algebras.

Proof. We have only to show the implication (i) ⇒ (ii) The corresponding
obsevation in [2] is valid for the proof. But, for the convenience of the reader, we
will give the proof here.

Suppose that Â(n+1) is empty for some natural number n. By the above
remark, there exist G-invariant open subsets Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ Â such that
Ω1,Ω2 \Ω1,Ω3 \Ω2, . . . , Â\Ωn are all discrete in the relative topology. There then
exist α-invariant closed ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ A such that Î1 = Ω1, Î2 =
Ω2, . . . , În = Ωn. In fact, each Ik is given by taking the intersection of those kerπ
with [π] ∈ Â \ Ωk. Since A is of type I, I1 and quotients I2/I1, I3/I2, . . . , A/In

are also of type I. Since Î1, Î2 \ Î1, Î3 \ Î2, . . . , Â \ În are discrete in the relative
topology, I1 and the quotients I2/I1, I3/I2, . . . , A/In are dual C∗-algebras.

We are now in a position to establish the main result in this section.
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Theorem 2.6. Let (A,G, α) be a C∗-dynamical system. Suppose that G

acts freely on Â. Then the following conditions are equivalent:

(i) A has the weak Banach-Saks property;

(ii) G is discrete and A×α G has the weak Banach-Saks property.

Proof. (i) ⇒ (ii) Since A has the weak Banach-Saks property, it follows from

Proposition 2.5 that there exist α-invariant closed ideals I1 ⊂ · · · ⊂ In ⊂ A such

that I1 and all the successive quotients are dual C∗-algebras.

Consider the C∗-dynamical system (I1, G, α). Then Lemma 2.4 shows that
G acts freely on Î1. Thus it follows from Theorem 2.3 that G is a discrete group

and I1 ×α G is a dual C∗-algebra.

Consider the C∗-crossed product Ik×α G of Ik by G for k = 1, 2, . . . , n. Then

we obtain a sequence of ideals I1 ×α G ⊂ I2 ×α G ⊂ · · · ⊂ In ×α G ⊂ A×α G.

To complete the proof, we have only to show that quotients

(I2 ×α G)/(I1 ×α G), (I3 ×α G)/(I2 ×α G), . . . , (A×α G)/(In ×α G)

are dual C∗-algebras. Put In+1 = A. Since G acts freely on Â, it follows from
Lemma 2.4 that G acts freely on Îk+1 for any k, hence from Lemma 2.4 again that

G acts freely on (Ik+1/Ik) .̂ Since Ik+1/Ik is a dual C∗-algebra, (Ik+1/Ik) ×α G

is a dual C∗-algebra by Theorem 2.3. Since (Ik+1 ×α G)/(Ik ×α G) is isomorphic

to (Ik+1/Ik)×α G, (Ik+1 ×α G)/(Ik ×α G) is a dual C∗-algebra.

(ii) ⇒ (i) Since G is discrete, A is a C∗-subalgebra of A ×α G. Since any

C∗-subalgebra of a C∗-algebra with the weak Banach-Saks property has the weak

Banach-Saks property ([2], Theorem 2) A has the weak Banach-Saks property.

In the above theorem, the assumption that G should act freely on Â is

necessary to show the implication (i) ⇒ (ii). Even though G is discrete, Condi-

tion (i) does not necessarily imply Condition (ii) in general. For example, consider

A = C · 1 and G = Z, where we denote here by Z the set of all integers. Then

we see that A×α G = C∗(Z) = C(T), where we denote by T the one-dimensional

torus group which is the dual group of Z and C(T) denotes the C∗-algebra of all

continuous functions on T. Since the spectrum of A×α G is homeomorphic to T,

the n-th derived set of (A ×α G)̂ is (A ×α G)̂ itself for any natural number n.

Thus we see that A ×α G does not have the weak Banach-Saks property (see [2],

Theorem 2).
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3. COMPACT GROUP ACTION CASE

In Theorem 2.6 above, the group which acts on A as an automorphism group
is discrete and S[π] consists only of the identity of the group at every [π] ∈ Â.
Hence, given a C∗-dynamical system (A,G, α), the situation opposite to that of
Theorem 2.6 is that G is compact and S[π] = G at every [π] ∈ Â. In the main
theorem below, we shall suppose that G is a compact group and we treat the case
where the situation that S[π] = G at every [π] ∈ Â occurs.

Let X be a topological space. We denote again by X(n) the n-th derived set
of X for each natural number n. We first need the following lemma on derived
sets of a topological space to show the main theorem below.

Lemma 3.1. Let X be a topological space and let {Oi}i∈I be a family of open
subsets in X. Suppose that X =

⋃
i∈I

Oi. Then we have X(k) =
⋃
i∈I

O(k)
i for each

natural number k ∈ N.

Proof. First we show that X(k) ⊂
⋃
i∈I

O(k)
i . Take any element x from X(k).

If x belongs to O(k)
i0

for some i0, then we see that X(k) ⊂
⋃
i∈I

O(k)
i . Hence we

assume that there exists x in X(k) such that x 6∈ O(k)
i for all i. Since we have

X(k) ⊂ O(k)
i ∪ (X \Oi) for each i (see [2], Lemma 2), we conclude that x ∈ X \Oi

for all i. Then we see that

x ∈
⋂
i∈I

(X \ Oi) = X \
( ⋃

i∈I

Oi

)
= ∅,

which is a contradiction. Thus we obtain the desired incusion.
The reverse inclusion is trivial. In fact, since the inclusion X ⊃ Oi shows

that X(k) ⊃ O(k)
i , we see that X(k) ⊃

⋃
i∈I

O(k)
i . Thus we complete the proof.

For a C∗-dynamical system (A,G, α), we say that α is pointwise unitary if for
every irreducible representation (π,Hπ) of A, there exists a strongly continuous
unitary representation u of G on the Hilbert space Hπ such that

π(αt(x)) = utπ(x)u∗t

for all x ∈ A and t ∈ G. In this case, we easily see that S[π] = G at every [π] ∈ Â.
We denote by C(G) the set of all continuous functions on G and by Aα the fixed
point algebra of A, respectively, which is defined by

Aα = {x ∈ A | αt(x) = x for all t ∈ G}.

Now we are ready to establish the main theorem for compact group action.
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Theorem 3.2. Let (A,G, α) be a C∗-dynamical system and let G be a com-
pact group. Consider the following conditions:

(i) A has the weak Banach-Saks property;
(ii) A×α G has the weak Banach-Saks property;
(iii) Aα has the weak Banach-Saks property.

Then we have (i) ⇒ (ii) ⇒ (iii).
Furthermore we suppose that G is (compact) abelian. Then the implication

(iii) ⇒ (ii) holds. If A is of type I and if α is pointwise unitary, the implication
(ii) ⇒ (i) holds.

Proof. Let C(L2(G)) be the C∗-algebra of all compact operators on L2(G).
It is easily seen that A is of type I if and only if so is A⊗C(L2(G)), and that Â is
homeomorphic to the spectrum of A⊗C(L2(G)). It hence follows from Theorem 2
of [2] that A has the weak Banach-Saks property if and only if A⊗C(L2(G)) does
so. We will repeatedly employ this fact in the proof.

(i) ⇒ (ii) It follows from Imai-Takai’s duality ([6]) that there exists an injec-
tive homomorphism β on A×α G such that the crossed product (A×α G)×β G by
β is isomorphic to A⊗C(L2(G)). Since G is compact, C(G) has the identity. Since
(A×α G)×β G is generated by (1⊗C(G))β(A×α G), A×α G is identified with a
C∗-subalgebra of (A×α G)×β G. Since A⊗C(L2(G)) has the weak Banach-Saks
property and since every C∗-subalgebra of a C∗-algebra with the weak Banach-
Saks property has the same property, A×α G has the weak Banach-Saks property.

(ii) ⇒ (iii) Since Aα is isomorphic to a hereditary C∗-subalgebra of A×α G
(see [13]), Aα has the weak Banach-Saks property.

From now on, we assume that G is abelian.
(iii) ⇒ (ii) By [13], there exists a projection p in the multiplier algebra of

A×α G such that the hereditary C∗-subalgebra p(A×α G)p is isomorphic to Aα.
Let B be the closed ideal of A ×α G generated by p(A ×α G)p. We will identify
Aα with p(A×α G)p unless there is confusion. Since Aα is of type I, so is A×α G
(see [4], Theorem 3.2). Hence B is also of type I. For every nonzero irreducible
representation (π,H) of B, the restriction of π to Aα is not zero. Hence the map

π → π|Aα induces a homeomorphism from B̂ onto Âα. Since Âα
(k)

is empty for
some natural number k, B̂(k) is also empty. Thus it follows from Theorem 2 of [2]
that B has the weak Banach-Saks property.

Let B̂(k) be empty for some integer k. Since B̂ is an open subset in (A×αG)̂,
there exists the largest open subset Ω in (A ×α G)̂ such that Ω(k) is empty. In
fact, consider the family of closed ideals{

Ji | Ji is a closed ideal of A×α G and Ĵ
(k)
i = ∅

}
.

Denote by J the closed ideal generated by
⋃
i

Ji. Since we see that Ĵ =
⋃
i

Ĵi,

it follows from Lemma 3.1 that Ĵ (k) =
⋃
i

Ĵ
(k)
i . Since every open subset O of

(A×α G)̂ is given by O = Î with some closed ideal I of A×α G, Ĵ is the largest
of all open subsets O with O(k) = ∅. Thus we have only to take Ω = Ĵ .

We have already mentioned above that A×αG is of type I. Hence, in order to
obtain Condition (ii), by Theorem 2 of [2], it suffices to show that the k-th derived
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set of (A ×α G)̂ is empty. For this, we have only to show that (A ×α G)̂= Ω.
To derive a contradiction, we assume that (A ×α G) ̂ 6= Ω. Then we see that
J 6= A×α G because Ω = Ĵ . We claim that J is α̂-invariant, where α̂ denotes the
dual action of Ĝ on A×α G. Since Ω is the largest of all open subsets in (A×α G)̂
whose k-th derived sets are empty, Ω is invariant under every homeomorphism of
(A ×α G)̂; in particular, invariant under the action of Ĝ on (A ×α G)̂ induced
by α̂, from which it easily follows that J is α̂-invariant.

Since it is easy to check that J is a G-product (see, for example, [10], 7.8.2 for
the details of a G-product), it follows from [10], 7.8.8 that there exists a nonzero
α-invariant closed ideal I of A such that J = I×α G. Then J 6= A×α G yields that
I 6= A. But this is impossible by the proof of Theorem 3.2 in [4] because J ⊃ B.
Thus we have reached a contradiction.

(ii) ⇒ (i) Assume that A is of type I and α is pointwise unitary. Recall
that A×α G is the enveloping C∗-algebra of L1(A,G), where L1(A,G) denotes the
Banach*-algebra of all Bochner integrable A-valued functions on G, and that given
a covariant representation (π, u,H) of A, one can construct the representation
(π × u, H) of A×α G (see [10], 7.6 for the details).

First of all we assert that the action of Ĝ induced by the dual action α̂ of Ĝ
on A×α G is free on (A×α G) .̂ For any x ∈ L1(A,G), we have

(π × u)(α̂−1
γ (x))≡

∫
G

π(α̂−1
γ (x(t)))ut dt≡

∫
G

π(x(t))〈t, γ〉ut dt=
∫
G

π(x(t))(γu)t dt

where (γu)t ≡ 〈t, γ〉ut and we adopted here that α̂γ(x(t)) = 〈t, γ〉x(t), as the
definition of α̂. Thus we obtain that (π × u) ◦ α̂−1

γ = π × (γu). Let (π × u, H)
be an irreducible representation of A ×α G. Since A is of type I, it follows from
Proposition 2.1 of [11] that π is also irreducible. Suppose that [(π × u) ◦ α̂−1

γ ] =
[π×u] for some γ ∈ Ĝ, that is, (π×u) ◦ α̂−1

γ is unitarily equivalent to π×u. Then
there exists a unitary V on Hπ such that

(π × u) ◦ α̂−1
γ ( · ) = V (π × u)( · )V ∗.

Hence we see that
π × (γu) = (V π( · )V ∗)× (V uV ∗).

Since (V π( · )V ∗, V uV ∗,Hπ) is a covariant representation, we conclude that π( · ) =
V π( · )V ∗ and γu = V uV ∗. Then π( · ) = V π( · )V ∗ implies that V ∈ π(A)′ = C ·1.
Thus, we have V = λ · 1 with λ ∈ C. Hence we obtain that γu = V uV ∗ = u, from
which it follows that γ must be the identity element of Ĝ. Thus we see that Ĝ acts
freely on (A×α G) .̂

Applying Theorem 2.6 to (A×α G, Ĝ, α̂), it then follows that (A×α G)×
α̂

Ĝ

has the weak Banach-Saks property. Since (A ×α G) ×
α̂

Ĝ is isomorphic to A ⊗
C(L2(G)) by Takai’s duality ([10], 7.9.3), A⊗C(L2(G)) has the weak Banach-Saks
property. Therefore A has the weak Banach-Saks property.

We end this paper by giving some remarks concerning Thoerem 3.2.
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Remarks 3.3. (1) We remark that the weak Banach-Saks property in C∗-
algebras is preserved under (strong) Morita equivalence ([9]). In the the proof of
the implication (iii) ⇒ (ii), we have shown that Aα has the weak Banach-Saks
property if and only if the closed ideal B of A×α G generated by Aα does so. This
will also follows from the well-known fact that Aα and B are (strongly) Morita
equivalent (cf. [13]).

(2) In the above thoerem, even though A is of type I and G is abelian, the
implication (ii) ⇒ (i) does not necessarily hold in general. Hence the assumption
that α be pointwise unitary is necessary to show (ii) ⇒ (i). For example, take
A = C(T) as a C∗-algebra of type I and G = T, where C(T) denotes the set
of all continuous functions on the one-dimensional torus group T. We consider
the translation on T as α. Then the Stone-von Neumann theorem shows that
A ×α G = C(T) ×α T ∼= C(L2(T)). Hence A ×α G has the weak Banach-Saks
property. Since Â is homeomorphic to T, we obtain that Â(n) = Â for all n ∈ N.
Thus A does not have the weak Banach-Saks property.

(3) Note that there are unital C∗-algebras of non-type I which admit ergodic
actions of compact abelian groups. Hence for such C∗-algebras A of non-type I,
Aα(= C · 1) has the weak Banach-Saks property. But A does not have the weak
Banach-Saks property because A is not of type I.

(4) Let (A,G, α) be a C∗-dynamical system and let G be a finite group. Then
it follows from Therem 3.2 (and Theorem 2.6) that A has the weak Banach-Saks
property if and only if A×α G has the weak Banach-Saks property.
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