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Abstract. We show that for every sofic shift Λ that satisfies a certain condi-
tion, Matsumoto’s C
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1. INTRODUCTION

In [2] Cuntz and Krieger defined the Cuntz-Krieger algebras. It is natural to see
them as C∗-algebras associated with topological Markov shifts. In [5] (see also
[1]) Matsumoto associated to each subshift a C∗-algebra in such a way that if the
subshift is a topological Markov shift, the Matsumoto algebra associated to it is
the Cuntz-Krieger algebra associated to it. Furthermore in [6] Matsumoto proved
that for a sofic shift the associated Matsumoto algebra has the same K0 and K1

as the Cuntz-Krieger algebra for the left Krieger cover graph of the shift. It is
therefore natural to ask whether the Matsumoto algebra associated to a sofic shift
is isomorphic to the Cuntz-Krieger algebra of the left Krieger cover graph of the
shift. In this paper we prove that if the sofic shift satisfies the condition (1.1)
defined below, then indeed it is.

We will construct the isomorphism by using the universal properties of the
Cuntz-Krieger algebra and the Matsumoto algebra to construct ∗-homomorphisms
between them and then prove that these ∗-homomorphisms are each other’s in-
verse.

Let Λ be a subshift defined on a finite alphabet A. We will follow the notation
used in [5], [6], [7] and [8]. That is we denote by XΛ the set of all right infinite
sequences that appear in Λ, and we let for each k ∈ N, Λk be the set of all words

with length k appearing in some x ∈ Λ. We set Λl =
l⋃

k=0

Λk and Λ∗ =
∞⋃

k=0

Λk,

where Λ0 denotes the empty word ∅.
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We will by OΛ denote the C∗-algebra defined in [5] by Matsumoto. Then
OΛ is generated by partial isometries Si, i ∈ A. For µ ∈ Λ∗ we define Sµ =
Sµ1

Sµ2
· · ·Sµ|µ|

. Following [5], [6], [7] and [8] we let AΛ be the C∗-subalgebra of
OΛ generated by S∗

µSµ, µ ∈ Λ∗, and DΛ the C∗-subalgebra of OΛ generated by
SµS

∗
νSνS

∗
µ, µ, ν ∈ Λ∗. For µ ∈ Λ∗ we denote by Uµ the cylinder set for µ:

Uµ = {x ∈ XΛ | x1 = µ1, . . . , x|µ| = µ|µ|}.

We will need the following known facts about OΛ:

Lemma 1.1. (Lemma 3.1 of [5]) If i, j ∈ A are different, then

S∗
i Sj = 0.

For a subshift Λ consider the following condition defined in [1]:

(1.1)

For every l ∈ N and every infinite subset F of Λ∗ such that

{ν ∈ Λl | νµ1 ∈ Λ∗} = {ν ∈ Λl | νµ2 ∈ Λ∗} for every µ1, µ2 ∈ F ,

there exists a right infinite sequence x ∈ XΛ such that

{ν ∈ Λl | νx ∈ XΛ} = {ν ∈ Λl | νµ ∈ Λ∗} for µ ∈ F .

We denote by B(XΛ) the C∗-algebra of all bounded functions on XΛ.

Proposition 1.2. (Lemma 3.1 of [7]) For every subshift Λ that satisfies
condition (1.1), the correspondence Φ defined by

Φ(SµS
∗
νSνS

∗
µ) = 1Uµ∩σ−|µ|(σ|ν|(Uν)), µ, ν ∈ Λ∗

gives rise to an isomorphism from the commutative C∗-algebra DΛ onto the C∗-
subalgebra C∗(1Uµ∩σ−|µ|(σ|ν|(Uν));µ, ν ∈ Λ∗) of B(XΛ). Its restriction to AΛ yields

an isomorphism between AΛ and C∗(1σ|ν|(Uν); ν ∈ Λ∗).

In Proposition 1.2 of [7] was stated without the requirement that the sub-
shift satisfies condition (1.1), but in [1] there is an example of a subshift Λ that
does not satisfies condition (1.1), and for which the correspondence considered in
Proposition 1.2 does not give rise to an isomorphism from the commutative C∗-
algebra DΛ onto the C∗-subalgebra C∗(1Uµ∩σ−|µ|(σ|ν|(Uν));µ, ν ∈ Λ∗) of B(XΛ).

So we need the subshifts to satisfy condition (1.1).
We will from now on assume that the subshifts we consider satisfy condi-

tion (1.1).

Lemma 1.3. For each f ∈ C∗(1σ|ν|(Uν); ν ∈ Λ∗) and each i ∈ A,

Φ(SiΦ
−1(f)S∗

i ) = σ?(f)1Ui
,

where σ? is defined by σ?(f)(x) = f(σ(x)), x ∈ XΛ.

Proof. Let

A = {f ∈ C∗(1σ|ν|(Uν); ν ∈ Λ∗) | ∀i ∈ A : Φ(SiΦ
−1(f)S∗

i ) = σ?(f)1Ui
}.

We want to show that A = C∗(1σ|ν|(Uν); ν ∈ Λ∗).
It is easy to see that A is a closed subset and that it is closed under addition

and conjugation.
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Let f, g ∈ A and i ∈ A. Then

Φ(SiΦ
−1(fg)S∗

i ) = Φ(SiΦ
−1(f)Φ−1(g)S∗

i SiS
∗
i ) = Φ(SiΦ

−1(f)S∗
i )Φ(SiΦ

−1(g)S∗
i )

= σ?(f)1Ui
σ?(g)1Ui

= σ?(fg)1Ui

so fg ∈ A. Hence A is also closed under multiplication. So it is a C∗-subalgebra
of C∗(1σ|ν|(Uν); ν ∈ Λ∗).

Since

Φ(SiΦ
−1(1σ|ν|(Uν))S

∗
i ) = Φ(SiS

∗
νSνS

∗
i ) = 1Ui∩σ−1(σ|ν|(Uν))

= 1Ui
1σ−1(σ|ν|(Uν)) = σ?(1σ|ν|(Uν))1Ui

,

1σ|ν|(Uν) ∈ A for each ν ∈ Λ∗.

So A = C∗(1σ|ν|(Uν); ν ∈ Λ∗).

Theorem 1.4. (Theorem 4.9 of [5]1) Let A be a unital C∗-algebra. Suppose
that there is a unital ∗-homomorphism ψ from AΛ to A and there are partial
isometries si, i ∈ A satisfying the following relations:

(i)
∑
i∈A

sis
∗
i = 1;

(ii) s∗µsµsν = sνs
∗
µνsµν for all µ, ν ∈ A

(N);

(iii) s∗µsµ = ψ(S∗
µSµ) for all µ ∈ A(N);

where sµ = sµ1
· · · sµ|µ|

, µ = (µ1, . . . , µ|µ|) ∈ Λ∗. Then ψ extends to a unital

∗-homomorphism from OΛ to A such that ψ(Si) = si for all i ∈ A.

2. SOFIC SHIFTS

As in [6] and [8] we put for each x ∈ XΛ and each l ∈ N

Λl(x) = {µ ∈ Λl | µx ∈ XΛ}.

Two points x, y ∈ XΛ are said to be l-past equivalent if Λl(x) = Λl(y). It is easy
to see that this is an equivalence relation. We write this equivalence as x ∼l y.
Let E l

i , i = 1, 2, . . . ,m(l) be the set of all l-past equivalence classes of XΛ. We
denote by Ωl = XΛ/∼l the quotient space of the l-past equivalence classes of XΛ.

Sofic shifts is a class of subshifts characterized by the following: A subshift
Λ is sofic if and only if there exists l ∈ N, such that Ωk = Ωl for all k > l (cf. [11]
and [6]). In this case we will let ΩΛ = Ωl, mΛ = m(l) and Ei = E l

i .
For a subset E ⊆ XΛ and a µ ∈ A(N) (the set of finite words over the alphabet

A) we let
µE = {µx ∈ XΛ | x ∈ E}.

Notice that if µEi 6= ∅ and x ∈ Ei, then µx ∈ XΛ.
When Λ is a sofic shift we define the left Krieger cover graph of Λ to be the

labeled graph with vertex set {1, 2, . . . ,mΛ} and where there for each vertex i and

1 We remark that it is necessary to include all finite words A
N and not just Λ∗

in condition (ii) and (iii) to rule out the existence of a ∗-homomorphism from OΛ to
On (where n is the number of letters in the alphabet) sending the generators to the
generators.
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each j ∈ A such that jEi 6= ∅ is an edge labeled j going from k to i, where k is the
unique element of {1, 2, . . . ,mΛ} such that jEi ⊆ Ek (cf. [6] and [3]). Notice that
this graph is left-resolving (i.e. all edges ending at the same vertex have different
labels).

For an edge e we will by s(e), r(e) and L(e) denote the source, range and
label of e.

We let BΛ be the matrix over the edge set EΛ defined by

BΛ(e, f) =
{

1 if r(e) = s(f),
0 else.

Then BΛ is a {0, 1}-matrix with no zero-row or -column.

Example 2.1. Let A = {0, 1} and Λ ⊆ AZ be the set of all sequences such
that between two 1’s there are an even number of 0’s. Then Λ is a sofic shift called
the even shift (cf. [4]). One can show that mΛ = 3 and

E1 = {02n1x | n ∈ N0, x ∈ XΛ},

E2 = {02n+11x | n ∈ N0, x ∈ XΛ},

E3 = {0∞}.

The left Krieger cover graph of Λ is given by:
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����
�
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�

.

The following result is a key element to the results which will be proved in
this paper.

Proposition 2.2. Let Λ be a sofic shift. Then there exists mutually orthog-
onal projections Ei, i = 1, 2, . . . ,mΛ in AΛ such that:

(i) AΛ is generated by Ei, i = 1, 2, . . . ,mΛ;

(ii) for each µ ∈ A(N)

S∗
µSµ =

∑

µEi 6=∅

Ei;

(iii) for each i ∈ {1, 2, . . . ,mΛ}

Ei =
∑

s(e)=i

SL(e)Er(e)S
∗
L(e).

Proof. First notice that for each µ ∈ A(N)

(2.1) σ|µ|(Uµ) =
⋃

µEi 6=∅

Ei.
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From this we get that for each i ∈ {1, 2, . . . ,mΛ}

Ei =
[ ⋂

µEi 6=∅

σ|µ|(Uµ)
]
∩

[ ⋂

µEi=∅

XΛ \ σ|µ|(Uµ)
]
.

By (2.1) we see that there is only a finite number of different sets σ|µ|(Uµ).
So we can for each i ∈ {1, 2, . . . ,mΛ} choose finite sets Mi ⊆ Λ∗ and Ni ⊆ Λ∗ such

that

Ei =
[ ⋂

µ∈Mi

σ|µ|(Uµ)
]
∩

[ ⋂

µ∈Ni

XΛ \ σ|µ|(Uµ)
]
.

From this we get

1Ei
=

[ ∏

µ∈Mi

1σ|µ|(Uµ)

][ ∏

µ∈Ni

(1 − 1σ|µ|(Uµ))
]
.

So 1Ei
∈ C∗(1σ|ν|(Uν); ν ∈ Λ∗) for each i ∈ {1, 2, . . . ,mΛ}.

We can therefore define Ei by

Ei = Φ−1(1Ei
)

where Φ is as in Proposition 1.2. Since the Ei’s are mutually disjoint the Ei’s are

mutually orthogonal projections. By (1.2) we have that

S∗
µSµ =

∑

µEi 6=∅

Ei.

So AΛ = C∗(S∗
µSµ;µ ∈ Λ∗) is generated by Ei, i = 1, 2, . . . ,mΛ. Since for each

i ∈ {1, 2, . . . ,mΛ}

Ei =
⋃

j∈A

{jx | jx ∈ Ei} =
⋃

j∈A

mΛ⋃

k=1

{jx | jx ∈ Ei, x ∈ Ek}

=
⋃

j∈A

⋃

jEk⊆Ei

jEk =
⋃

s(e)=i

UL(e) ∩ σ
−1(Er(e))

we have by Lemma 1.3 that

Ei =
∑

s(e)=i

SL(e)Er(e)S
∗
L(e).

Example 2.3. If we let Λ be as in Example 2.1, then we get:

E1 = S∗
1S1(1 − S∗

10S10),

E2 = S∗
10S10(1 − S∗

1S1),

E3 = S∗
1S1S

∗
10S10.
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3. THE ISOMORPHISM

Definition 3.1. For a matrix A over a finite set Σ, with A(i, j) ∈ {0, 1} and

where every row and column of A is non-zero, we define (cf. [2]) the Cuntz-Krieger

algebra for A to be the universal C∗-algebra OA generated by partial isometries

si, i ∈ Σ such that

(a) sis
∗
i sjs

∗
j = 0 for i 6= j,

(b) s∗i si =
∑
j∈Σ

A(i, j)sjs
∗
j .

We notice that
∑
i∈Σ

sis
∗
i = 1OA

.

Proposition 3.2. Let Λ be a sofic shift. Then there exists a ∗-homo-

morphism from OBΛ
to OΛ sending se to SL(e)Er(e), where Ei is as in Propo-

sition 2.2.

Proof. Let S̃e = SL(e)Er(e). By Proposition 2.2 S∗
j Sj =

∑
jEi 6=∅

Ei for each

j ∈ A, and since L(e)Er(e) 6= ∅, we have Er(e) 6 S∗
L(e)SL(e). So

S̃∗
e S̃e = Er(e)S

∗
L(e)SL(e)Er(e) = Er(e).

Hence S̃e is a partial isometry.

Since the left Krieger cover graph is left-resolving, we have that if e 6= f

either L(e) 6= L(f) or r(e) 6= r(f). If L(e) 6= L(f)

S∗
L(e)SL(f) = 0

by Lemma 1.2, and if r(e) 6= r(f)

Er(e)S
∗
L(e)SL(f)Er(f) = Er(e)Er(f) = 0.

So

S̃eS̃
∗
e S̃f S̃

∗
f = SL(e)Er(e)S

∗
L(e)SL(f)Er(f)S

∗
L(f) = 0

for e 6= f .

By Proposition 2.2

S̃∗
e S̃e = Er(e) =

∑

s(f)=r(e)

SL(f)Er(f)S
∗
L(f)

=
∑

s(f)=r(e)

S̃f S̃
∗
f =

∑

f∈EΛ

B(e, f)S̃f S̃
∗
f .

So the partial isometries S̃e, e ∈ EΛ, satisfy the Cuntz-Krieger relations and

therefore there exists a ∗-homomorphism from OBΛ
to OΛ sending se to S̃e =

SL(e)Er(e).
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Lemma 3.3. Let Λ be a sofic shift. For µ ∈ A(N) and i ∈ {1, 2, . . . ,mΛ} the

following are equivalent:

(i) µEi 6= ∅;
(ii) there exists a path α on the left Krieger cover graph of Λ such that

L(α) = µ and r(α) = i.
The path α is unique, and furthermore it fulfills that µEi ⊆ Es(α).

Proof. We will prove the statement by induction over the length of µ. First
assume that µ ∈ A. Then the statement follows directly from the definition of the
left Krieger cover graph.

Assume next that we have proved the statement for µ ∈ Ak, and that ν ∈
Ak+1. Let µ = (ν2, ν3, . . . , ν|ν|).

If νEi 6= ∅, then µEi 6= ∅. So there exists a unique path α such that
L(α) = µ and r(α) = i and furthermore µEi ⊆ Es(α). Since νEi = ν1µEi ⊆ ν1Es(α)

and νEi 6= ∅, ν1Es(α) 6= ∅. Thus there exists an unique edge e, such that
L(e) = ν1 and r(e) = s(α) and furthermore ν1Es(α) ⊆ Es(e). Since r(e) =
s(α), eα is a path on the left Krieger cover graph and L(eα) = ν, r(eα) = i
and νEi ⊆ Es(eα). If α′ is another path such that L(α′) = ν and r(α′) = i,
then L((α′

2, . . . , α
′
|α′|)) = µ, r((α′

2, . . . , α
′
|α′|)) = i, L(α′

1) = ν1 and r(α′
1) =

s((α′
2, . . . , α

′
|α′|)). So (α′

2, . . . , α
′
|α′|) = α and α′

1 = e. Hence α′ = eα.

If there exists a path β such that L(β) = ν and r(β) = i , then γ =
(β2, β3, . . . , β|β|) is a path such that L(γ) = µ and r(β) = i, and β1 is an edge such
that L(β1) = ν1 and r(β1) = s(γ). So ∅ 6= µEi ⊆ Es(γ) and ν1Es(γ) 6= ∅. Hence
νEi = ν1µEi 6= ∅.

Proposition 3.4. Let Λ be a sofic shift. Then there exists a ∗-homo-

morphism from OΛ to OBΛ
sending Si to

∑
L(e)=i

se and Er(e) to s∗ese, where Ei

is as in Proposition 2.2.

Proof. Observe that B(e, g) = B(f, g) for all g ∈ EΛ if r(e) = r(f), and that
B(e, g)B(f, g) = 0 for all g ∈ EΛ if r(e) 6= r(f). So s∗ese = s∗fsf if r(e) = r(f) and

s∗eses
∗
fsf = 0 if r(e) 6= r(f).
Since AΛ is generated by Ei, i = 1, 2, . . . ,mΛ and EiEj = 0 for i 6= j there

exists a ∗-homomorphism ψ from AΛ to OBΛ
sending Er(e) to s∗ese.

For each µ ∈ Λ∗ define s̃µ by

s̃µ =
∑

L(α)=µ

sα1
· · · sα|α|

.

Since

s̃µs̃ν =
∑

L(α)=µ

sα1
· · · sα|α|

∑

L(β)=ν

sβ1
· · · sβ|β|

=
∑

L(α)=µ

L(β)=ν

r(α)=s(β)

sα1
· · · sα|α|

sβ1
· · · sβ|β|

=
∑

L(γ)=µν

sγ1
· · · sγ|γ|

= s̃µν ,
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we have that s̃µ = s̃µ1
· · · s̃µ|µ|

for each µ.

Since the left Krieger cover graph is left-resolving we have

s̃is̃
∗
i s̃i =

∑

L(e)=i

se

∑

L(f)=i

s∗f
∑

L(g)=i

sg =
∑

L(e)=i

ses
∗
ese =

∑

L(e)=i

se = s̃i,

so s̃i is a partial isometry.

We see that
∑

i∈A

s̃is̃
∗
i =

∑

i∈A

∑

L(e)=i

ses
∗
e =

∑

e∈EΛ

ses
∗
e = 1.

If νµ /∈ Λ∗,

s̃∗ν s̃ν s̃µ = 0 = s̃µs̃
∗
νµs̃νµ,

and if νµ ∈ Λ∗,

s̃∗ν s̃ν s̃µ = s̃µ = s̃µs̃
∗
νµs̃νµ,

so s̃∗ν s̃ν s̃µ = s̃µs̃
∗
νµs̃νµ for all ν, µ ∈ A(N).

By Proposition 2.2 and Lemma 3.3 we have that

ψ(S∗
µSµ)=ψ

( ∑

µEi 6=∅

Ei

)
=

∑

L(α)=µ

s∗α|α|
sα|α|

=
∑

L(α)=µ

s∗α|α|
· · · s∗α1

sα1
· · · sα|α|

= s̃ ∗
µ s̃µ

for all µ ∈ A(N).

So according to Theorem 1.4 ψ extends to a ∗-homomorphism from OΛ to

OBΛ
sending Er(e) to s∗ese and Si to s̃i =

∑
L(e)=i

se.

Theorem 3.5. Let Λ be a sofic shift. Then OΛ ' OBΛ
.

Proof. According to Proposition 3.2 there exists a ∗-homomorphism ϕ :

OBΛ
→ OΛ such that ϕ(se) = SL(e)Er(e), and according to Proposition 3.4

there exists a ∗-homomorphism ψ : OΛ → OBΛ
such that ψ(Si) =

∑
L(e)=i

se and

ψ(Er(e)) = s∗ese.

We have that

ϕ(ψ(Si)) = ϕ

( ∑

L(e)=i

se

)
=

∑

L(e)=i

ϕ(se) =
∑

L(e)=i

SL(e)Er(e) =
∑

L(e)=i

SiEr(e) = Si,

where we for the last equality use that
mΛ∑
j=1

Ej = 1, and that SiEj = 0 if there does

not exists an edge with range j and label i. So ϕ ◦ ψ = idOΛ
, and since
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ψ(ϕ(se)) = ψ(SL(e)Er(e)) =
∑

L(f)=L(e)

sfs
∗
ese = se,

ψ ◦ ϕ = idOBΛ
. Thus ψ and ϕ are each other’s inverse and OΛ ' OBΛ

.

Remark 3.6. For a sofic shift Λ that does not satisfy condition (1.1), we
can not be sure that the correspondence considered in Proposition 1.2 gives rise
to an isomorphism from the commutative C∗-algebra DΛ onto the C∗-subalgebra
C∗(1Uµ∩σ−|µ|(σ|ν|(Uν));µ, ν ∈ Λ∗) of B(XΛ), and thus that OΛ ' OBΛ

. But it is
still true that OΛ is isomorphic to a Cuntz-Krieger algebra OAΛ

for another matrix
AΛ that is a bit more complicated to describe than BΛ.

Remark 3.7. After this paper was completed, the author received Kengo
Matsumoto’s preprint ([9]), where there is a result from which Theorem 3.5 follows
in case the sofic shift Λ satisfies a certain condition (I) and condition (1.1).

Remark 3.8. In [1], Matsumoto and the author have considered another
C∗-algebra associated with a subshift. By using exactly the same methods used in
this paper one can show that for a sofic shift that satisfies a certain condition (I)
(but not necessarily condition (1.1)) this C∗-algebra is isomorphic to the Cuntz-
Krieger algebras of the left Krieger cover graph of the sofic shift.

Acknowledgements. The paper was completed at the Mathematical Sciences Re-
search Institute, and the author would like to thank the MSRI for its kind hospitality.

Note added in proof. After this paper was submitted, the author learned that
Jonathan Samuel independently has achived a result similar to Theorem 3.5.
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