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1. INTRODUCTION

In Shields [7] multiplication operators on reproducing kernel Hilbert spaces with

kernels of the form K(z, w) =
∞∑

n=0
anznwn were extensively studied. In these

spaces the monomials
{√

anzn
}

form an orthonormal basis, and the operator Mz

of multiplication by z is a forward unilateral shift. In Adams and McGuire ([1]),
a beginning was made on the study of the reproducing kernel Hilbert spaces with

kernels of the form K(z, w) =
∞∑

n=0
fn(z)fn(w) where fn(z) = (an,0 + an,1z + · · ·+

an,JzJ)zn and J is fixed. These spaces are known as bandwidth J spaces since

the Taylor series expansion of K(z, w) =
∞∑

i,j=0

ai,jz
iwj satisfies ai,j = 0 outside the

band |i− j| > J . Also the polynomials {fn(z)} form an orthonormal basis. It was
shown in Adams, McGuire [2] that the behavior of the multiplication operators on
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these spaces can be markedly different from the Shields case (J = 0). Aside from
being a natural generalization of the spaces treated by Shields and providing a
natural setting for studying classes of orthogonal polynomials, we will show in this
paper a connection of these spaces and their multiplication operators to spaces of
vector valued functions and matrix valued weighted shifts. As relatively little is
known about operator valued weighted shifts, the connection to multiplication by
z on bandwidth J spaces provides an insight to an important class of examples of
operator valued weighted shifts.

Section 2 recalls some basic properties of reproducing kernel Hilbert spaces.

2. REPRODUCING KERNEL HILBERT SPACES

If D is a set and K is a function from D × D into the bounded linear operators
B(C) on a Hilbert space C, then K is positive definite (denoted K À 0) on D
provided

n∑
i,j=0

〈K(zi, zj)~xj , ~xi〉C > 0 for any finite subsets {z1, . . . , zn} ⊂ D and

{~x1, . . . , ~xn} ⊂ C with strict inequality unless all the ~xi’s are zero. It is well known

that if K À 0 on D, then the set of generating functions G =
{ n∑

j=1

K(z, zj)~xj :

z1, . . . , zn ∈ D, ~x1, . . . , ~xn ∈ C
}

is dense in a Hilbert space H(K) of functions on
D with inner product 〈K(z, z1)~x1,K(z, z2)~x2〉H(K) = 〈K(z2, z1)~x1, ~x2〉C and norm∥∥∥

n∑
j=1

K(z, zj)~xj

∥∥∥
2

=
n∑

i,j=0

〈K(zi, zj)~xj , ~xi〉C .
A fundamental property of H(K) is that for each w in D the evaluation map

Ew : H(K) → C defined by Ewf = f(w) is a bounded linear map. In this case the
function K : D×D → B(C) is given by K(z, w) = EzE

∗
w. Moreover, if f ∈ H(K),

~x ∈ C, and w ∈ D, then 〈f(z),K(z, w)~x〉
H(K) = 〈f(w), ~x〉C . Conversely, if H

is a Hilbert space of C-valued functions defined on D such that for each w ∈ D
evaluation at w is a bounded linear map into C, then there is a unique K defined
on D × D such that H = H(K). For general properties of reproducing kernel
Hilbert spaces, the reader is referred to N. Aronszajn [4], H. Dym [5], and Adams,
McGuire, Paulsen [1], and Adams, Froelich, McGuire, and Paulsen [3].

If Ω is an open subset of Cn and the function K : Ω× Ω → B(C) defined by
K(z, w) = EzE

∗
w is analytic in z and coanalytic in w, then H(K) is an analytic

reproducing kernel Hilbert space.
With N = {0, 1, 2, . . .} the set of non-negative integers and n a fixed positive

integer, the set Nn is partially ordered by setting I = (i1, . . . , in) > (j1, . . . , jn) = J
if and only if ik > jk for k = 1, . . . , n. If z = (z1, . . . , zn) ∈ Cn then we set
zI = zi1

1 · · · zin
n .

Let H be an analytic reproducing kernel space of C-valued functions on Ω and
assume that Ω contains 0. Then Ez has a power series expansion, Ez =

∑
I>0

zIBI ,

where BI ∈ B(H, C) and consequently, K(z, w) =
∑

I,J>0

zIwJBIB
∗
J for z, w in some

neighborhood of 0. The matrix A = (BIB
∗
J)I,J>0 is formally positive in the sense

that if {~xJ}J∈Nn is any collection of vectors in C with only finitely many non-zero
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terms, then
∑
I,J

〈BIB
∗
J~x

J
, ~x

I
〉C > 0. Conversely, if A = (AI,J)

I,J>0
, AI,J in B(C),

is formally positive and K(z, w) =
∑

zIwJAI,J converges on some polydisk, then
K(z, w) is positive definite on that polydisk.

Let {ei}∞i=0 denote the standard orthonormal basis for l2 and set l2(n) = l2⊗
· · ·⊗l2 (n copies) which has orthonormal basis e

I
= ei1⊗· · ·⊗ein

, I = (i1, . . . , in) ∈
Nn. Every vector ~x in l2(n) ⊗ C has a unique representation as ~x =

∑
I eI ⊗ ~xI

with ~x
I
∈ C and

∑ ‖~x
I
‖2 < ∞. If A ∈ B(l2(n)⊗C) then A has a representation as

A = (AI,J) where each AI,J ∈ B(C) and A~x =
∑
I

e
I
⊗ (

∑
J

A
I,J

~x
J
). Moreover if A

is a positive operator, then (AI,J) is formally positive, and K(z, w) =
∑

zIwJAI,J

converges for z and w in the unit polydisk Dn.
Thus to every positive operator A = (AI,J) in B(l2(n) ⊗ C) we have an

associated analytic reproducing kernel Hilbert space of C-valued functions on Dn

which we will denote by H(A).
Conversely, if H is an analytic reproducing kernel Hilbert space of C-valued

functions on a connected domain Ω in Cn, then by a translation and rescaling we
may assume Ω contains the closed unit polydisk and that K(z, w) =

∑
zIwJAI,J

where A = (AI,J ) defines a bounded positive operator on B(l2(n) ⊗ C) . Letting
A range over the positive operators on B(l2(n) ⊗ C), up to some equivalence,
one obtains all the reproducing kernel Hilbert spaces of C-valued functions on
any connected domain Ω in Cn. If A = BB∗, then the space H(K) is given by{ ∑

I

yI z
I : y = Bx, x ∈ l2(n)⊗ C

}
.

Let K̂(z, w) =
∞∑

j=0

LjL
∗
j (wz)j where Lj is a lower triangular n×n matrix with

trivial kernel and w, z ∈ D ⊂ C. By Theorem 2.1 of Adams, Froelich, McGuire,
and Paulsen [3] H(K̂) can also be characterized by R(L), the range space of L,

where L =




L0 0 · · ·
0 L1

. . .
...

. . . . . .


 acts on l2⊗Cn =

{ ∞∑
j=0

ej⊗~xj : ~xj ∈ Cn,
∞∑

j=0

‖~xj‖2 <

∞
}

. Here
∞∑

j=0

Lj~xjz
j is identified with

∞∑
j=0

ej ⊗ Lj~xj = L
( ∞∑

j=0

ej ⊗ ~xj

)
and

∥∥∥
∞∑

j=0

Lj~xjz
j
∥∥∥

2

H(K̂)
=

∥∥∥L
( ∞∑

j=0

ej ⊗ ~xj

)∥∥∥
2

R(L)
=

∞∑
j=0

‖~xj‖2. An orthonormal basis

for H(K̂) is given by {Lj(~ej)zj : j = 0, 1, 2, . . .} where {~e1, . . . , ~en} is the stan-
dard basis for Cn. Note also that if M̂z denotes multiplication by z, then formally
M̂zLj~xzj = Lj~xzj+1 = Lj+1(L−1

j+1Lj)~xzj+1. Hence if each Lj is invertible, then
M̂z is an operator valued weighted shift with weights {L−1

j+1Lj : j = 0, 1, . . .} and
has the matrix form

M̂z =




0 0 · · ·
L−1

1 L0 0 0
0 L−1

2 L1 0
...

. . . . . .


 .
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3. THE MAIN RESULTS

Theorem 3.1. If K̂(z, w) =
∞∑

n=0
RnR∗n(wz)n is positive definite on D × D

for a sequence {Rn} of J × J matrices, h(z) = (h1(z), . . . , hJ(z)) is any holo-
morphic function from C into CJ , H(K̂h) is the subspace of H(K̂) spanned by{ n∑

j=1

αjK̂(z, wj)h(wj)∗ : wj ∈ D, αj ∈ C, n ∈ N
}
, and K is the scalar val-

ued kernel defined on D × D by K(z, w) = h(z)K̂(z, w)h(w)∗, then the map
V : H(K̂h) → H(K) defined by (V f)(z) = h(z)f(z) is an isomorphism.

Proof. First note that
{ n∑

j=1

αjK̂(z, wj)h(wj)∗ : wj ∈ D, αj ∈ C
}

and
{ n∑

j=1

αjh(z)K̂(z, wj)h(wj)∗ : wj ∈ D, αj ∈ C
}

are dense in H(K̂h) and H(K)

respectively. Since V
( n∑

j=1

αjK̂(z, wj)h(wj)∗
)

=
n∑

j=1

αjh(zj)K̂(z, wj)h(wj)∗ and

∥∥∥
n∑

j=1

αjK̂(z, wj)h(wj)∗
∥∥∥

2

H(K̂)

=
∑

i,j

αiαj〈K̂(wj , wi)h(wi)∗, h(wj)∗〉CJ

=
∑

i,j

αiαjh(wj)K̂(wj , wi)h(wi)∗ =
∥∥∥

n∑

j=1

αjh(z)K̂(z, wj)h(wj)∗
∥∥∥

2

H(K)

,

V is an isometry on the dense generating sets. Hence V extends to an isomor-
phism.

Definition 3.2. If K(z, w) =
∞∑

n=0
fn(z)fn(w) is a J bandwidth kernel with

fn(z) = (an,0 + an,1z + · · · + an,JzJ)zn, then K is strictly positive if an,0 6= 0 for
all n.

Note that if K(z, w) is written as K(z, w) = (1, z, z2, . . .)LL∗(1, w, w2, . . .)∗

= ( 1 z z2 . . . )




a0,0 0 · · ·
a0,1 a1,0 · · ·

... a1,1
. . .

a0,J

...
. . .

0 a1,J
. . .

...
. . . . . .







a0,0 · · · a0,J 0

0 a1,0 · · · a1,J
. . .

...
. . . . . . . . . . . .







1
w
w2

...


 ,

then K strictly positive means the diagonal entries of L are all nonzero. If an,0 = 0
for some n, then the Cholesky decomposition of LL∗ would result in a lower
triangular matrix Q such that QQ∗ = LL∗ and such that both the nth row and
nth column of Q are identically zero. The effect on H(K) is a splitting of the
space into polynomials of degree less than n and zn+1 times a J bandwidth space.
For this reason our attention will be focused on strictly positive kernels of finite
bandwidth.
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Definition 3.3. The strictly positive reproducing kernel K is properly J
bandwidth if K is J bandwidth and there does not exist a strictly positive kernel
Kr of bandwidth r < J such that Kr ¿ K.

If fn(z) = (an,0 + an,1z + · · · + an,JzJ)zn, then K(z, w) =
∞∑

n=0
fn(z)fn(w)

can always be put into the form K(z, w) = h(z)
( ∞∑

n=0
LnL∗n(wz)n

)
h(w)∗ where

h(z) = (1, z, . . . , zJ) and

Ln =




a0,0 0 · · · 0
a0,1 0 · · · 0

... 0 · · · 0
a0,J 0 · · · 0


 .

Clearly this particular Ln is not invertible. Our next result leads to alternate
choices for Ln that maximizes its rank based on its proper bandwidth.

Theorem 3.4. If K(z, w) =
∞∑

n=0
fn(z)fn(w) is a strictly positive J band-

width kernel with fn(z) = (an,0 + an,1z + · · · + an,JzJ )zn, then the following are
equivalent:

(i) there exists a strictly positive properly r bandwidth kernel Kr where
0 6 r < J such that K À Kr;

(ii) K(z, w) = K0(z, w) + K1(z, w) + · · · + KJ−r(z, w) where K0(z, w) is
a J bandwidth kernel and Km(z, w) is (wz)m times a strictly positive properly
bandwidth r kernel for 1 6 m 6 J − r, 0 6 r < J ;

(iii) K(z, w) =
∞∑

n=0
h(z)LnL∗nh(w)∗(wz)n, where h(z) = (1, z, . . . , zJ) and

each Ln is a J + 1× J + 1 matrix of the form



α0,0 0 0 · · · · · · 0 · · · 0

α1,0 α1,1 0
. . . · · · 0 · · · 0

...
...

. . . . . . . . .
... · · · ...

αr+1,0 αr+1,1
. . . . . . 0 0 · · · 0

... 0 αr+2,2
. . . αJ−r,J−r

...
. . . 0

...
...

. . . . . .
...

...
. . .

...
αJ,0 0 · · · 0 αJ,J−r 0 · · · 0




with αm,m 6= 0 for 0 6 m 6 J − r.

Proof. Since the case J = 0 is trivial, assume J > 1. Recall that if K(z, w) =
∞∑

i,j=0

ai,jz
iwj , then the corresponding coefficient matrix A = [ai,j ] satisfies ai,j = 0

if |i − j| > J . Conversely if A = [ai,j ] > 0 satisifes ai,j = 0 if |i − j| > J ,
then the Cholesky decomposition A = LL∗ produces a lower triangular matrix
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L of bandwidth J . Now suppose Kr(z, w) =
∞∑

n=0
gn(z)gn(w) is a strictly positive

properly r bandwidth kernel with 0 6 r < J such that K À Kr. Note the
associated matrices A and Ar satisfy A − Ar > 0 and A − Ar is of the same
bandwidth as A. Hence the Cholesky algorithm produces L1 of bandwidth J such
that A−Ar = L1L

∗
1 which implies K−Kr is of bandwidth J . Similarly K0(z, w) =

K(z, w)−Kr(z, w) + g0(z)g0(w) is of bandwidth J . For 1 6 m 6 J − r − 1, let

Km(z, w) = (wz)m
[gm(z)gm(w)

2m−1(wz)m
+

∞∑
n=m+1

gn(z)gn(w)
2m(wz)m

]

and let KJ−r(z, w) = (wz)J−r
∞∑

n=J−r

gn(z)gn(w)
2J−r−1(wz)J−r . Since Kr(z, w) is a strictly

positive r bandwidth kernel, Km(z, w) is (wz)m times a strictly positive r band-
width kernel for each m = 1, . . . , J − r. It is routine to observe that K(z, w) =
K0(z, w) + K1(z, w) + · · ·+ KJ−r(z, w). That condition (ii) implies (i) is trivial.

Assume Ln is as is in the statement of part (iii) of the theorem. The equiv-
alence of (ii) and (iii) follows from the observation that

K(z, w) =
∞∑

n=0

h(z)LnL∗nh(w)∗(wz)n =
J−r∑
m=0

( ∞∑
n=0

(h(z)Ln~em)(~e ∗mL∗nh(w)∗)(wz)n
)

where ~em is the mth canonical basis vector of CJ . Also note that

Km(z, w) =
∞∑

n=0

(h(z)Ln~em)(~e ∗mL∗nh(w)∗)(wz)n

is (wz)m times a strictly positive bandwidth r kernel for m = 1, . . . , J − r while
K0(z, w) is a strictly positive bandwidth J kernel.

Of particular interest is the case where K À K0 for some strictly positive
bandwidth 0 kernel. In this case H(K) contains all the powers of z and hence all
the polynomials. Additionally each Ln is a lower triangular invertible matrix. The
next theorem summarizes this case and provides a more concrete necessary and
sufficient condition for H(K) to contain the polynomials. It is important to note
that the choice of Ln is not unique. It will be shown later that there is a range
of choices for Ln and that a judicious choice is not only possible but necessary for
the boundedness of M̂z.

Theorem 3.5. If fn(z) = (an,0 + an,1z + · · ·+ an,JzJ )zn with an,0 6= 0 and

K(z, w) =
∞∑

n=0
fn(z)fn(w), then the following are equivalent:

(i) K(z, w) may be written in the form

K(z, w) = h(z)
( ∞∑

n=0

LnL∗n(wz)n
)
h(w)∗,

where h(z) = (1, z, . . . , zJ) and Ln is an invertible J + 1× J + 1 lower triangular
matrix;

(ii) the space H(K) contains the polynomials;
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(iii) for j > 0, the sequence
{

1,
Dj,1

aj+1,0
,

Dj,2
aj+1,0aj+2,0

,
Dj,3

aj+1,0aj+2,0aj+3,0
, . . .

}
is

square summable where Dj,k is the k × k determinant of the submatrix of

L =




a0,0 0 0 · · ·
a0,1 a1,0 0 . . .
... a1,1

. . . . . .

a0,J
. . . . . . . . .

0 a1,J
. . . . . .

0 0
. . . . . .




which has aj,1 in the upper left corner.

Proof. The equivalence of (i) and (ii) is a consequence of Theorem 3.4. To
establish (iii) recall zn belongs to H(K) if and only if the range of L contains the
canonical basis vector ~en. This reduces the problem to finding a square summable
sequence {λn+k}∞k=0 such that




an,0 0 0 · · ·
an,1 an+1,0 0 . . .

... an+1,1
. . . . . .

an,J
. . . . . . . . .

0 an+1,J
. . . . . .

0 0
. . . . . .







λn

λn+1

λn+2

λn+3

λn+4

...




=




1
0
0
0
0
...




.

Since L is upper triangular it is straightforward to use Cramer’s Rule to determine
that

λn =
1

an,0
, λn+1 =

∣∣∣∣
an,0 1
an,1 0

∣∣∣∣
∣∣∣∣
an,0 0
an,1 an+1,0

∣∣∣∣
, λn+2 =

∣∣∣∣∣
an,0 0 1
an,1 an+1,0 0
an,2 an+1,1 0

∣∣∣∣∣
∣∣∣∣∣
an,0 0 0
an,1 an+1,0 0
an,2 an+1,1 an+2,0

∣∣∣∣∣

,

and so on. Expanding the top determinants along the last column shows an,0λn+k

= (−1)k Dn,k

an+1,0···an+k,0
and hence the sequence {λn+k} is square summable if and

only if the sequence
{

Dn,k

an+1,0···an+k,0

}
is square summable.

Our next result relates the multiplication operators on a bandwidth J space
H(K) containing the polynomials to compressions of Toeplitz type matrix oper-
ators on H(K̂). In particular the operator of multiplication by z on H(K) is
realized as the compression of a matrix valued weighted shift. Before stating and
proving the result a preliminary lemma is necessary.
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Lemma 3.6. If {gn}∞n=0 converges in norm to g in H(K̂) where K̂ is an
analytic J + 1× J + 1 matrix valued reproducing kernel in a domain D×D, then:

(i) g
(k)
n (z) → g(k)(z) uniformly on compact subsets of D for all k;

(ii) the Taylor series coefficients of gn converge to the Taylor series coeffi-
cients of g.

Proof. For each ~x ∈ CJ and w ∈ D,

|〈gn(w)− g(w), ~x〉CJ | = |〈gn − g, K̂(z, w)~x〉H(K̂)| 6 ‖gn − g‖H(K̂)‖K̂(z, w)~x‖H(K̂)

6 ‖gn − g‖H(K̂)‖K̂(w, w)1/2‖CJ‖~x‖CJ .

Since ‖K(w, w)1/2‖CJ is uniformly bounded on compact subsets of D and ‖gn −
g‖H(K̂) → 0, gn(w) → g(w) uniformly on compact subsets of D. Hence all the
derivatives converge uniformly and consequently the Taylor series coefficients.

Theorem 3.7. If K(z, w) is a strictly positive J bandwidth kernel such that
H(K) contains the polynomials, then there exists a sequence of invertible J + 1×
J + 1 matrices {Rn}∞n=0 such that:

(i) the map V : H(K̂h) → H(K) given by V (f(z)) = h(z)f(z) is an isomor-

phism where K̂(z, w) =
∞∑

n=0
RnR∗n(wz)n, h(z) = (1, z, . . . , zJ), and H(K̂h) is the

subspace of H(K̂) spanned by G =
{ n∑

i=1

αiK̂(z, wi)h(wi)∗ : αi ∈ C, wi ∈ D, n ∈

N
}
;

(ii) if ϕ(z) =
∞∑

n=0
ϕnzn is an analytic function, then ϕ is a multiplier of

H(K) if and only if the compression of M̂ϕ to H(K̂h) is bounded where M̂ϕ is
formally defined on H(K̂) by the matrix

M̂ϕ =




ϕ0I 0 0 · · ·
ϕ1R

−1
1 R0 ϕ0I 0

. . .

ϕ2R
−1
2 R0 ϕ1R

−1
2 R1 ϕ0I

. . .
...

. . . . . . . . .




.

In this case H(K̂h) is invariant under M̂∗
ϕ and M∗

ϕ = V M̂∗
ϕV ∗.

Proof. Part (i) is a simple consequence of Theorem 3.1 and Theorem 3.5.

Before proceeding note that if f(z) =
∞∑

n=0
Rn~ynzn is in H(K̂), then M̂ϕ

and M̂∗
ϕ are formally defined by M̂ϕ(f(z)) =

∞∑
n=0

Rn

( n∑
j=0

ϕjR
−1
n Rn−j~yn−j

)
zn and
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M̂∗
ϕ(f(z)) =

∞∑
n=0

Rn

( ∞∑
j=0

ϕjR
∗
nR∗

−1

n+j~yn+j

)
zn. Also for w ∈ D,

M̂∗
ϕ(K̂(z, w)h(w)∗)

= M̂∗
ϕ

( ∞∑
n=0

RnR∗nh(w)∗(wz)n
)

=
∞∑

n=0

Rn

( ∞∑

j=0

ϕjR
∗
nR∗

−1

n+jR
∗
n+jh(w)∗wn+j

)
zn

=
∞∑

n=0

RnR∗n
( ∞∑

j=0

ϕjw
j
)
h(w)∗(wz)n = ϕ(w)K̂(z, w)h(w)∗.

To establish (ii) first assume that Mϕ is bounded on H(K). Since M∗
ϕK(z, w)

= ϕ(w)K(z, w), V ∗M∗
ϕV K̂(z, w)h(w)∗ = ϕ(w)K̂(z, w)h(w)∗. Thus M̂∗

ϕ and
V ∗M∗

ϕV agree on G.
Now suppose {gn} ⊂ G and gn converges to g in norm. Write gn(z) =

∞∑
j=0

Rj~yn,jz
j and g(z) =

∞∑
j=0

Rj~yjz
j . By Lemma 3.6, ~yn,j → ~yj for each j. Also

since V ∗M∗
ϕV gn → V ∗M∗

ϕV g and

V ∗M∗
ϕV gn = M̂∗

ϕgn =
∞∑

j=0

Rj

( ∞∑

k=0

ϕkR∗jR
∗−1

j+k~yn,j+k

)
zj

for each j, the sequence
{

Rj

∞∑
k=0

ϕkR∗jR
∗−1

j+k~yn,j+k

}∞
n=0

converges to the jth coeffi-

cient of V ∗M∗
ϕV g. For each k, ϕkR∗jR

∗−1

j+k~yn,j+k → ϕkR∗jR
∗−1

j+k~yj+k. As the series
∞∑

k=0

ϕkR∗jR
∗−1

j+k~yn,j+k converges for each j,

lim
n→∞

Rj

( ∞∑

k=0

ϕkR∗jR
∗−1

j+k~yn,j+k

)
= Rj

∞∑

k=0

ϕkR∗jR
∗−1

j+k~yj+k.

Thus V ∗M∗
ϕV g =

∞∑
j=0

Rj

( ∞∑
k=0

ϕkR∗jR
∗−1

j+k~yj+k

)
zj = M̂∗

ϕg.

For the converse of (ii), let A denote the compression of M̂ϕ to H(K̂h) and
assume A is bounded. Note V AV ∗ is bounded on H(K) and

〈V AV ∗f(z), K(z, w)〉 = 〈f(z), V A∗V ∗K(z, w)〉 = 〈f(z), V A∗K̂(z, w)h(w)∗〉
= 〈f(z), V ϕ(w)K̂(z, w)h(w)∗〉 = ϕ(w)〈f(z),K(z, w)〉 = ϕ(w)f(w)

for all w ∈ D. Thus V AV ∗ = Mϕ is bounded on H(K).

Definition 3.8. A sequence {Rn}∞n=0 that satisfies Theorem 3.7 above is
called a lifting for H(K).

It is important to realize two things about Theorem 3.7 above. First the
lifting sequences {Rn}∞n=0 are not unique and second it is possible that the com-
pression of M̂ϕ is bounded even though M̂ϕ is not bounded. The example below
illustrates these points in that two liftings are produced for the same H(K). With
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one of the liftings M̂z is bounded and with one it is not. The lack of uniqueness
of the liftings will be addressed further in the next section. Recall the form of M̂z

when the polynomials are present is

M̂z =




0 0 0 · · ·
L−1

1 L0 0
. . . . . .

0 L−1
2 L1 0

. . .
...

. . . L−1
3 L2

. . .




.

Example 3.9. Let

K(z, w) =
∞∑

n=0

(2 + z)(2 + w)(wz)n =
∞∑

n=0

( 1 z )
(

2 0
1 0

)(
2 1
0 0

) (
1
w

)
(wz)n

and note the space H(K) contains exactly the same functions as (2 + z)H2 = H2.

Thus the multipliers of H(K) are the bounded analytic functions. In particular

Mz is bounded on H(K) and is unitarily equivalent to the unilateral shift. One

lifting of H(K) is to write

K(z, w)

= ( 1 z )

[(
2 0
1

√
2

)(
2 1
0

√
2

)
+

∞∑

k=1

(√
2 0√
2 1

)(√
2

√
2

0 1

)
(wz)k

] (
1
w

)
.

In this case L−1
k+1Lk = I for k > 1 and hence M̂z is bounded. Another lifting of

H(K) is to write

K(z, w)

= ( 1 z )

[(
2 0
1

√
2

)(
2 1
0

√
2

)
+

∞∑

k=1

(
αk 0
βk γk

)(
αk βk

0 γk

)
(wz)k

] (
1
w

)
,

where α2
2k−1 = 2, α2

2k = 3 − 1
k2 , βk = 2

αk
, γ2

2k−1 = 1
k2 , and γ2

2k = 3 − 4k2

3k2−1

if k > 1. In this case L−1
k+1Lk =

( αk

αk+1
0

βk

γk+1
− αkβk+1

γk+1αk+1

γk

γk+1

)
for k > 1. Since

γ2
2k

γ2
2k+1

> (k + 1)2, M̂z is unbounded.
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4. EXAMPLES AND THE LIFTING MAP

While Theorems 3.4, 3.5, and 3.7 guarantee the existence of a lifting whenever
H(K) contains the polynomials, they are not constructive. By Theorem 3.4, Ln

may be taken to be of the form

Ln =




αn,0 0 0 · · · 0

αn,1 βn,1 0
. . .

...

αn,2 0
. . . . . . 0

...
...

. . . . . . 0
αn,J 0 · · · 0 βn,J




.

We assume the diagonal entries have been normalized so they are non-negative. By
Theorem 3.1, V (K̂(z, w)h(w)∗) = K(z, w) which leads to the following recursive
conditions on collecting like coefficients of z and w:

(1) α2
0,0 = a2

0,0;

(2)
k∑

i=0

|αk−i,i|2 +
k∑

i=1

β2
k−i,i =

k∑
i=0

|ak−i,i|2 if k = 1, . . . , J − 1;

(3)
J∑

i=0

|αk−i,i|2 +
J∑

i=1

β2
k−i,i =

J∑
i=0

|ak−i,i|2 if k > J ;

(4)
k∑

i=0

αk−i,i+lαk−i,i =
k∑

i=0

ak−i,i+lak−i,i if l > 0 and k + l < J ;

(5)
J−l∑
i=0

αk−i,i+lαk−i,i =
J−l∑
i=0

ak−i,i+lak−i,i if l > 0 and k + l > J .

Although the general solution, where J is arbitrary, of this non-linear recursion is
yet out of reach, the next result provides a constructive solution in the case J = 1.

Theorem 4.1. If K(z, w) =
∞∑

n=0
(an + bnz)(an + bnw)(wz)n, then the fol-

lowing are equivalent:
(i) H(K) contains the polynomials;

(ii) s2
n = 1 +

∣∣∣ bn

an+1

∣∣∣
2

+
∣∣∣ bnbn+1
an+1an+2

∣∣∣
2

+ · · · is finite for all n;
(iii) the recursion





α2
0 = a2

0

α2
1 + γ2

0 = a2
1

α2
n + |βn−1|2 + γ2

n−1 = a2
n + |bn−1|2 if n > 2

αnβn = anbn for n > 0





can be satisfied for αn 6= 0, βn, and γn 6= 0 enabling

K(z, w) =
∞∑

n=0

( 1 z )
(

αn 0
βn γn

)(
αn βn
0 γn

)(
1
w

)
(wz)n

with αn 6= 0 and γn 6= 0.
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Proof. Since the equivalence of condition (ii) and condition (i) follows imme-
diately from part (iii) of Theorem 3.5 it suffices to show (ii) and (iii) are equivalent.
If sn < ∞ for all n, then we show that the α’s can be chosen sequentially to satisfy

α2
0 = a2

0, a2
1

(
1− 1

s2
1

)
< α2

1 < a2
1, and a2

n

(
1− 1

s2
n

)
< α2

n < a2
n+ |bn−1|2−

∣∣∣an−1bn−1
αn−1

∣∣∣
2

,
for n > 2. If we have chosen α0, α1, . . . , αn−1 to satisfy their respective inequali-
ties, then in order to choose an αn we need to know that

a2
n

(
1− 1

s2
n

)
< a2

n + |bn−1|2 −
∣∣∣an−1bn−1

αn−1

∣∣∣
2

.

This inequality is obvious if bn−1 = 0 and otherwise is equivalent to
∣∣∣an−1bn−1

αn−1

∣∣∣
2

<

a2
n

s2
n

+ |bn−1|2 or

α2
n−1 >

|an−1bn−1|2
a2

n

s2
n

+ |bn−1|2
=

|an−1bn−1|2
|bn−1|2
s2

n−1−1
+ |bn−1|2

= a2
n−1

(
1− 1

s2
n−1

)

which was satisfied with the selection of αn−1. The β’s and γ’s are determined
immediately from the α’s.

Conversely, suppose the system (iii) is solvable for α’s, β’s, and γ’s with
αn 6= 0 and γn 6= 0. We will show this implies sn < ∞ for all n. Since |βn−1|2 <

a2
n + |bn−1|2 and αn−1βn−1 = an−1bn−1, we have |an−1bn−1|2

α2
n−1

< a2
n + |bn−1|2. Thus,

for n > 2

α2
n−1 >

|an−1bn−1|2
a2

n + |bn−1|2 = a2
n−1

(
1− 1

1 + |bn−1|2
a2

n

)

or for n > 1, α2
n > a2

n

(
1− 1

1+
|bn|2
a2

n+1

)
. We also see that for n > 1,

α2
n < a2

n + |bn−1|2 − |βn−1|2 = a2
n + |bn−1|2 −

a2
n−1|bn−1|2

α2
n−1

.

By combining the last two inequalities we obtain that for n > 1,

a2
n

(
1− 1

1 + |bn|2
a2

n+1

)
< a2

n + |bn−1|2 −
a2

n−1|bn−1|2
α2

n−1

.

This becomes
a2

n−1|bn−1|2
α2

n−1

< |bn−1|2 +
a2

n

1 + |bn|2
a2

n+1

or

α2
n−1 >

a2
n−1|bn−1|2

|bn−1|2 + a2
n

1+
|bn|2
a2

n+1

=
a2

n−1

1 + a2
n

|bn−1|2
(

1+
|bn|2
a2

n+1

) ,
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assuming bn−1 6= 0. Thus

α2
n−1 >

a2
n−1

1 + 1
|bn−1|2

a2
n

+
|bn−1|2|bn|2

a2
na2

n+1

= a2
n−1

(
1− 1

1 + |bn−1|2
a2

n
+ |bn−1|2|bn|2

a2
na2

n+1

)
,

which is valid even if bn−1 = 0. We have arrived at

a2
n

(
1− 1

1 + |bn|2
a2

n+1
+ |bn|2|bn+1|2

a2
n+1a2

n+2

)
< α2

n < a2
n + |bn−1|2 −

a2
n−1|bn−1|2

α2
n−1

.

Proceeding inductively, we get

a2
n

(
1− 1

s2
n

)
6 α2

n < a2
n + |bn−1|2 −

a2
n−1|bn−1|2

α2
n−1

.

However, notice that α2
1 < a2

1, which implies |β1|2 = a2
1|b1|2
α2

1
> |b1|2, which in turn

implies α2
2 < a2

2, etc. Since α2
n < a2

n, we cannot have s2
n = ∞.

The bandwidth 1 example K(z, w) =
∞∑

n=0
fn(z)fn(w) where fn(z) =

(
1 +

n+1
n+2z

)
zn was extensively studied in Adams, McGuire [1]. In particular it was

shown that Mz is bounded and ϕ(z) =
∞∑

n=0
ϕnzn was determined to be a multiplier

of H(K) if and only if ϕ ∈ H∞ and
∞∑

m=1

[
(Pmϕ)′(−1)

m+1

]2

< ∞ where (Pmϕ)(z) =
m∑

n=0
ϕnzn. It is worth observing that a bounded lifting exists for this example

and one such is obtained by taking Rn =
(

αn 0
βn γn

)
where α0 = 1, β0 = 1/2,

γ0 = 1/
√

3, and thereafter α2
n = β2

n = n+1
n+2 , γ2

n = 1
(n+3)(n+2)2 . In this case

K̂(z, w) =
∞∑

n=0
RnR∗n(wz)n and Mz on H(K) is a compression of M̂z on H(K̂)

where

M̂z =




(
0 0
0 0

)
· · · · · · · · ·

( √
3
2 0

−3 2
√

3

) (
0 0
0 0

)
. . . . . .

(
0 0
0 0

)
2
3

(√
2 0

0
√

5

) (
0 0
0 0

)
. . .

...
(

0 0
0 0

) √
5

4

(√
3 0

0
√

6

)
. . .




.
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5. OPEN QUESTIONS

(1) If Mϕ is bounded on H(K) must there always exist a lifting for which
M̂ϕ is bounded?

(2) If K is J bandwidth and Mz is bounded, is Mz unitarily equivalent to a
”small” perturbation of a weighted shift?

(3) What role if any do the cluster points of the sequence of zeros of fn(z)
play in the characterization of the functions in H(K)?

(4) To what extent can Theorems 3.5 and 3.7 be modified for spaces that do
not contain the polynomials?

REFERENCES

1. G.T. Adams, P.J. McGuire, V.I. Paulsen, Analytic reproducing kernels and mul-
tiplication operators, Illinois J. Math. 36(1992), 404–419.

2. G.T. Adams, P.J. McGuire, Analytic tridiagonal reproducing kernels, J. London
Math. Soc. (3) 64(2001), 722–738.

3. G.T. Adams, J. Froelich, P.J. McGuire, V.I. Paulsen, Analytic reproducing
kernels and factorization, Indiana Univ. Math. J. 43(1994), 839–856.

4. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950),
337–404.

5. R.G. Douglas, On majorization, factorization, and range inclusion of operators on
Hilbert space, Proc. Amer. Math. Soc. 17(1966), 413–415.

6. H. Dym, J contractive matrix functions, reproducing kernel Hilbert spaces and in-
terpolation, CBMS Regional Conf. Ser. in Math., vol. 71, Amer. Math. Soc.,
Providence, RI, 1989, p. 24.

7. A.L. Shields, Weighted shift operators and analytic function theory, in Topics in
Operator Theory (C. Pearcy, Ed.), Math. Surveys Momogr., vol. 13, Amer.
Math. Soc., Providence, RI, 1974, pp. 49–128.

GREGORY T. ADAMS PAUL J. MCGUIRE
Mathematics Department Mathematics Department

Bucknell University Bucknell University
Lewisburg, PA 17837 Lewisburg, PA 17837

USA USA

E-mail: adams@bucknell.edu E-mail: pmcguire@bucknell.edu

NORBERTO SALINAS ALLEN R. SCHWEINSBERG
Department of Mathematics Mathematics Department

University of Kansas Bucknell University
Lawrence, KN 66045–2142 Lewisburg, PA 17837

USA USA

E-mail: salinas@math.ukans.edu E-mail: aschwein@bucknell.edu

Received October 2, 2001; revised March 21, 2003.


