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Abstract. In this article we consider index 1 invariant subspaces M of the
operator of multiplication by ζ(z) = z, Mζ , on the Bergman space L2

a(D) of
the unit disc. It turns out that there is a positive sesquianalytic kernel lλ
defined on D×D which determines M uniquely. We set σ(M∗

ζ |M⊥) to be the

spectrum of M∗
ζ restricted to M⊥, and we consider a conjecture due to Heden-

malm which states that if M 6= L2
a(D), then rank lλ equals the cardinality of

σ(M∗
ζ |M⊥). In this direction we show that cardinality

ą
σ(M∗

ζ |M⊥) ∩ Dć 6
rank lλ 6 cardinality σ(M∗

ζ |M⊥) and furthermore, we resolve the conjecture
in the case of zero based invariant subspaces. Moreover, we describe the
structure of lλ for finite zero based invariant subspaces.
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1. INTRODUCTION

Let Ω ⊂ C be a region and let k be a positive sesquianalytic kernel on Ω;
that is for each λ ∈ Ω the function kλ is an analytic function on Ω such that

n∑
i,j=1

aiajkλi(λj) > 0 for all n ∈ N, ai ∈ C, λj ∈ Ω, i, j ∈ {1, . . . , n}.
It is well known that every positive sesquianalytic kernel k on Ω is the

reproducing kernel for a unique Hilbert space H(k) of analytic functions on Ω
(see [3]). In particular, if 〈 · , · 〉H(k) denotes the Hilbert space inner product,
f(λ) = 〈f, kλ〉H(k) for every f ∈ H(k), λ ∈ Ω.

Denote by M(k) the set of multipliers of H(k). If ζ ∈ M(k), denote by Mζ

the multiplication operator associated with the identity function ζ(z) = z, z ∈ D.
Let also Lat(Mζ ,H(k)) be the lattice of the invariant subspaces of (Mζ ,H(k)).
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Given a subspace M of H(k), denote by PM the (orthogonal) projection onto
M . Furthermore, M is called a multiplier invariant subspace of H(k) if gf ∈ M
for all f ∈ M and all g ∈ M(k). If 0 ∈ Ω and if Mζ is bounded below, set
MªζM ≡ M ∩(ζM)⊥ and define the index of M to be the dimension of MªζM .
That is, ind M = dim M ª ζM .

From now on, by an invariant subspace, unless it is stated otherwise, we will
always mean an invariant subspace of (Mζ ,H(k)). For a subset S of H(k) write [S]
for the smallest invariant subspace which contains all of S. For a single nonzero
function f ∈ H(k) simply write [f ] for [{f}]. Such invariant subspaces are called
cyclic and a function f ∈ H(k) such that [f ] = H(k) is called a cyclic vector in
H(k).

Suppose that A = {αk}k∈N ∈ Ω is a H(k)-zero sequence; that is the sequence
of zeros, repeated according to multiplicity, of some nonidentically vanishing func-
tion in H(k). Write

HA(k) = {f ∈ H(k) : f(α) = 0 for each α ∈ A, accounting for multiplicities}
for the set of functions in H(k) that vanish in the sequence A to at least the pre-
scribed multiplicity. Note that if A is a H(k)-zero sequence, HA(k) is a nontrivial
invariant subspace of H(k). Such spaces are called zero-based invariant subspaces.
If 0 ∈ Ω and if Mζ−α is bounded below for all α ∈ Ω, then it is well known that
HA(k) has index one (see [14], Corollary 3.4).

For α ∈ Ω the space Hα(k) = {f ∈ H(k) : f(α) = 0} is a multiplier invariant
subspace of H(k). Furthermore, if Pα denotes the projection onto Hα(k) and
kα(α) 6= 0, then Pαf = f − f(α)

kα(α)kα.
Here we would like to mention that in some occasions we also use the symbol u

for positive sesquianalytic kernels. If uλ(z) is a positive sesquianalytic kernel on Ω
then there are analytic functions un, n > 1 on Ω such that uλ(z) =

∑
n>1

un(λ)un(z),

where the sum converges uniformly on compact subsets of Ω × Ω. For example
one can take {un}n>1 to be an orthonormal basis for H(u).

Definition 1.1. If uλ(z) is a positive sesquianalytic kernel on Ω, uλ(z) 6= 0,
the rank of uλ(z) is defined to be the least number of (nonidentically vanishing)
functions un in Ω such that uλ(z) =

∑
n>1

un(λ)un(z), where the sum converges

uniformly on compact subsets of Ω×Ω. If uλ(z) is identically zero, set its rank to
be zero.

In this article we are mainly interested in the case of the classical Bergman
space on the unit disc D ; that is the space L2

a(D) of all analytic functions on D
that are square integrable with respect to the Lebesgue area measure on D. We
suppose that M ∈ Lat(Mζ , L

2
a(D)), ind M = 1, and G is a unit vector in M ª ζM .

Hence, see [1], M = [G]. From this it follows easily that M/G is the closure of the
analytic polynomials in L2

a(|G|2dA), where A is the normalized Lebesgue measure
on D. Moreover, it is not hard to see that the point evaluations are bounded
on M/G and hence M/G has a reproducing kernel which we denote by kG

λ . If
kλ(z) denotes the reproducing kernel for the Bergman space, then it is elementary
to show that kG

λ (z) = PM kλ(z)

G(λ)G(z)
. The following theorem, which was proved by
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Hedenmalm, Jakobsson and Shimorin ([11], Theorem 6.3) and the remark following
it, are not only essential for the development of this study, but also constitute the
main motivation for this article.

Theorem 1.2. Suppose that M ∈ Lat(Mζ , L
2
a(D)), indM = 1. If G is a

unit vector in M ª ζM , then there is a positive definite sesquianalytic kernel lMλ
defined on D× D, such that

PMkλ(z)
G(λ)G(z)

= (1− λzlMλ (z))kλ(z),

where kλ(z) = (1− λz)−2, λ, z ∈ D, is the Bergman kernel.

The following remark shows that lMλ determines the invariant subspace M
uniquely.

Remark 1.3. If M1,M2 are index 1 invariant subspaces of L2
a(D) with lM1

λ =
lM2
λ , then M1 = M2.

Indeed, if GMi
are unit vectors in MiªζMi, i = 1, 2, then M1

GM1
= M2

GM2
, with

equality of norms, since the kernel defines the space uniquely. Moreover, Mi

GMi
is

the closure of the analytic polynomials in L2
a(|GMi |2dA), i = 1, 2. The result now

follows from Theorem 1 of [15].
From now on lMλ will denote the kernel function which appears in the ex-

pression for the reproducing kernel of M/G. We will simply call lMλ the associated
kernel for M . Whenever there is no ambiguity, the superscript M in lMλ will be
excluded from the notation.

Now we shall try to give the reader some more intuition and motivation for
our article.

Since the kernel lMλ defines the subspace M uniquely, it seems natural to ask
about the structural properties of lMλ and relate them to common properties of
the functions in M . This type of study of lMλ is recent and we would like to note
that prior to our article very few results were known about the form of lMλ .

The exact expression of lMλ is known whenever M is a single zero based
invariant subspace. For example one can derive this easily from Lemma 6.6 of [2].
In particular, if α ∈ D, α 6= 0, m ∈ N and if

M = {f ∈ L2
a(D) : f (j)(α) = 0, 0 6 j 6 m− 1},

then
lMλ (z) =

c

(z −A)(λ−A)
,

where c = m(m+1)(1−|α|2)2
|α|2 and A = 1+m(1−|α|2)

α . In this case the above form
of lMλ implies that rank lMλ = 1. We also note that if M is zero based and its
zero sequence contains more than one (distinct) point, then a similar approach
for the calculation of the form of lMλ does not appear to be practical. In such
case the manipulations are becoming extremely complicated since they involve
factorizations of higher order polynomials. For more information about the form
of lMλ and formal calculations in the case where M is a finite zero based invariant
subspace, we refer to Section 4 (Theorem 4.2).

H. Hedenmalm, see [10], stated the following conjecture regarding the rank lMλ .
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Hedenmalm’s Conjecture. Suppose that M 6= L2
a(D), indM = 1 and

M ∈ Lat(Mζ , L
2
a(D)). Then

rank lMλ = card σ(M∗
ζ |M⊥),

where card σ(M∗
ζ |M⊥) is the cardinality, in the sense that is defined to be finite

or infinite, of the spectrum of M∗
ζ restricted to M⊥.

Given a function f ∈ L2
a(D), its lower zero set (or liminf zero set) written Z(f)

consists of all actual zeros of f inside D, and all points λ on the unit circle T for
which lim

z→λ
z∈D

|f(z)| = 0. We extend this notion to collections of functions S in L2
a(D)

by declaring Z(S) ≡ ⋂{Z(f) : f ∈ S} and we set Z(S) ≡ {λ ∈ C : λ ∈ Z(S)}.
It is shown in [9] that Z(M) = σ(M∗

ζ |M⊥). This result will be used many times
throughout this article.

A major part of this article is devoted to the investigation of Hedenmalm’s
Conjecture.

Our first result (see Theorem 3.4) resolves Hedenmalm’s Conjecture in the
case of zero based invariant subspaces of L2

a(D); that is

Theorem 1.5. If M is a zero based invariant subspace of the Bergman shift,
then

(1.1) rank lMλ = card σ(M∗
ζ |M⊥).

Furthermore in Theorem 3.8 and in Theorem 3.11 we prove

Theorem 1.6. If M ∈ Lat(Mζ ,H(k)), indM = 1, then

card
(
σ(M∗

ζ |M⊥) ∩ D)
6 rank lλ 6 card σ(M∗

ζ |M⊥).

In the last section, and as an application of Theorem 3.4 we give a description
of the structure of lλ for finite zero based invariant subspaces (see Theorem 4.2).
More specifically Theorem 4.2 implies

Theorem 1.7. If M is a finite zero based invariant subspace of the Bergman
shift with n distinct zeros, then

λzlλ(z) =
p(λ, z)

r∏
j=1

(z −Aj)(λ−Aj)
,

where p is a symmetric polynomial, deg p = n, p(0, z) = 0 for every z ∈ D and
(i) if 0 ∈ Λ, Ai ∈ C \ D, i = 1, . . . , r, r = n− 1;
(ii) if 0 /∈ Λ, Ai ∈ C \ D, i = 1, . . . , r, r = n.
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2. BERGMAN TYPE KERNELS AND POSITIVE OPERATORS

In this section we briefly present some of the main results from the theory of
Bergman type-kernels as developed by McCullough and Richter in [13]. Even
though we mainly need the results when the Bergman type-kernel is the classical
Bergman kernel, we state the theorems in full generality since we obtain some
interesting results which hold in this context. For example, in Theorem 2.7 and
Corollary 2.8 we show that if k is a Bergman type kernel, M ∈ Lat(Mζ ,H(k)) and
ind M = 1, then rank lλ = rank Q, where Q is some positive operator on H(k)
which depends on M . Hence the study of the rank lλ carries over to the study
of the range of the operator Q. Then we apply these results to the case of the
Bergman kernel and we prove results (see Corollary 2.12 and Lemma 2.13) which
will be important for the development of the main results of this article.

We start with the definition of the Bergman type kernels.

Definition 2.1. A function k in D × D is a Bergman type kernel if there
is an outer function ρ ∈ H∞, 1

2 6 |ρ|2 6 1, and functions un ∈ H∞ such that
un(0) = 0 for all n ∈ N, and, with ϕ = ζ

ρ ,

|ϕ(z)|2
(
1−

∑

n>1

|un(z)|2
)

= 1 a.e. |z| = 1,

|ϕ(z)|2
(
1−

∑

n>1

|un(z)|2
)

< 1 for all |z| < 1,

and
1

kλ(z)
= 1− ϕ(λ)ϕ(z)

(
1−

∑

n>1

un(λ)un(z)
)
.

Furthermore, in [13], it is shown that if k is a Bergman type kernel, then
M(k) = H∞ with equality of norms, and that H2 ⊆ H(k) ⊆ L2

a. If ϕ(z) =√
2z, uλ(z) = 1

2λz, then kλ(z) = (1 − λz)−2 is the classical Bergman kernel, and
if ϕ(z) = z, u = 0, then kλ(z) = (1− λz)−1 is the classical Szegö kernel.

The following two theorems are fundamental for the development of the main
results of this article and shall be used extensively in the sequel. The first is an
immediate consequence of Corollary 0.8(a) and Lemma 1.4 from [13]. The second
is the Wandering Subspace Theorem 0.17 from [13].

Theorem 2.2. Let k be a Bergman type kernel and let M be a multiplier
invariant subspace of index 1. In addition define L ≡ H0 ª ζM and the operators
T ≡ ∑

n>1

PMMunPM⊥M∗
un

PM and S ≡ PMM1/ϕPLM∗
1/ϕPM , where un, n > 1,

and ϕ are as in Definition 2.1. If G denotes a unit vector in M ª ζM , and
Q = T + S, then there is a positive definite kernel lλ(z) such that

(2.1)
PMkλ(z)
G(λ)G(z)

= (1− λzlλ(z))kλ(z),
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where

(2.2) λzlλ(z) =
ϕ(λ)ϕ(z)
G(λ)G(z)

〈Qkλ, kz〉.

Theorem 2.3. (Wandering Subspace Theorem) If k is a Bergman type
kernel and M is a multiplier invariant subspace of H(k), then the span of the set
{ζnf : n > 0, f ∈ M ª ζM} is dense in M .

Remark 2.4. In the case of the Bergman kernel kλ(z) = (1−λz)−2, formula
(2.1) of Theorem 2.2 was proved in Theorem 6.3 of [11], and Theorem 2.3 was
proved in Theorem 3.5 of [1].

LetH be a Hilbert space, and denote by B(H),B+(H) the algebra of bounded
linear operators on H, and its positive elements respectively. If Q ∈ B(H), then
rankQ denotes the Hilbert space dimension of the closure of the range of Q and
σ(Q) denotes the spectrum of Q. The abbreviations SOT, WOT, refer to the
strong and weak operator topologies respectively.

If U ⊆ H then we let
∨{U} to denote the closed linear span of the set U and

by cl U we denote the closure of U under the norm topology of H. In addition,
we use the symbols I, J to denote subsets of N. Also for f, g ∈ H we let f ⊗ g to
denote the rank one operator on H that is defined by

(f ⊗ g)(h) = 〈h, g〉Hf.

In the rest of this section we prove results which shall be used in Section 3. The
following two lemmas will be used in the proof of Theorem 2.7. The proof of the
next lemma is an elementary application of Theorem I in [3].

Lemma 2.5. Suppose that uλ(z) =
∑
i∈I

ui(λ)ui(z) is the reproducing kernel

for the Hilbert space H(u). Then ui ∈ H(u) for every i ∈ I.

Lemma 2.6. If Q ∈ B+(H), then Q =
∑
i∈I

√
Qei ⊗

√
Qei in the SOT sense,

where {ei}i∈I is an orthonormal basis for cl range Q.

Proof. First define fi =
√

Qei, i ∈ I, and assume that I = N. If I is finite
then the proof is similar. Since cl rangeQ = (ker

√
Q)⊥, an elementary argument

shows that {fi}i∈I is a linearly independent subset of H.

Now for each n ∈ N we define Pn =
n∑

i=1

ei ⊗ ei and we show that
{ n∑

i=1

fi ⊗ fi

}
n∈N

→ Q in the WOT.

Indeed, if f, g ∈ H, then

(2.3)

〈( n∑

i=1

fi ⊗ fi

)
f, g

〉
=

n∑

i=1

〈f, fi〉〈fi, g〉 =
n∑

i=1

〈√
Qf, ei

〉〈ei,
√

Qg〉

=
〈( n∑

i=1

ei ⊗ ei

)√
Qf,

√
Qg

〉
= 〈Pn

√
Qf,

√
Qg〉.
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We use elementary functional analysis results to get {Pn} → P∨{PnH:n∈N} in the
SOT. Furthermore note that since {ei}i∈I is an orthonormal basis of cl range Q,
we have

∨{PnH : n ∈ N} = cl range Q, and so from (2.3),

{〈{ n∑

i=1

fi ⊗ fi

}
f, g

〉}
n∈N

→ 〈Pcl range Q

√
Qf,

√
Qg〉.

Since cl range Q = cl range
√

Q and since
{ n∑

i=1

fi⊗fi

}
n∈N

is an increasing sequence

of positive operators,
{ n∑

i=1

fi⊗ fi

}
n∈N

→ Q in the SOT. This concludes the proof

of the lemma.

Theorem 2.7. If Q ∈ B+(H(k)) and uλ(z) = 〈Qkλ, kz〉H(k), then

rankuλ(z) = rank Q.

Proof. If {ei}i∈I is an orthonormal basis for cl rangeQ, then the above lemma
and the defining property of the reproducing kernels imply that

(2.4) uλ(z) = 〈Qkλ, kz〉 =
∑

i∈I

fi(λ)fi(z),

where fi =
√

Qei, i ∈ I, are linearly independent vectors in H(u) and where the
sum converges uniformly on compact subsets of Ω×Ω. The above equation implies
that rank u 6 rankQ. If H(u) is the Hilbert space of functions with reproducing
kernel u, then by (2.4) and Lemma 2.5, fi ∈ H(u), i ∈ I. Since {fi}i∈I is a linearly
independent set, card I 6 dimH(u). Moreover, the definition of the rank and an
elementary argument given by Aronszajn in pp. 346–347 of [3], imply easily that
dimH(u) 6 ranku. The proof now is complete since card I = rank Q.

Roughly speaking, the next result shows that the study of the rank of lλ(z)
carries over to the study of the rank of the operator Q.

Corollary 2.8. If k, M, lλ(z), G,Q are as in Theorem 2.2, then

rank lλ(z) = rank Q.

Proof. From (2.2) we have λzlλ(z) = ϕ(λ)ϕ(z)

G(λ)G(z)
〈Qkλ, kz〉, where lλ(z) is a

positive definite kernel. This and the definition of the rank (Definition 1.1) imply
that rank lλ(z) = rank 〈Qkλ, kz〉. The result now follows from the above theorem.

Lemma 2.9. Suppose T, S ∈ B+(H). If Q = T + S, then the following hold:
(i) cl range T ⊆ cl range Q;
(ii) if range S ⊆ range T , then cl range Q = cl range T and in particular

rankQ = rank T ;
(iii) if fi ∈ H for every i ∈ I and Q =

∑
i∈I

fi ⊗ fi, where the convergence is

in the SOT, then cl range Q =
∨
i∈I

{fi}.
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Proof. (i) Since T, S ∈ B+(H), 〈Qx, x〉 =
∥∥T 1/2x

∥∥2
+

∥∥S1/2x
∥∥2

for all x ∈ H.
For y ∈ kerQ, ‖T 1/2y‖ = 0, hence y ∈ kerT . From this we get that cl range T ⊆
cl range Q.

(ii) It follows from (i).
(iii) Note that cl range Q ⊆ ∨

i∈I

{fi}.
Fix j ∈ I and set Tj = fj ⊗ fj , Sj =

∑
i∈I
i 6=j

fi ⊗ fi. Now write Q = Tj + Sj .

Since Tj , Sj ∈ B+(H), from part (i), cl range Tj ⊆ cl range Q. In particular fj ∈
cl range Q. Since j is arbitrary in I we get

∨
i∈I

{fi} ⊆ cl range Q.

Using the above lemma (part (iii)) and Lemma 2.6 it is elementary to show
the following

Lemma 2.10. Suppose that L ∈ B(H) and M is a closed subspace of H. If
PM denotes the projection onto M and R = LPML∗, then cl range R = cl LM .

We close this section with results which shall be used in the proofs of Theo-
rem 3.4 and Theorem 3.11.

Remark 2.11. Note that in the case of the Bergman kernel, the expressions
of the operators T and S, as defined in Theorem 2.2, are becoming:

T = PMMuPM⊥M∗
uPM , S = PMM1/ϕPLM∗

1/ϕPM ,

where u(z) = z/
√

2, ϕ(z) =
√

2z, and L = H0 ª ζM .

Now, in light of the above remark, the following result is an immediate
application of Lemma 2.10.

Corollary 2.12. If k is the Bergman kernel, then for the operators T and
S which are defined in Theorem 2.2, we have: range T = PMMζM

⊥ and range S =
PMM1/ζL.

Lemma 2.13. Suppose that for n ∈ N, Mn,M ∈ Lat(Mζ , L
2
a(D)) are non-

trivial with index 1 and that PMn → PM in the WOT. Then for the associated
kernels lMn

λ , lMλ , the following holds:

rank lMλ 6 lim
n→∞

rank lMn

λ .

Proof. Suppose that k is a Bergman type kernel on D × D, N is an index
1 invariant subspace of H(k) and GN is a unit vector in N ª ζN . Then from
Theorem 2.2 (just combine (2.1) and (2.2)) we conclude that

(2.5)
PNkλ(z)

GN (λ)GN (z)
=

(
1− ϕ(λ)ϕ(z)

GN (λ)GN (z)
〈QNkλ, kz〉

)
kλ(z)

for some QN ∈ B+(H(k)) and for some meromorphic function ϕ defined on D.
Since PMn → PM in the WOT, PMnkλ → PMkλ uniformly on compact

subsets of D × D. Therefore, if for all n > 1, GMn , GM are properly normalized,
for example by choosing a point xo ∈ D such that they are all real valued functions,
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then GMn
→ GM uniformly on compact subsets of D. Thus, from (2.5) it follows

that
〈QMnkλ, kz〉 → 〈QMkλ, kz〉 in D× D.

Additionally, in light of Remark 2.11 we conclude that {QMn}∞n=1 is a uniformly
bounded sequence. Furthermore, and since finite linear combinations of {kz : z ∈
D} are dense in L2

a(D), QMn
→ QM in the WOT. Moreover, it is well known that

the rank function (for a bounded linear operator on a Hilbert space H) is weakly
lower semicontinuous, in the sense that if {Ti}i∈I is a net in B(H) and T ∈ B(H)
such that Ti → T in the WOT, then rank T 6 lim

n→∞
rankTi (see Appendix, [8]).

The proof now is complete since for every N ∈ Lat(Mζ , L
2
a(D)), ind N = 1,

we have rank lNλ = rank QN (see Corollary 2.8).

Remark 2.14. (i) It is worthwhile to observe that in the case of Bergman
type kernels an analogous result holds, provided that the associated sequence
{QMn

}n∈N is uniformly bounded.
(ii) A result due to Shimorin (see Theorem 5, [16]), states that if M is an

index 1 invariant subspace of L2
a(D), then there is always a sequence of finite zero

based invariant subspaces {Mn}n∈N such that PMn
→ PM in the WOT. The above

lemma implies that rank lMλ 6 lim
n→∞

rank lMn

λ .

3. HEDENMALM’S CONJECTURE

In this section we resolve Hedenmalm’s Conjecture in the case of zero based in-
variant subspaces of the Bergman shift, and in addition we show that for every
M ∈ Lat(Mζ , L

2
a(D)), ind M = 1, the following holds:

card
(
σ(M∗

ζ |M⊥) ∩ D)
6 rank lMλ 6 card σ(M∗

ζ |M⊥).

In order to show our main results we need the following two theorems which were
proved originally by S. Walsh; see [17], Theorems 1, 2. The first of them was
proved for a larger class of spaces and for hyponormal operators.

Theorem 3.1. If Mζ denotes the multiplication by z on the L2
a(D) and if f

is an analytic function in a neighborhood of D, then the following holds.
Either f is cyclic for M∗

ζ (that is [f ]M∗
ζ

= L2
a(D)) or f belongs to a finite

dimensional M∗
ζ invariant subspace of L2

a(D).

Theorem 3.2. Suppose that f ∈ L2
a(D). Then f is in a finite dimensional

invariant subspace of M∗
ζ if and only if it is rational with zero residues at its poles.

Lemma 3.3. Let ∂lkλ denote the kernel of the evaluation of the lth derivative
at λ; that is f (l)(λ) = 〈f, ∂lkλ〉, λ ∈ D, l > 0.

Let λ ∈ D, λ 6= 0, and let ρ be a fixed positive integer. Set W =
ρ∨

j=1

{∂j−1kλ},
where kλ(z) = (1− λz)−2, z ∈ D. Then

W =
ρ∨

j=1

{(1− λz)−(j+1)} = {kλ(z)} ∨
ρ∨

j=2

{z(1− λz)−(j+1)}.
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Proof. For k > 1,

z(1−λz)−(k+1) =
1
λ

(1− (1−λz))(1−λz)−(k+1) =
1
λ

[(1−λz)−(k+1)− (1−λz)−k].

The above leads to the second equality.
Since ∂j−1kλ(z) = cj−1z

j−1(1 − λz)−(j+1), cj−1 = j!, j > 1, a repeated
application of z = 1

λ
(1− (1−λz)) to zj(1−λz)−(j+2), as in the above calculation,

proves the first equality.

We now state and prove our first main result, which resolves Hedenmalm’s
Conjecture in the case of zero based invariant subspaces.

Theorem 3.4. Let Λ = {λi}i∈I be a nonempty sequence of points in D with
λi 6= λj for i 6= j, i, j ∈ I. Suppose that for i ∈ I, ρi is a positive integer. Set
M = {f ∈ L2

a(D) : f (m)(λi) = 0, i ∈ I, 0 6 m 6 ρi − 1} and assume that M is
nontrivial.

If lλ(z) is the associated kernel for M , then

rank lλ(z) = card Λ.

Proof. From the hypothesis, M =
⋂
i∈I

ρi−1⋂
m=0

{f ∈ L2
a(D) : f (m)(λi) = 0}. Thus

(3.1) M⊥ =
∨

i∈I

ρi∨

j=1

{∂j−1kλi}.

Claim 3.5. range S ⊆ range T and rankT 6 card Λ.

For each λi 6= 0, i ∈ I, set

(3.2) Ri =
ρi∨

j=2

{z(1− λiz)−(j+1)}.

Note that if for some i ∈ I, ρi = 1, then Ri = (0).
We divide the proof of this claim into two cases.
Case 1. 0 /∈ Λ.
By (3.1) and Lemma 3.3, for i ∈ I,

(3.3) M⊥ =
∨

i∈I

(
{kλi}

⋃ 1
ζ
Ri

)
=

∨

i∈I

({kλi}
⋃

Ri

)
.

Since range T = PMMζM
⊥, and since Ri ⊆ M⊥, i ∈ I,

(3.4) range T = PMMζ

∨

i∈I

(
{kλi}

⋃ 1
ζ
Ri

)
=

∨

i∈I

{PMMζkλi}.

This implies that rankT 6 cardΛ.
Now consider L = H0 ª (ζM) and observe that ζM = M ∩ span {k0}⊥.

Hence

(3.5) L = (M⊥ ∨ {k0})ª span {k0}.
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Moreover, for every i ∈ I we see that k0 = 1, 〈kλi
−k0, k0〉 = 0, and that for n > 0,

〈z(1− λiz)−n, k0〉 = 0. Now use (3.5) and (3.3) to conclude that

(3.6) L =
∨

i∈I

({kλi
− 1} ∪Ri) .

Since range S = PMM1/ζL, and since for every i ∈ I, Ri

ζ ⊆ M⊥,

(3.7) rangeS = PM

∨

i∈I

({kλi
− 1
ζ

}
∪ Ri

ζ

)
= PM

∨

i∈I

{kλi
− 1
ζ

}
.

Note that for i ∈ I, kλi
(z)−1

z = λi
2−λiz

(1−λiz)2
and kλi

∈ M⊥.

Thus, PM
kλi

−1

ζ = −λ
2

i PMMζkλi
, and hence from (3.7), range S =∨

i∈I

{PMMζkλi}.
From the above and (3.4), range S = range T and thus the proof of Case 1

of the proof of Claim 3.5 is complete.
Case 2. 0 ∈ Λ.
We assume, without loss of generality, that λ0 = 0 has multiplicity ρ > 0 in

M and that λi 6= 0 for i 6= 0, i ∈ I. Using a similar argument as developed in the
proof of Case 1 we show that

(3.8) range T = {PM∂ρk0} ∨
∨

i∈I
i 6=0

{PMζkλi},

and

(3.9) range S =
∨

i∈I
i 6=0

{PMMζkλi}.

Thus, range S ⊆ range T and rankT 6 cardΛ. The proof of Claim 3.5 is now
complete.

By Lemma 2.9 and the above claim, range Q = range T and rank Q 6 cardΛ.
Now it follows (see (3.4) and (3.8)) that

(3.10) rangeQ =





∨
i∈I

{PMMζkλi} 0 /∈ Λ,

{PM∂ρk0} ∨
∨
i∈I
i 6=0

{PMMζkλi} 0 ∈ Λ of multiplicity ρ.

To conclude the proof of the theorem, since rank Q = rank lλ (see Corollary 2.8),
it remains to show that the sets {PM∂ρk0, PMMζkλi}i∈I, i6=0 and {PMMζkλi}i∈I

are linearly independent subsets of L2
a(D).

To this end we only consider the set {PM∂ρk0, PMMζkλi}i∈I,i 6=0. The other
case follows from this.

Assume that J is a finite subset of I \ {0} such that

(3.11) bPM∂ρk0 +
∑

j∈J

ajPMMζkλj = 0, aj , b ∈ C, j ∈ J.
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It remains to show that aj = b = 0, j ∈ J . We define

(3.12) f = b∂ρk0 +
∑

j∈J

ajMζkλj , aj , b ∈ C, j ∈ J.

In light of (3.11), PMf = 0 and hence

(3.13) f ∈ M⊥.

Furthermore, (3.12) implies that f is analytic in a neighborhood of D. Conse-
quently, Walsh’s theorems (see Theorem 3.1 and Theorem 3.2) apply and we have
two options.

Option 1. f is contained in a finite dimensional M∗
ζ invariant subspace of

L2
a(D).

Another expression for f is

(3.14) f(z) = b(−1)ρ(ρ+1)!zρ +
∑

j∈J

aj

λ2
j

[(
z− 1

λj

)−1

+
1
λj

(
z− 1

λj

)−2]
, z ∈ C.

Thus, Res
(
f, 1

λj

)
= aj

λ2
j

, where Res
(
f, 1

λj

)
denotes the residue of f at 1

λj
, j ∈ J .

Now Theorem 3.2 forces Res
(
f, 1

λj

)
to be zero and hence aj = 0. Additionally,

since ζρ /∈ M⊥ and since f ∈ M⊥, we obtain b = 0.

Option 2. f is cyclic for M∗
ζ .

Thus, [f ]M∗
ζ

= L2
a(D). Since M⊥ is an M∗

ζ invariant subspace of L2
a(D),

L2
a(D) = [f ]M∗

ζ
⊆ M⊥ and hence M ≡ 0. This leads to contradiction because M

is a nonzero invariant subspace. The proof of the theorem is now complete.

Corollary 3.6. Suppose that M, N are invariant subspaces of L2
a(D), M

is zero based, M ⊆ N and indN = 1. If lMλ , lNλ denote the associated kernels, then

rank lNλ 6 rank lMλ .

Proof. Under the hypothesis of the corollary, N is zero based and the zero
sequence of N is contained in the zero sequence of M , see Corollary 10.3, [11]. An
application of the above theorem concludes the proof.

Remark 3.7. In the proof of Theorem 3.4, in order to show that the set
{PM∂ρk0, PMMζkλi}i∈I is a linearly independent subset of L2

a(D) we only used
that M ∈ Lat(Mζ , L

2
a(D)) and ∂ρk0 /∈ M⊥. Hence the set {PM∂ρk0, PMMζkλi}i∈I

is a linearly independent subset of L2
a(D) whenever M ∈ Lat(Mζ , L

2
a(D)), ∂ρk0 /∈

M⊥ and λi ∈ D, i ∈ I.

Theorem 3.8. If M ∈ Lat(Mζ , L
2
a(D)), ind M = 1, then

card (σ(M∗
ζ |M⊥) ∩ D) 6 rank lλ(z).
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Proof. Without loss of generality we suppose that

(3.15) Z(M) = {λi}i∈I ∪ {ζj}j∈J ,

where for i ∈ I, λi are distinct points in D, and for j ∈ J , ζj are distinct points in
T. This implies that M ⊆ L, where

L⊥ =
∨

i∈I

ρi∨

l=1

{∂l−1kλi
}

for some positive integers ρi, i ∈ I. Since Z(M) = σ(M∗
ζ |M⊥) (cf. [10]), σ(M∗

ζ |M⊥)
∩D = {λi}i∈I . For the rest of the proof we use the same notation as in the proof
of Theorem 3.4.

In light of Remark 2.11 and Corollary 2.12, Q = T + S, where range T =
PMMζM

⊥, range S = PMMζL and L = H0 ª ζM .
Since cl range T ⊇ PMMζL

⊥, Lemma 2.9(i) implies that

(3.16) cl range Q ⊇ PMMζL
⊥.

As in the proof of the Claim 3.5 of Theorem 3.4, and since
∨
i∈I

ρi∨
l=1

{∂l−1kλi} ⊆ M⊥,

we have

PMMζL
⊥ =





∨
i∈I

{PMMζkλi} 0 /∈ Z(M),
∨
i∈I
i 6=0

{PM∂ρk0, PMMζkλi} λ0 = 0 ∈ Z(M) of multiplicity ρ.

From Remark 3.7, {PM∂ρk0, PMMζkλi}i∈I is a linearly independent subset of
L2

a(D). Consequently,

rankPMMζL
⊥ > card I = card (σ(M∗

ζ |M⊥) ∩ D).

In light of (3.16) the proof of the theorem is complete, since rank lMλ = rank Q (see
Corollary 2.8).

The following facts shall be used in the proof of the next main result of this
article (Theorem 3.11), where we show that for any M ∈ Lat(Mζ , L

2
a(D)) with

index 1, rank lλ(z) 6 card σ(M∗
ζ |M⊥).

The first of them is due to Shimorin (see Lemma 2, [16]).

Lemma 3.9. Let H be a Hilbert space and M,Mn, n ∈ N, are closed sub-
spaces of H. With PM , PMn we denote the orthogonal projections onto M and Mn

respectively. If PMn → PM in the WOT and xn ∈ Mn, x ∈ H such that xn → x
weakly, then x ∈ M .

Suppose that M ∈ Lat(Mζ , L
2
a(D)) and that indM = 1. Let also nM denote

the smallest nonnegative integer such that there is f ∈ M with f (nM )(0) 6= 0.
Then a well known and simple argument shows that G ∈ M ª ζM , G(nM ) 6= 0, if
and only if G is a solution to the extremal problem

sup{Re f (nM )(0) : f ∈ M, ‖f‖ 6 1}.
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Additionally, one can prove (for a proof see Proposition 3.5, [12]) that this solution
is unique. For this reason the above function G is also called the extremal function
for M .

Now set

Bw(z) =
|w|
w

w − z

1− wz
, and Sζ(z) = exp

(
− ζ + z

ζ − z

)
, w 6= 0, w, z ∈ D , ζ ∈ T.

Then for every b ∈ (0, +∞) and ζ ∈ T it is elementary to show that

(3.17) Bn
(1−(b/n))ζ → Sb

ζ as n →∞
uniformly on compact subsets of D \ {ζ}. Furthermore it is well known that if
k ∈ N, then for every j ∈ {1, . . . , k}, βj ∈ (0,+∞) and ζj ∈ T, the following holds:

(3.18)
[ k∏

j=1

S
βj

ζj

]
=

k⋂

j=1

[Sβj

ζj
].

To prove this, one could show, using the contractive divisor property (see The-

orem 3.34, [12]), that
k⋂

j=1

[Sβj

ζj
] ⊆

[ k∏
j=1

S
βj

ζj

]
. The other inclusion is trivial. The

proof of the next result is essentially due to Atzmon and can be found in Theo-
rem 1.6 of [5]. The theorem we are referring to holds in greater generality and for
a larger class of Hilbert spaces of analytic functions.

Lemma 3.10. Suppose that M ∈ Lat(Mζ , L
2
a(D)) and k ∈ N such that

σ(M∗
ζ |M⊥) = {ζj}k

j=1, ζj ∈ T, 1 6 j 6 k.

Then for every j ∈ {1, . . . , k} there is a βj ∈ (0, +∞) such that

M =
[ k∏

j=1

S
βj

ζj

]
, S

βj

ζj
(z) = exp

(
− βj

ζj + z

ζj − z

)
for z ∈ D, j ∈ {1, . . . , k}.

It is also worthwhile to mention that even though the proof given in Theo-
rem 1.6 from [5] applies for the case where σ(M∗

ζ |M⊥) is a singleton on T, a minor
modification leads to the proof of the previous result. One can also derive the
above lemma from Theorem 2 of [4].

Theorem 3.11. If M ∈ Lat(Mζ , L
2
a(D)), indM = 1, then

card
(
σ(M∗

ζ |M⊥) ∩ D)
6 rank lMλ 6 card σ(M∗

ζ |M⊥).

Proof. Observe that the first inequality in the result is exactly Theorem 3.8
and that the second one holds trivially if card Z(M) = ∞.

So we suppose that there are s, k ∈ N, such that

(3.19) Z(M) = {αi}s
i=1 ∪ {ζj}k

j=1,

where for i = 1, . . . , s, αi are distinct points in D, and for j = 1, . . . , k, ζj are
distinct points in T.
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In light of (3.19) it is not hard to prove that M = L ∩N , where

L⊥ =
s∨

i=1

ρi∨

l=1

{∂l−1kαi}

for some positive integers ρi, i ∈ {1, . . . , s}, and N = M
GL

, where GL is the extremal
function for L (the proof of the above becomes elementary once we observe that
GL ∈ H∞). We also note that

σ(M∗
ζ

∣∣N⊥) = Z(N) = {ζj}k
j=1.

Now use Lemma 3.10 to obtain βj ∈ (0, +∞), j = 1, . . . , k, such that

N =
[ k∏

j=1

S
βj

ζj

]
.

For n ∈ N write

S =
k∏

j=1

S
βj

ζj
and Bn =

k∏

j=1

Bn
(1−βj/n)ζj

and hence,

(3.20) M = L ∩ [S].

Furthermore, equation (3.17) obviously implies that

(3.21) Bn → S,

uniformly on compact subsets of D \ {ζj}k
j=1.

For n ∈ N set

(3.22) Mn = L ∩ [Bn]

and denote by Gn, G the extremal functions for Mn and M respectively.
In the following we show that Gn → G weakly. Since for n ∈ N, ‖Gn‖ =

1, there is F ∈ L2
a(D) with ‖F‖ 6 1 such that an appropriate subsequence of

{Gn}n∈N converges to F weakly. The following argument applies to any convergent
subsequence of {Gn}n∈N, and moreover, a standard argument implies the result
for the full sequence. Thus, in order to simplify the notation, we shall assume that
Gn → F . Consequently, it is enough to show that F is extremal for M . We set

B =
s∏

i=1

Bρi
αi

and without loss of generality we consider only the case where αi 6= 0,

i = 1, . . . , s, since the other case can be proved in a similar way. For the proof of
this we need the following two claims.

Claim 3.12. Re F (0) > Re G(0).

Since for n ∈ N, Gn is extremal for Mn, Re (pBBn(0))
‖pBBn‖ 6 Re Gn(0). Now use

(3.21) to obtain Re (pBS(0))
‖pBS‖ 6 Re F (0), and take the supremum over the set of all

analytic polynomials which are defined on D. Furthermore, one easily concludes
from (3.20) and the expressions of L and B, that the set {pBS}, where p ranges
over the set of all analytic polynomials, is dense in M . Hence, since G is the
extremal function for M , we obtain that Re F (0) > Re G(0).
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Claim 3.13. F ∈ [G] = M .

It is clear that F ∈ L. In light of (3.18) it is enough to show that for every
j ∈ {1, . . . , k}, F ∈ [Sβj

ζj
]. Now fix j ∈ {1, . . . , k} and for n ∈ N denote by gn, g

the extremal functions for [B(1−βj/n)ζj
] and [Sβj

ζj
] respectively.

It is shown in pp. 256–257, [7], that gn → g uniformly on compact subsets of
D and particularly lim

n
gn(z) = g(z) pointwise in D. Consequently, by Theorem 1A

from [16], we get P[gn] → P[g] in the WOT.
Observe that Gn ∈ [gn] for every n ∈ N, and since Gn → F weakly, use

Lemma 3.9 to conclude that F ∈ [g] = [Sβj

ζj
]. Since j is arbitrary in {1, . . . , k}, the

proof of the claim is complete.
The above claim implies that Re F (0)

‖F‖ 6 Re G(0), and hence by Claim 3.12
we get ‖F‖ > 1. Since ‖F‖ 6 1, ‖F‖ = 1. This together with Claim 3.12 imply
that F is the extremal function for M . Thus, Gn → G weakly and particularly
lim

n→∞
Gn(z) = G(z) pointwise in D. Consequently, Theorem 1A of [16] implies

that P[Gn] → P[G] in the WOT and equivalently PMn
→ PM in the WOT. Hence

Lemma 2.13 applies and therefore

rank lMλ 6 lim
n→+∞

rank lMn

λ .

Furthermore, and for sufficiently large values of n, we can assume that αi,
(
1 −

βj

n

)
ζj for i = 1, . . . , s, j = 1, . . . , k, are distinct points in D; hence, from Theo-

rem 3.4 we get that for every n ∈ N, rank lMn

λ = s + k. Thus,

rank lMλ 6 card Z(M) = card σ(M∗
ζ |M⊥).

4. APPLICATIONS

In the present section we are concerned with the structure of the associated kernel
lMλ when M is a finite zero based invariant subspace of the Bergman shift. Such
spaces are of special interest in the theory of Bergman spaces. For example, a
result due to Shimorin (see Theorem 5, [16]) states that any invariant subspace
can be “approximated” (in some sense) by a sequence of finite zero based invariant
subspaces (see also Remark 2.14 part (ii)).

Before we state the main result of this section we give the following definition.

Definition 4.1. A nonzero sesquianalytic polynomial p(λ, z) defined on D×
D ; that is a polynomial which is analytic in z and conjugate analytic in λ, for
λ, z ∈ D, is called symmetric, if p(λ, z) = p(z, λ) for every λ, z ∈ D. In such a case
deg p denotes the degree of p with respect to either of the variables, λ, z.

Let I = {1, 2, . . . , n} and set Λ = {λi}i∈I to be a nonempty sequence of
points in D with λi 6= λj for i 6= j, i, j ∈ I. Suppose that for i ∈ I, ρi is a positive
integer and set M = {f ∈ L2

a(D) : f (m)(λi) = 0, i ∈ I, 0 6 m 6 ρi − 1}.
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Theorem 4.2. The reproducing kernel of M/G is of the form

kG
λ (z) =

(
1− p(λ, z)

r∏
i=1

(z −Ai)(λ−Ai)

)
kλ(z),

where p is a symmetric polynomial, deg p = n, p(0, z) = 0 for every z ∈ D and
(i) if 0 ∈ Λ, Ai ∈ C \ D, i = 1, . . . , r, r = n− 1;
(ii) if 0 /∈ Λ, Ai ∈ C \ D, i = 1, . . . , r, r = n.

Proof. First we show that deg p(λ, z) 6 n, and then using Theorem 3.4 we
prove that the degree of p is exactly n.

Claim 4.3. The reproducing kernel of M/G has the form as stated in the
theorem with deg p(λ, z) 6 n.

We treat the case where 0 ∈ Λ. The result for the case where 0 /∈ Λ has an
almost identical proof with fewer technicalities.

We assume that λn = 0 with multiplicity ρn in M and that λi 6= 0 for
i = 1, . . . , n− 1. Hence, as was done in Lemma 3.3,

(4.1) M⊥ =
n∨

i=1

ρi∨

j=1

{∂j−1kλi} = {1, z, . . . , zρn−1} ∨
n−1∨

i=1

ρi∨

j=1

{
1

(1− λiz)j+1

}
.

Let

A = {1, z, . . . , zρn−1} ∪
n−1⋃

i=1

ρi⋃

j=1

{
1

(1− λiz)j+1

}
and α = card A.

Let also {fk}α
k=1 be an enumeration of A and note that {fk}α

k=1 is an ordered

basis of M⊥. If {ek}α
k=1 is the dual basis of {fk}α

k=1, then PM⊥ =
α∑

k=1

ek ⊗ fk.

Moreover, for every k ∈ {1, . . . , α}, ek =
α∑

j=1

akjfj for some akj ∈ C, k, j ∈

{1, . . . , α}. Thus PM⊥ =
α∑

k,j=1

akj(fj ⊗ fk). Note that PMkλ(z) = PMkz(λ) and

write PMkλ(z) = kλ(z)− PM⊥kλ(z) for every λ, z ∈ D. Thus, PMkλ(z) = kλ(z)−
α∑

k,j=1

akjfk(λ)fj(z), and by doing some elementary calculations we have

(4.2) PMkλ(z) =
p1(λ, z)

(1− λz)2
n−1∏
i=1

(1− λiz)ρi+1(1− λiλ)ρi+1

,

where p1 is a symmetric polynomial with deg p1 6 n +
n∑

i=1

ρi.

Since PMkλ ∈ M ,

(4.3) p1(λ, z) = λ
ρn

zρn

n−1∏

i=1

(z − λi)ρi(λ− λi)ρip2(λ, z)
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for some symmetric polynomial p2 with deg p2 6 n.
In the rest of the proof, c1, c2, c3 are constants in C. Since 0 has multiplicity

ρn, it is not hard to see that G(z) = c1PM∂ρnk0(z). Moreover, PM∂ρnkλ(z) =
∂ρnkλ(z)−PM⊥∂ρnkλ(z). Consequently, by (4.1), we obtain after simple algebraic
manipulations

(4.4) PM∂ρnk0(z) =
q(z)

n−1∏
i=1

(1− λiz)ρi+1

,

where q is a polynomial in D with

(4.5) deg q = n− 1 +
n∑

i=1

ρi.

It is well known that G has exactly n zeros in D with the right multiplicity,
and that |G| > 1 on T; hence G has no extra zeros in D. (For a proof of these
results we refer to Theorem 1 and Lemma 5, [7].) Therefore (4.5) implies that

q(z) = c2z
ρn

n−1∏

i=1

(z − λi)ρi

n−1∏

j=1

(z −Aj), where Aj ∈ C \ D, j = 1, . . . , n− 1.

We use (4.2), (4.3), (4.4) and the above to get

kG
λ (z) = c3

PMkλ(z)
PM∂ρnk0(z)PM∂ρnkλ(0)

= a
p2(λ, z)

n−1∏
j=1

(z −Aj)(λ−Aj)
kλ(z) for some constant a,

where p2 is the symmetric polynomial appeared in (4.3) with deg p2 6 n.
Now recall that the reproducing kernel of M/G which is identically 1 for

λ = 0 and all z ∈ D, is of the form kG
λ (z) = (1− λzlλ(z))kλ(z) for some positive

definite sesquianalytic kernel lλ(z) defined on D× D.
To complete the proof of the claim write

p(λ, z) =
n−1∏

j=1

(z −Aj)(λ−Aj)− ap2(λ, z)

and in addition observe that p(λ, z) is symmetric with deg p 6 n.
We also mention that for the case where 0 /∈ Λ the extremal function is G(z)

= cPMk0(z) for some constant c, and an almost identical argument leads to the
proof with r = n. Hence, the proof of the claim is complete.

If d denotes the degree of the symmetric polynomial p in the statement
of Theorem 4.2, in light of the above claim, it remains to show that d > n.
Furthermore, from the proof of the above claim, if lλ is the associated kernel for
M , then

λzlλ(z) =
p(λ, z)

r∏
j=1

(z −Aj)(λ−Aj)
,
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where r = n−1, if 0 ∈ Λ and r = n, if 0 /∈ Λ. Now note that p(λ, z) is in addition a

positive definite sesquianalytic polynomial of the form p(λ, z) =
d∑

n,m=1
an,mλ

n
zm.

Furthermore, a standard linear algebra argument shows that {(an,m)}d
n=1,m=1 is

a positive definite matrix, and thus, by using the spectrum theorem for positive
definite matrices, it is elementary to show that there are analytic polynomials ϕi,

i = 1, . . . , d, such that p(λ, z) =
d∑

j=1

ϕj(λ)ϕj(z). Hence,

λzlλ(z) =
d∑

j=1

ϕj(λ)ϕj(z)
r∏

β=1

(z −Aβ)(λ−Aβ)
.

By recalling the definition of the rank of a positive sesquianalytic kernel
we immediately get that rank lλ(z) 6 d. Now, since λi 6= λj , i 6= j, i, j ∈ I,
Theorem 3.4 implies that rank lλ(z) = n and hence d > n. This concludes the
proof of the theorem.
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