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0. INTRODUCTION

Dunkl and Ramirez have studied the following problem in [8]: Let G be a locally
compact Abelian group, which bounded continuous functions on G could be uni-
formly approximated by Fourier-Stieltjes transforms of bounded Borel measures
on the Pontryagin dual Ĝ of G? Their characterization is based on a compari-
son of four different topologies on the unit ball of M(Ĝ) ([8], 3.12). M.L. Bami
has used the same idea in [12] to get the same characterization for commutative
foundation ∗-semigroups (Bami’s result for the discrete case is proved in 5.1.6 of
[9]). The crucial role in both proofs is played by the duality theory between some
algebras of functions on the underlying algebraic objects (Abelian groups or com-
mutative foundation ∗-semigroups). The duality theory in the group case is quite
well known, the group algebra L1(G) is ”dual” to the Fourier algebra A(G), which
in the Abelian case is simply the set of all Fourier transforms of elements of L1(G).
In the semigroup case, we do not have a natural candidate for the semigroup alge-
bra in general. However, if S is a foundation semigroup, an analogue of the group
algebra is introduced and studied by A.C. Baker and J.W. Baker (see [10]).

The main objective of this paper is to put these examples in a general frame-
work. Fortunately, there is such a framework for duality of Banach algebras,
introduced by M.E. Walter ([19]). The examples in [19] suggest that the author
was motivated by the duality theory of topological groups and wanted to set up
a framework which could accommodate some more general algebraic structures,
such as (a class of) topological groupoids. We want to use his setup to prove the
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analogue of the Dunkl-Ramirez theorem in general. The main result of this paper
is the following: If two Banach algebras A and B are dual and C∗(A) and C∗(B)
are the corresponding C∗-envelopes, then under some moderate conditions (satis-
fied by many interesting examples) one can characterize the closure of the image
of C∗(A)∗ in the multiplier norm of M(C∗(B)). When G is an Abelian topological
group and A = L1(G) and B = A(G), then

C∗(A)∗ = C∗(G)∗ = B(G) = {µ̂ : µ ∈ M(Ĝ)},
and M(C∗(B)) = M(C0(G)) = Cb(G), and we get the Dunkl-Ramirez theorem.
Our proof follows that of [8], and we only have to make the right interpretation of
that technique in our general setup. We then apply our theorem to prove versions
of Dunkl-Ramirez theorem for the cases where G is not Abelian, or it is another
algebraic structure, like a semigroup.

The paper is organized as follows. In the first section we introduce the four
topologies considered by Dunkl and Ramirez on the unit ball of an arbitrary C∗-
algebra. Then we introduce dual algebras of Martin Walter in Section 2, and prove
our theorem and apply it to some algebraic structures in Section 3.

1. FOUR TOPOLOGIES ON THE UNIT BALL OF A C∗-ALGEBRA

Let A be a C∗-algebra and P (A), S(A), A∗1, and A∗ denote the pure state
space, state space, closed conjugate unit ball, and the conjugate of A, respectively,
all equipped with the w∗-topology (the Banach space A∗ is usually called the
(linear) dual of A, but we prefer to call it the conjugate space, so that we save
the term dual for Walter’s definition). Let A1 denote the closed unit ball of A.
Following [12], we consider the following four topologies on A1:

(1) (w) ai → 0 if and only if 〈ai, f〉 → 0, f ∈ A∗,
(2) (wo) ai → 0 if and only if 〈aix, f〉 → 0, x ∈ A, f ∈ A∗,
(3) (so) ai → 0 if and only if ‖aix‖ → 0, x ∈ A,
(4) (uc) ai → 0 if and only if ai → 0, uniformly on w∗-compact subsets of

S(A).

Note that (so) is just the restriction of the strict topology of the multiplier
algebra M(A) to A1. Also note that if in (4) one requires the uniform convergence
on w∗-compact subsets of A∗1 (instead of S(A)), one gets nothing but the norm
topology (Banach-Alaoglu).

Lemma 1.1. (Akemann-Glimm) Let H be a Hilbert space and S, T ∈ B(H).
Let g : R→ R be a non negative Borel function and 0 < θ < 1. Assume moreover
that:

(i) 0 6 T 6 1, S = S∗, and S > T ;
(ii) g > 1 on [θ, +∞);
(iii) 〈Tζ, ζ〉 > 1− θ, for some ζ ∈ H.

Then 〈g(S)ζ, ζ〉 > 1− 4
√

θ.

Proof. See Lemma 11.4.4 of [5].
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Proposition 1.2. Topologies w, wo, and so coincide on A1 and they are
stronger than uc.

Proof. (wo⊂w). Given f ∈ A∗ and x ∈ A, consider the Arens product
x · f ∈ A∗ defined by x · f(a) = f(ax), a ∈ A. If {ai} ⊂ A1 and ai → 0 (w) then
〈aix, f〉 = 〈ai, x · f〉 → 0, i.e. ai → 0 (wo).

(w⊂wo). By the Cohen Factorization Theorem [6], we have A∗ = A · A∗ =
{x · f : x ∈ A, f ∈ A∗}. Now if {ai} ⊂ A1 and ai → 0 (wo), then given g ∈ A∗,
choose x ∈ A and f ∈ A∗ such that g = x · f . Then 〈ai, g〉 = 〈aix, f〉 → 0, i.e.
ai → 0 (w).

(wo⊂so). Trivial.
(so⊂wo). We adapt the proof of Theorem 1 of [12]. Given f ∈ A∗, we

need only to show that if f restricted to A1 is so-continuous, then it is also wo-
continuous. To this end, assume the so-continuity and note that each a ∈ A
can be associated with the (bounded) linear operator on A, taking x ∈ A to ax.
If N = ker(f), then by convexity of A1, we have (N ∩ A1)−so ∩ A1 = N ∩ A1

(Theorem 13.5 of [11]). Hence (N ∩ A1)−wo ∩ A1 = N ∩ A1 (Corollary 5 of [7]),
and so f is wo-continuous.

(uc⊂wo). We use an idea of [1]. Take a w∗-compact subset K of S(A) and
let f ∈ K. Then, given θ > 0 there exists af ∈ A such that 0 6 af 6 1 and
f(af ) > 1 − θ

2 (see the proof of Lemma 4.5 in [1]). Take the w∗-neighbourhood
Vf = N(f, af ) = {g ∈ S(A) : |g(af )−f(af )| < θ

2} of f in S(A). Then given g ∈ Vf

we have g(af ) > f(af )− θ
2 > 1−θ. Cover K by {Vf}f∈K and use w∗-compactness

of K to get n > 1 and f1, f2, . . . , fn ∈ K such that K ⊂ Vf1 ∪ · · · ∪ Vfn . Put
ai = afi , i = 1, . . . , n and a = a1 + · · · + an. Let g : R → R be a continuous
function which is 0 on (−∞, 0], 1 on [θ, +∞), and linear on [0, θ]. Put b = g(a),
then 0 6 b 6 1. Now given f ∈ K we have f ∈ Vfi , for some i, say i = 1. Then
f(a1) > 1 − θ. On the other hand, there is a cyclic representation {π, H, ζ} of A
such that f(x) = 〈π(x)ζ, ζ〉, x ∈ A. Take T = π(a1) and S = π(a), then clearly
0 6 T 6 1 and S > T . Hence by above lemma,

f(b) = 〈π(b)ζ, ζ〉 = 〈π(g(a))ζ, ζ〉
= 〈g(π(a))ζ, ζ〉 = 〈g(S)ζ, ζ〉
> 1− 4

√
θ.

Now consider a net {ai} ⊂ A1 such that ai → 0 (so), then inside M(A) we
can write ai = aib + ai(1− b), (1− b)2 6 (1− b), and f(1) = ‖f‖ = 1. Hence, for
each i

|f(ai)| 6 |f(aib)|+ |f(ai(1− b))| 6 ‖aib‖+ f(aia
∗
i )

1/2f((1− b)2)1/2

6 ‖aib‖+ ‖aia
∗
i ‖1/2f(1− b)1/2

6 ‖aib‖+ (1− (1− 4
√

θ))1/2

= ‖aib‖+ 2 4
√

θ.

Hence sup
f∈K

|f(ai)| 6 ‖aib‖+ 2 4
√

θ, and so ai → 0 uniformly on K, as required.

Corollary 1.3. If A is a C∗-algebra, A1 is the unit ball of A, and f : A →
C is continuous with respect to (uc), then f is continuous with respect to (w).
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2. DUAL ALGEBRAS

Notation 2.1. ([19]) If A is a C∗-algebra, L(A), P(A), and D(A) denote
the collection of all bounded, completely positive, and completely bounded linear
maps of A into A, respectively. D(A) is called the dual algebra of A.

It can be shown that D(A) is a Banach algebra with conjugation (this is the
same as involution, except that it preserves the order of multiplication), and if
B(A) is the closed linear span of P(A) in D(A) (with respect to the completely
bounded norm) then B(A) ⊂ D(A) ⊂ L(A) ([19]).

Definition 2.2. ([19]) Let A and B be Banach algebras with involution
and conjugation such that there are C∗-algebras C∗(A) and C∗(B) satisfying the
following conditions:

(i) There are Banach algebra homomorphisms iA : A → C∗(A) and iB :
B → C∗(B) which are one-one, onto a dense subalgebra, and preserve involution.

(ii) There are norm decreasing Banach algebra isomorphisms jA : A →
D(C∗(B)) and jB : B → D(C∗(A)) which preserve conjugation.

Then A and B are called dual algebras. If the involutions and conjugations
of both algebras are isometric, the duality is called semirigid. If moreover both jA

and jB are isometric, the duality is called rigid.

Definition 2.3. Consider the dual algebras A and B. The duality is called
complete if there are norm decreasing linear injections kA : C∗(A)∗ → M(C∗(B))
and kB : C∗(B)∗ → M(C∗(A)). Here M stands for the multiplier algebra. The
duality is called strongly complete if moreover there are norm decreasing linear
injections mA : M(C∗(B)) → A∗ and mB : M(C∗(A)) → B∗ such that mA ◦ kA =
i∗A and mB ◦ kB = i∗B .

Example 2.4. If G is a locally compact group then the Fourier algebra
A(G) and the group algebra L1(G) are dual. Here we take C∗(A(G)) = C0(G)
and C∗(L1(G)) = C∗(G). The duality is rigid ([19]) and strongly complete ([16]).

Example 2.5. If A is Mn(C) with Schur product and trace norm and B
is Mn(C) with usual matrix product and L1 norm, then A and B are dual and
duality is rigid ([19]).

Example 2.6. If A is the C∗-algebra of trace class operators on `2 and B is
the subalgebra of M∞(C) consisting of countably infinite matrices with finite L1

norm, then A and B are dual and duality is semirigid ([19]).

Definition 2.7. Consider the dual algebras A and B. The duality is called
amenable if there are isometric isomorphisms lA : C∗(A)∗ → M(B) and lB :
C∗(B)∗ → M(A).

Example 2.8. The duality of Example 2.4 is amenable if and only if the
locally compact group G is amenable ([14]).

Proposition 2.9. Every amenable duality is complete.

Proof. The Banach algebra homomorphism iB : B → C∗(B) uniquely ex-
tends to one from M(B) onto M(C∗(B)), still denoted by iB . Put kA = iB ◦ lA.
kB is constructed similarly.
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Remark 2.10. Example 2.4 shows that the converse of above proposition is
not true.

3. UNIFORM CLOSURE OF DUAL ALGEBRAS

Consider the dual algebras A and B. If the duality is strongly complete, then
using the norm decreasing linear injection kA : C∗(A)∗ → M(C∗(B)), one can
identify C∗(A)∗ with a subspace of M(C∗(B)), where of course the norm of the
latter (which is denoted by ‖ · ‖u ) is weaker. In this section we want to calculate
the closure of kA(C∗(A)∗) in M(C∗(B)), which we call the uniform closure of
C∗(A)∗.

Theorem 3.1. Consider the dual algebras A and B. If the duality is rigid
and strongly complete, then the closure of kA(C∗(A)∗) in M(C∗(B)) consists ex-
actly of those elements b ∈ M(C∗(B)) which satisfy the following property:

If {an} is any sequence in the unit ball A1 of A such that 〈an, i∗A(f)〉 → 0
for all f ∈ C∗(A)∗, then 〈an,mA(b)〉 → 0.

Proof. Assume that b is in the uniform closure of C∗(A)∗ and {an} is any
sequence in the unit ball A1 of A such that 〈an, i∗A(f)〉 → 0 for all f ∈ C∗(A)∗.
Let θ > 0, and take g ∈ C∗(A)∗ such that ‖b− kA(g)‖u < θ. Then by assumption,
〈an, i∗A(g)〉 → 0. Therefore

lim sup
n→∞

|〈an,mA(b)〉| = lim sup
n→∞

|〈an,mA(b− kA(g))〉|

6 lim sup
n→∞

‖b− kA(g)‖u · ‖an‖ < θ.

Hence 〈an, mA(b)〉 → 0.
Conversely, suppose that b ∈ M(C∗(B)) but b /∈ (kA(C∗(A)∗))−‖·‖u . Then

by closed graph theorem, mA(b) is not w-continuous on A1, where w = σ(A,
C∗(A)∗). By Corollary 1.3, mA(b) is not uc-continuous on A1, hence there is
θ > 0 such that for each norm bounded K ⊂ C∗(A)∗ and each δ > 0, there is
aK,δ ∈ A1 such that

|〈aK,δ,mA(b)〉| > θ, |〈aK,δ, i
∗
A(f)〉| < δ, f ∈ K.

Fix w∗-compact subset K ⊂ C∗(A)∗ and put a1 = aK,1. Then take

K1 = {f ∈ C∗(A)∗ : |〈a1, i
∗
A(f)〉| > 1}

and put a2 = aK1,1. Continuing this way, we put

Kn = {f ∈ C∗(A)∗ : |〈ai, i
∗
A(f)〉| > 1/n, 1 6 i 6 n}

and an+1 = aKn,1/n
. Then 〈an, f〉 → 0 for all f ∈ C∗(A)∗ (for those f which

belong to
⋃

n>1

Kn use the defining property of aK,δ’s and for others use the defining

property of Kn’s) but |〈an,mA(b)〉| > θ, n > 1, and we are done.

It is clear from the proof of the above theorem that we only need to assume
a “one way duality” relation between two algebras. More precisely, it is enough
that A and B satisfy the following definition.
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Definition 3.2. Let A and B be Banach algebras with involution such that
there are C∗-algebras C∗(A) and C∗(B) satisfying the following conditions:

(i) There are Banach algebra homomorphisms iA : A → C∗(A) and iB :
B → C∗(B) which are one-one, onto a dense subalgebra, and preserve involution.

(ii) There is norm decreasing linear injection

kA : C∗(A)∗ → M(C∗(B)),

where M stands for the multiplier algebra.
Then A is called semidual to B. In this case the concepts such as rigidity,

(strong) completeness, and amenability are defined similarly.

Example 3.3. If S is a foundation topological ∗-semigroup whose ∗-repre-
sentations separate the points of S, then the Fourier algebra A(S) ([2]) is semidual
to the semigroup algebra Ma(S). The semiduality is rigid and strongly complete.
Here we take C∗(A(S)) = C0(S) and C∗(Ma(S)) = C∗(S) ([2]). This is in partic-
ular true for any (discrete) inverse semigroup (with Ma(S) replaced by `1(S), see
[3]).

Theorem 3.4. Consider the involutive Banach (normed) algebras A and
B. If A is semidual to B and the semiduality is rigid and strongly complete,
then the closure of kA(C∗(A)∗) in M(C∗(B)) consists exactly of those elements
b ∈ M(C∗(B)) which satisfy the following property:

If {an} is any sequence in the unit ball A1 of A such that 〈an, i∗A(f)〉 → 0
for all f ∈ C∗(A)∗, then 〈an,mA(b)〉 → 0.

Corollary 3.5. Let S be a foundation topological ∗-semigroup with identity
whose ∗-representations separate the points of S, and let B(S) denote the Fourier-
Stieltjes algebra of S. Then for a function f ∈ Cb(S) the following are equivalent:

(i) f ∈ B(S)−‖·‖∞ ;
(ii) If {µn} is any sequence in the unit ball of Ma(S) such that

∫
S

gdµn → 0

as n →∞, for all g ∈ P (S), then
∫
S

fdµn → 0, as n →∞.

Proof. See Example 3.3 and Theorem 3.4.

As far as I know, this result is new even for locally compact groups (although
B(G)−‖·‖∞ has been studied in other directions; see for instance [4]).

Corollary 3.6. Let G be a topological group and m be a left Haar measure
on G, and let B(G) denote the Fourier-Stieltjes algebra of G. Then for a function
f ∈ Cb(G) the following are equivalent:

(i) f ∈ B(G)−‖·‖∞ ;
(ii) If {fn} is any sequence in the unit ball of L1(G) such that

∫
G

gfndm → 0

as n →∞, for all g ∈ P (G), then
∫
G

ffndm → 0, as n →∞.

If we compare Corollary 3.5 with the main result of [12] which asserts that
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Proposition 3.7. Let S be a commutative separative foundation semigroup
with identity and let R(S) denote the L∞-representation algebra of S. Then for a
function f ∈ Cb(S) the following are equivalent:

(i) f ∈ R(S)−‖·‖∞ ;
(ii) If {µn} is any sequence in the unit ball of Ma(S) such that µ̂n(χ) → 0

as n →∞, for all χ ∈ Ŝ, then
∫
S

fdµn → 0, as n →∞.

and use the Remark 3.1(b) of [13], we get

Corollary 3.8. If S is as in above proposition, then B(S) is uniformly
dense in R(S).

If G is a topological (or measured) groupoid then the Fourier algebra A(G)
has been studied by several authors ([18], [17], [15]). The definitions in these
papers are not exactly the same, but of course they coincide if G is a group. If one
can show that A(G) is semidual to the convolution algebra Cc(G) (here Cc(G) is
only a normed ∗-algebra, but that does not change anything in our proof), then
Theorem 3.4 could be used to characterize the closure of M(G) in M(C∗(G)). Here
we take C∗(A(G)) = C0(G) and C∗(Cc(G)) = C∗(G). Note that Proposition 2.3
in [18] provides a norm decreasing injection from B(G) into D(C∗(G)), but in
contrast with group case, B(G) is no longer the same as the conjugate space of
C∗(G) (a more sophisticated relation using module Haagerup tensor products is
provided in [18]).
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