UNIFORM CLOSURE AND DUAL BANACH ALGEBRAS

MASSOUD AMINI
Communicated by William B. Arveson

Abstract

We give a characterization of the "uniform closure" of the conjugate of a C^{*}-algebra. Some applications in harmonic analysis are given. KEYWORDS: Dual algebras, Banach algebras, C^{*}-algebras, group, groupoid, semigroup. MSC (2000): Primary 46L05; Secondary 22D25.

0. INTRODUCTION

Dunkl and Ramirez have studied the following problem in [8]: Let G be a locally compact Abelian group, which bounded continuous functions on G could be uniformly approximated by Fourier-Stieltjes transforms of bounded Borel measures on the Pontryagin dual \widehat{G} of G ? Their characterization is based on a comparison of four different topologies on the unit ball of $M(\widehat{G})([8], 3.12)$. M.L. Bami has used the same idea in [12] to get the same characterization for commutative foundation $*$-semigroups (Bami's result for the discrete case is proved in 5.1.6 of [9]). The crucial role in both proofs is played by the duality theory between some algebras of functions on the underlying algebraic objects (Abelian groups or commutative foundation $*$-semigroups). The duality theory in the group case is quite well known, the group algebra $L^{1}(G)$ is "dual" to the Fourier algebra $A(G)$, which in the Abelian case is simply the set of all Fourier transforms of elements of $L^{1}(G)$. In the semigroup case, we do not have a natural candidate for the semigroup algebra in general. However, if S is a foundation semigroup, an analogue of the group algebra is introduced and studied by A.C. Baker and J.W. Baker (see [10]).

The main objective of this paper is to put these examples in a general framework. Fortunately, there is such a framework for duality of Banach algebras, introduced by M.E. Walter ([19]). The examples in [19] suggest that the author was motivated by the duality theory of topological groups and wanted to set up a framework which could accommodate some more general algebraic structures, such as (a class of) topological groupoids. We want to use his setup to prove the
analogue of the Dunkl-Ramirez theorem in general. The main result of this paper is the following: If two Banach algebras A and B are dual and $C^{*}(A)$ and $C^{*}(B)$ are the corresponding C^{*}-envelopes, then under some moderate conditions (satisfied by many interesting examples) one can characterize the closure of the image of $C^{*}(A)^{*}$ in the multiplier norm of $M\left(C^{*}(B)\right)$. When G is an Abelian topological group and $A=L^{1}(G)$ and $B=A(G)$, then

$$
C^{*}(A)^{*}=C^{*}(G)^{*}=B(G)=\{\widehat{\mu}: \mu \in M(\widehat{G})\}
$$

and $M\left(C^{*}(B)\right)=M\left(C_{0}(G)\right)=C_{\mathrm{b}}(G)$, and we get the Dunkl-Ramirez theorem. Our proof follows that of [8], and we only have to make the right interpretation of that technique in our general setup. We then apply our theorem to prove versions of Dunkl-Ramirez theorem for the cases where G is not Abelian, or it is another algebraic structure, like a semigroup.

The paper is organized as follows. In the first section we introduce the four topologies considered by Dunkl and Ramirez on the unit ball of an arbitrary C^{*} algebra. Then we introduce dual algebras of Martin Walter in Section 2, and prove our theorem and apply it to some algebraic structures in Section 3.

1. FOUR TOPOLOGIES ON THE UNIT BALL OF A C^{*}-ALGEBRA

Let A be a C^{*}-algebra and $P(A), S(A), A_{1}^{*}$, and A^{*} denote the pure state space, state space, closed conjugate unit ball, and the conjugate of A, respectively, all equipped with the w^{*}-topology (the Banach space A^{*} is usually called the (linear) dual of A, but we prefer to call it the conjugate space, so that we save the term dual for Walter's definition). Let A_{1} denote the closed unit ball of A. Following [12], we consider the following four topologies on A_{1} :
(1) (w) $a_{i} \rightarrow 0$ if and only if $\left\langle a_{i}, f\right\rangle \rightarrow 0, f \in A^{*}$,
(2) (wo) $a_{i} \rightarrow 0$ if and only if $\left\langle a_{i} x, f\right\rangle \rightarrow 0, x \in A, f \in A^{*}$,
(3) (so) $a_{i} \rightarrow 0$ if and only if $\left\|a_{i} x\right\| \rightarrow 0, x \in A$,
(4) (uc) $a_{i} \rightarrow 0$ if and only if $a_{i} \rightarrow 0$, uniformly on w^{*}-compact subsets of $S(A)$.

Note that (so) is just the restriction of the strict topology of the multiplier algebra $M(A)$ to A_{1}. Also note that if in (4) one requires the uniform convergence on w^{*}-compact subsets of A_{1}^{*} (instead of $S(A)$), one gets nothing but the norm topology (Banach-Alaoglu).

Lemma 1.1. (Akemann-Glimm) Let H be a Hilbert space and $S, T \in B(H)$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non negative Borel function and $0<\theta<1$. Assume moreover that:
(i) $0 \leqslant T \leqslant 1, S=S^{*}$, and $S \geqslant T$;
(ii) $g \geqslant 1$ on $[\theta,+\infty)$;
(iii) $\langle T \zeta, \zeta\rangle \geqslant 1-\theta$, for some $\zeta \in H$.

Then $\langle g(S) \zeta, \zeta\rangle \geqslant 1-4 \sqrt{\theta}$.
Proof. See Lemma 11.4.4 of [5].

Proposition 1.2. Topologies w , wo, and so coincide on A_{1} and they are stronger than uc.

Proof. (wo \subset w). Given $f \in A^{*}$ and $x \in A$, consider the Arens product $x \cdot f \in A^{*}$ defined by $x \cdot f(a)=f(a x), a \in A$. If $\left\{a_{i}\right\} \subset A_{1}$ and $a_{i} \rightarrow 0(\mathrm{w})$ then $\left\langle a_{i} x, f\right\rangle=\left\langle a_{i}, x \cdot f\right\rangle \rightarrow 0$, i.e. $a_{i} \rightarrow 0$ (wo).
($\mathrm{w} \subset \mathrm{wo}$). By the Cohen Factorization Theorem [6], we have $A^{*}=A \cdot A^{*}=$ $\left\{x \cdot f: x \in A, f \in A^{*}\right\}$. Now if $\left\{a_{i}\right\} \subset A_{1}$ and $a_{i} \rightarrow 0$ (wo), then given $g \in A^{*}$, choose $x \in A$ and $f \in A^{*}$ such that $g=x \cdot f$. Then $\left\langle a_{i}, g\right\rangle=\left\langle a_{i} x, f\right\rangle \rightarrow 0$, i.e. $a_{i} \rightarrow 0(\mathrm{w})$.
(woCso). Trivial.
(soCwo). We adapt the proof of Theorem 1 of [12]. Given $f \in A^{*}$, we need only to show that if f restricted to A_{1} is so-continuous, then it is also wocontinuous. To this end, assume the so-continuity and note that each $a \in A$ can be associated with the (bounded) linear operator on A, taking $x \in A$ to $a x$. If $N=\operatorname{ker}(f)$, then by convexity of A_{1}, we have $\left(N \cap A_{1}\right)^{\text {-so }} \cap A_{1}=N \cap A_{1}$ (Theorem 13.5 of [11]). Hence $\left(N \cap A_{1}\right)^{- \text {wo }} \cap A_{1}=N \cap A_{1}$ (Corollary 5 of [7]), and so f is wo-continuous.
(uc \subset wo). We use an idea of [1]. Take a w*-compact subset K of $S(A)$ and let $f \in K$. Then, given $\theta>0$ there exists $a_{f} \in A$ such that $0 \leqslant a_{f} \leqslant 1$ and $f\left(a_{f}\right)>1-\frac{\theta}{2}$ (see the proof of Lemma 4.5 in [1]). Take the w^{*}-neighbourhood $V_{f}=N\left(f, a_{f}\right)=\left\{g \in S(A):\left|g\left(a_{f}\right)-f\left(a_{f}\right)\right|<\frac{\theta}{2}\right\}$ of f in $S(A)$. Then given $g \in V_{f}$ we have $g\left(a_{f}\right) \geqslant f\left(a_{f}\right)-\frac{\theta}{2}>1-\theta$. Cover K by $\left\{V_{f}\right\}_{f \in K}$ and use w*-compactness of K to get $n \geqslant 1$ and $f_{1}, f_{2}, \ldots, f_{n} \in K$ such that $K \subset V_{f_{1}} \cup \cdots \cup V_{f_{n}}$. Put $a_{i}=a_{f_{i}}, i=1, \ldots, n$ and $a=a_{1}+\cdots+a_{n}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which is 0 on $(-\infty, 0], 1$ on $[\theta,+\infty)$, and linear on $[0, \theta]$. Put $b=g(a)$, then $0 \leqslant b \leqslant 1$. Now given $f \in K$ we have $f \in V_{f_{i}}$, for some i, say $i=1$. Then $f\left(a_{1}\right) \geqslant 1-\theta$. On the other hand, there is a cyclic representation $\{\pi, H, \zeta\}$ of A such that $f(x)=\langle\pi(x) \zeta, \zeta\rangle, x \in A$. Take $T=\pi\left(a_{1}\right)$ and $S=\pi(a)$, then clearly $0 \leqslant T \leqslant 1$ and $S \geqslant T$. Hence by above lemma,

$$
\begin{aligned}
f(b)=\langle\pi(b) \zeta, \zeta\rangle & =\langle\pi(g(a)) \zeta, \zeta\rangle \\
& =\langle g(\pi(a)) \zeta, \zeta\rangle=\langle g(S) \zeta, \zeta\rangle \\
& \geqslant 1-4 \sqrt{\theta} .
\end{aligned}
$$

Now consider a net $\left\{a_{i}\right\} \subset A_{1}$ such that $a_{i} \rightarrow 0$ (so), then inside $M(A)$ we can write $a_{i}=a_{i} b+a_{i}(1-b),(1-b)^{2} \leqslant(1-b)$, and $f(1)=\|f\|=1$. Hence, for each i

$$
\begin{aligned}
\left|f\left(a_{i}\right)\right| \leqslant\left|f\left(a_{i} b\right)\right|+\left|f\left(a_{i}(1-b)\right)\right| & \leqslant\left\|a_{i} b\right\|+f\left(a_{i} a_{i}^{*}\right)^{1 / 2} f\left((1-b)^{2}\right)^{1 / 2} \\
& \leqslant\left\|a_{i} b\right\|+\left\|a_{i} a_{i}^{*}\right\|^{1 / 2} f(1-b)^{1 / 2} \\
& \leqslant\left\|a_{i} b\right\|+(1-(1-4 \sqrt{\theta}))^{1 / 2} \\
& =\left\|a_{i} b\right\|+2 \sqrt[4]{\theta}
\end{aligned}
$$

Hence $\sup _{f \in K}\left|f\left(a_{i}\right)\right| \leqslant\left\|a_{i} b\right\|+2 \sqrt[4]{\theta}$, and so $a_{i} \rightarrow 0$ uniformly on K, as required.
Corollary 1.3. If A is a C^{*}-algebra, A_{1} is the unit ball of A, and $f: A \rightarrow$ \mathbb{C} is continuous with respect to (uc), then f is continuous with respect to (w).

2. DUAL ALGEBRAS

Notation 2.1. ([19]) If A is a C^{*}-algebra, $\mathfrak{L}(A), \mathfrak{P}(A)$, and $\mathfrak{D}(A)$ denote the collection of all bounded, completely positive, and completely bounded linear maps of A into A, respectively. $\mathfrak{D}(A)$ is called the dual algebra of A.

It can be shown that $\mathfrak{D}(A)$ is a Banach algebra with conjugation (this is the same as involution, except that it preserves the order of multiplication), and if $\mathfrak{B}(A)$ is the closed linear span of $\mathfrak{P}(A)$ in $\mathfrak{D}(A)$ (with respect to the completely bounded norm) then $\mathfrak{B}(A) \subset \mathfrak{D}(A) \subset \mathfrak{L}(A)$ ([19]).

Definition 2.2. ([19]) Let A and B be Banach algebras with involution and conjugation such that there are C^{*}-algebras $C^{*}(A)$ and $C^{*}(B)$ satisfying the following conditions:
(i) There are Banach algebra homomorphisms $i_{A}: A \rightarrow C^{*}(A)$ and i_{B} : $B \rightarrow C^{*}(B)$ which are one-one, onto a dense subalgebra, and preserve involution.
(ii) There are norm decreasing Banach algebra isomorphisms $j_{A}: A \rightarrow$ $\mathfrak{D}\left(C^{*}(B)\right)$ and $j_{B}: B \rightarrow \mathfrak{D}\left(C^{*}(A)\right)$ which preserve conjugation.

Then A and B are called dual algebras. If the involutions and conjugations of both algebras are isometric, the duality is called semirigid. If moreover both j_{A} and j_{B} are isometric, the duality is called rigid.

Definition 2.3. Consider the dual algebras A and B. The duality is called complete if there are norm decreasing linear injections $k_{A}: C^{*}(A)^{*} \rightarrow M\left(C^{*}(B)\right)$ and $k_{B}: C^{*}(B)^{*} \rightarrow M\left(C^{*}(A)\right)$. Here M stands for the multiplier algebra. The duality is called strongly complete if moreover there are norm decreasing linear injections $m_{A}: M\left(C^{*}(B)\right) \rightarrow A^{*}$ and $m_{B}: M\left(C^{*}(A)\right) \rightarrow B^{*}$ such that $m_{A} \circ k_{A}=$ i_{A}^{*} and $m_{B} \circ k_{B}=i_{B}^{*}$.

Example 2.4. If G is a locally compact group then the Fourier algebra $A(G)$ and the group algebra $L^{1}(G)$ are dual. Here we take $C^{*}(A(G))=C_{0}(G)$ and $C^{*}\left(L^{1}(G)\right)=C^{*}(G)$. The duality is rigid ([19]) and strongly complete ([16]).

Example 2.5. If A is $M_{n}(\mathbb{C})$ with Schur product and trace norm and B is $M_{n}(\mathbb{C})$ with usual matrix product and L^{1} norm, then A and B are dual and duality is rigid ([19]).

Example 2.6. If A is the C^{*}-algebra of trace class operators on ℓ^{2} and B is the subalgebra of $M_{\infty}(\mathbb{C})$ consisting of countably infinite matrices with finite L^{1} norm, then A and B are dual and duality is semirigid ([19]).

Definition 2.7. Consider the dual algebras A and B. The duality is called amenable if there are isometric isomorphisms $l_{A}: C^{*}(A)^{*} \rightarrow M(B)$ and $l_{B}:$ $C^{*}(B)^{*} \rightarrow M(A)$.

Example 2.8. The duality of Example 2.4 is amenable if and only if the locally compact group G is amenable ([14]).

Proposition 2.9. Every amenable duality is complete.
Proof. The Banach algebra homomorphism $i_{B}: B \rightarrow C^{*}(B)$ uniquely extends to one from $M(B)$ onto $M\left(C^{*}(B)\right)$, still denoted by i_{B}. Put $k_{A}=i_{B} \circ l_{A}$. k_{B} is constructed similarly.

Remark 2.10. Example 2.4 shows that the converse of above proposition is not true.

3. UNIFORM CLOSURE OF DUAL ALGEBRAS

Consider the dual algebras A and B. If the duality is strongly complete, then using the norm decreasing linear injection $k_{A}: C^{*}(A)^{*} \rightarrow M\left(C^{*}(B)\right)$, one can identify $C^{*}(A)^{*}$ with a subspace of $M\left(C^{*}(B)\right)$, where of course the norm of the latter (which is denoted by $\|\cdot\|_{\mathrm{u}}$) is weaker. In this section we want to calculate the closure of $k_{A}\left(C^{*}(A)^{*}\right)$ in $M\left(C^{*}(B)\right)$, which we call the uniform closure of $C^{*}(A)^{*}$.

Theorem 3.1. Consider the dual algebras A and B. If the duality is rigid and strongly complete, then the closure of $k_{A}\left(C^{*}(A)^{*}\right)$ in $M\left(C^{*}(B)\right)$ consists exactly of those elements $b \in M\left(C^{*}(B)\right)$ which satisfy the following property:

If $\left\{a_{n}\right\}$ is any sequence in the unit ball A_{1} of A such that $\left\langle a_{n}, i_{A}^{*}(f)\right\rangle \rightarrow 0$ for all $f \in C^{*}(A)^{*}$, then $\left\langle a_{n}, m_{A}(b)\right\rangle \rightarrow 0$.

Proof. Assume that b is in the uniform closure of $C^{*}(A)^{*}$ and $\left\{a_{n}\right\}$ is any sequence in the unit ball A_{1} of A such that $\left\langle a_{n}, i_{A}^{*}(f)\right\rangle \rightarrow 0$ for all $f \in C^{*}(A)^{*}$. Let $\theta>0$, and take $g \in C^{*}(A)^{*}$ such that $\left\|b-k_{A}(g)\right\|_{\mathrm{u}}<\theta$. Then by assumption, $\left\langle a_{n}, i_{A}^{*}(g)\right\rangle \rightarrow 0$. Therefore

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\left\langle a_{n}, m_{A}(b)\right\rangle\right| & =\limsup _{n \rightarrow \infty}\left|\left\langle a_{n}, m_{A}\left(b-k_{A}(g)\right)\right\rangle\right| \\
& \leqslant \limsup _{n \rightarrow \infty}\left\|b-k_{A}(g)\right\|_{\mathrm{u}} \cdot\left\|a_{n}\right\|<\theta .
\end{aligned}
$$

Hence $\left\langle a_{n}, m_{A}(b)\right\rangle \rightarrow 0$.
Conversely, suppose that $b \in M\left(C^{*}(B)\right)$ but $b \notin\left(k_{A}\left(C^{*}(A)^{*}\right)\right)^{-\|\cdot\|_{u}}$. Then by closed graph theorem, $m_{A}(b)$ is not w-continuous on A_{1}, where $w=\sigma(A$, $\left.C^{*}(A)^{*}\right)$. By Corollary 1.3, $m_{A}(b)$ is not uc-continuous on A_{1}, hence there is $\theta>0$ such that for each norm bounded $K \subset C^{*}(A)^{*}$ and each $\delta>0$, there is $a_{K, \delta} \in A_{1}$ such that

$$
\left|\left\langle a_{K, \delta}, m_{A}(b)\right\rangle\right| \geqslant \theta, \quad\left|\left\langle a_{K, \delta}, i_{A}^{*}(f)\right\rangle\right|<\delta, \quad f \in K
$$

Fix w*-compact subset $K \subset C^{*}(A)^{*}$ and put $a_{1}=a_{K, 1}$. Then take

$$
K_{1}=\left\{f \in C^{*}(A)^{*}:\left|\left\langle a_{1}, i_{A}^{*}(f)\right\rangle\right| \geqslant 1\right\}
$$

and put $a_{2}=a_{K_{1}, 1}$. Continuing this way, we put

$$
K_{n}=\left\{f \in C^{*}(A)^{*}:\left|\left\langle a_{i}, i_{A}^{*}(f)\right\rangle\right| \geqslant 1 / n, 1 \leqslant i \leqslant n\right\}
$$

and $a_{n+1}=a_{K_{n, 1 / n}}$. Then $\left\langle a_{n}, f\right\rangle \rightarrow 0$ for all $f \in C^{*}(A)^{*}$ (for those f which belong to $\bigcup_{n \geqslant 1} K_{n}$ use the defining property of $a_{K, \delta}$'s and for others use the defining property of K_{n} 's) but $\left|\left\langle a_{n}, m_{A}(b)\right\rangle\right| \geqslant \theta, n \geqslant 1$, and we are done.

It is clear from the proof of the above theorem that we only need to assume a "one way duality" relation between two algebras. More precisely, it is enough that A and B satisfy the following definition.

Definition 3.2. Let A and B be Banach algebras with involution such that there are C^{*}-algebras $C^{*}(A)$ and $C^{*}(B)$ satisfying the following conditions:
(i) There are Banach algebra homomorphisms $i_{A}: A \rightarrow C^{*}(A)$ and i_{B} : $B \rightarrow C^{*}(B)$ which are one-one, onto a dense subalgebra, and preserve involution.
(ii) There is norm decreasing linear injection

$$
k_{A}: C^{*}(A)^{*} \rightarrow M\left(C^{*}(B)\right)
$$

where M stands for the multiplier algebra.
Then A is called semidual to B. In this case the concepts such as rigidity, (strong) completeness, and amenability are defined similarly.

Example 3.3. If S is a foundation topological $*$-semigroup whose $*$-representations separate the points of S, then the Fourier algebra $A(S)([2])$ is semidual to the semigroup algebra $M_{a}(S)$. The semiduality is rigid and strongly complete. Here we take $C^{*}(A(S))=C_{0}(S)$ and $C^{*}\left(M_{a}(S)\right)=C^{*}(S)$ ([2]). This is in particular true for any (discrete) inverse semigroup (with $M_{a}(S)$ replaced by $\ell^{1}(S)$, see [3]).

Theorem 3.4. Consider the involutive Banach (normed) algebras A and B. If A is semidual to B and the semiduality is rigid and strongly complete, then the closure of $k_{A}\left(C^{*}(A)^{*}\right)$ in $M\left(C^{*}(B)\right)$ consists exactly of those elements $b \in M\left(C^{*}(B)\right)$ which satisfy the following property:

If $\left\{a_{n}\right\}$ is any sequence in the unit ball A_{1} of A such that $\left\langle a_{n}, i_{A}^{*}(f)\right\rangle \rightarrow 0$ for all $f \in C^{*}(A)^{*}$, then $\left\langle a_{n}, m_{A}(b)\right\rangle \rightarrow 0$.

Corollary 3.5. Let S be a foundation topological $*$-semigroup with identity whose *-representations separate the points of S, and let $B(S)$ denote the FourierStieltjes algebra of S. Then for a function $f \in C_{\mathrm{b}}(S)$ the following are equivalent:
(i) $f \in B(S)^{-\|\cdot\|_{\infty}}$;
(ii) If $\left\{\mu_{n}\right\}$ is any sequence in the unit ball of $M_{a}(S)$ such that $\int_{S} g \mathrm{~d} \mu_{n} \rightarrow 0$ as $n \rightarrow \infty$, for all $g \in P(S)$, then $\int_{S} f \mathrm{~d} \mu_{n} \rightarrow 0$, as $n \rightarrow \infty$.

Proof. See Example 3.3 and Theorem 3.4.
As far as I know, this result is new even for locally compact groups (although $B(G)^{-\|\cdot\|_{\infty}}$ has been studied in other directions; see for instance [4]).

Corollary 3.6. Let G be a topological group and m be a left Haar measure on G, and let $B(G)$ denote the Fourier-Stieltjes algebra of G. Then for a function $f \in C_{\mathrm{b}}(G)$ the following are equivalent:
(i) $f \in B(G)^{-\|\cdot\|_{\infty}}$;
(ii) If $\left\{f_{n}\right\}$ is any sequence in the unit ball of $L^{1}(G)$ such that $\int_{G} g f_{n} \mathrm{~d} m \rightarrow 0$ as $n \rightarrow \infty$, for all $g \in P(G)$, then $\int_{G} f f_{n} \mathrm{~d} m \rightarrow 0$, as $n \rightarrow \infty$.

If we compare Corollary 3.5 with the main result of [12] which asserts that

Proposition 3.7. Let S be a commutative separative foundation semigroup with identity and let $R(S)$ denote the L^{∞}-representation algebra of S. Then for a function $f \in C_{\mathrm{b}}(S)$ the following are equivalent:
(i) $f \in R(S)^{-\|\cdot\|_{\infty}}$;
(ii) If $\left\{\mu_{n}\right\}$ is any sequence in the unit ball of $M_{a}(S)$ such that $\widehat{\mu}_{n}(\chi) \rightarrow 0$ as $n \rightarrow \infty$, for all $\chi \in \widehat{S}$, then $\int_{S} f \mathrm{~d} \mu_{n} \rightarrow 0$, as $n \rightarrow \infty$.
and use the Remark 3.1(b) of [13], we get
Corollary 3.8. If S is as in above proposition, then $B(S)$ is uniformly dense in $R(S)$.

If G is a topological (or measured) groupoid then the Fourier algebra $A(G)$ has been studied by several authors ([18], [17], [15]). The definitions in these papers are not exactly the same, but of course they coincide if G is a group. If one can show that $A(G)$ is semidual to the convolution algebra $C_{\mathrm{c}}(G)$ (here $C_{\mathrm{c}}(G)$ is only a normed $*$-algebra, but that does not change anything in our proof), then Theorem 3.4 could be used to characterize the closure of $M(G)$ in $M\left(C^{*}(G)\right)$. Here we take $C^{*}(A(G))=C_{0}(G)$ and $C^{*}\left(C_{\mathrm{c}}(G)\right)=C^{*}(G)$. Note that Proposition 2.3 in [18] provides a norm decreasing injection from $B(G)$ into $\mathfrak{D}\left(C^{*}(G)\right.$), but in contrast with group case, $B(G)$ is no longer the same as the conjugate space of $C^{*}(G)$ (a more sophisticated relation using module Haagerup tensor products is provided in [18]).

Acknowledgements. This research was supported by Grant 510-2090 of Shahid Behshti University. The final form of this work was produced during my stay in University of Saskatchewan. I would like to thank their hospitality and support. I also thank the referee who pointed out an error in the proof of Proposition 1.2.

REFERENCES

1. C.A. Akemann, J. Anderson, G.K. Pedersen, Diffuse sequences and perfect C^{*} algebras, Trans. Amer. Math. Soc. 298(1986), 747-762.
2. M. Amini, A.R. Medghalchi, Fourier algebras on topological foundation *-semigroups, Semigroup Forum 68(2004), 322-334.
3. M. Amini, A.R. Medghalchi, Restricted algebras on inverse semigroups, preprint, 2002.
4. C.Chou, Weakly almost periodic functions and Fourier-Stieltjes algebra of locally compact groups, Trans. Amer. Math. Soc. 274(1982), 141-157.
5. J. Dixmier, C^{*}-Algebras, North Holland, Amsterdam 1977.
6. R.S. Doran, J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math., vol. 768, Springer Verlag, Berlin 1979.
7. N. Dunford, T. Schwartz, Linear Operators. Part One: General Theory, Interscience, New York 1958.
8. C.F. Dunkl, D.E. Ramirez, Topics in Harmonic Analysis, Appelton-Century Mathematics series, Appelton-Century-Crofts, New York 1971.
9. C.F. Dunkl, D.E. Ramirez, Representations of Commutative Semitopological Semigroups, Lecture Notes in Math., vol. 435, Springer-Verlag, Berlin 1975.
10. H.A.M. Dzinotyiweyi, The Analogue of the Group Algebra for Topological Semigroups, Res. Notes Math., vol. 98, Pitman, Boston 1984.
11. J.L. Kelley, I. Namioka, Linear Topological Spaces, Van Nostrand, Princeton 1963.
12. M. Lashkarizadeh Bami, On some sup-norm closure of the L^{∞}-representation algebra $R(S)$ of a foundation semigroup S, Semigroup Forum $\mathbf{5 2}(1996), 389$ 392.
13. A.T.M. LaU, The Fourier-Stieltjes algebra of a topological semigroup with involution, Pacific J. Math. 77(1978), 165-181.
14. V. Losert, Properties of the Fourier algebra that are equivalent to amenability, Proc. Amer. Math. Soc. 92(1984), 347-354.
15. K. Отту, Fourier-Stieltjes algebras of r-discrete groupoids, J. Operator Theory 41 (1999), 175-197.
16. G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London 1979.
17. A. RAMSAY, M.E. WALTER, Fourier-Stieltjes algebra of locally compact groupoids, J. Funct. Anal. 148(1997), 314-367.
18. J. Renault, The Fourier algebra of a measured groupoid and its multipliers, J. Funct. Anal. 145(1997), 455-490.
19. M.E. Walter, Dual algebras, Math. Scand. 58(1986), 77-104.

MASSOUD AMINI
Department of Mathematics and Statistics
University of Saskatchewan
106 Wiggins Road, Saskatoon
Saskatchewan S7N 5E6
CANADA
E-mail: mamini@math.usask.ca
Permanent Address
Department of Mathematics
Tarbiat Modarres University P.O. Box 14115-175, Tehran IRAN
E-mail: mamini@modares.ac.ir

Received September 10, 2002; revised September 2, 2003 and April 4, 2004.

