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Abstract. Quadrature operators are the qθ = (e−iθa + eiθa∗)/
√

2 where a
and a∗ are the annihilation and creation operators on L2(R). The structure
of the C∗-algebra generated by operators f(qθ) for f continuous function
vanishing at infinity and θ in any subset Θ of ] − π, π[ with Card(Θ) > 2 is
studied. It is shown that it contains all compact operators and it is a C∗-
algebra of type I. Its atomic representation and the structure of its spectrum
is explicitely given. A trace formula for the operators f(qθ1)g(qθ2) is proved.
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1. INTRODUCTION

Let H be the complex Hilbert space L2(R), B(H) the algebra of all bounded
operators on H, K the ideal of compact operators and C0(R) the set of complex
continuous functions on R vanishing at infinity. Let q and p be the position and
momentum operators in H defined by qu(t) = tu(t) and pu(t) = −iu′(t) on their
respective domains Dom(q) = {u ∈ H : qu ∈ H} and Dom(p) = {u ∈ H :
u absolutely continuous, pu ∈ H}, and consider the C∗-algebras Q0 = {f(q) : f ∈
C0(R)} and Qπ/2 = {f(p) : f ∈ C0(R)}. The unitary equivalence between q and
p given by the Fourier transform allows us to show that Q0Qπ/2 ⊂ K ⊂ Q{0,π/2}
where Q{0,π/2} is the C∗-algebra generated by Q0 ∪ Qπ/2. Moreover, since f(p)
and g(q) have continuous spectra for f and g real-valued in C0(R), it turns out
that Q0 ∩ K = {0} and Qπ/2 ∩ K = {0}. It is easy to see that these facts imply

Q{0,π/2} = Q0 +Qπ/2 +K.
There is a natural generalization of q and p which appears in the context of quan-
tum optics (see [9] and the references therein), the so-called quadrature operators
qθ defined for each θ ∈]− π, π[ by

qθ =
e−iθa+ eiθa∗√

2
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where a and a∗, the annihilation and creation operators, are respectively the
closures of (q + ip)/

√
2 and (q − ip)/

√
2 (notice that q = q0, p = qπ/2 and

[qθ1 , qθ2 ] 6= 0 whenever θ1 − θ2 /∈ πZ). The C∗-algebra QΘ generated by
⋃

θ∈Θ

Qθ

where Qθ = { f(qθ) : f ∈ C0(R) } and Θ is any subset of ] − π, π[ then arises
in a natural way as “good” algebra for studying the irreversible dynamics of the
observables of a quantum open system. Indeed, it was shown in [3] that quantum
Ornstein-Ulhenbeck semigroups on B(H) enjoy the Feller property with respect to
Q{0,π/2}.

Our aim here is to study the structure of the C∗-algebra QΘ where Θ is any
subset of ]− π, π[ with Card(Θ) > 2. We show that, if Θ is finite, then

QΘ =
∑

θ∈Θ

Qθ +K,

and so in general
QΘ = lim

→ F∈FQF

where F is the set of finite subsets of Θ directed by inclusion. We give the atomic
representation of QΘ and deduce that QΘ is a C∗-algebra of type I; an essential
composition serie is given when Θ is countable (Proposition 3.1 and Theorem
3.2). Its spectrum Q̂Θ is the topological free union

∑
θ∈Θ

Q̂θ + {tId} where tId is the

inclusion QΘ ⊂ B(H) (Theorem 3.3); in particular, Q̂Θ is Hausdorff.

2. STRUCTURE OF QΘ

Let (hn)n∈N be the orthonormal basis of H given by

hn(t) = π−
1
4 (2nn!)−

1
2 e−

t2
2 Hn(t)

where Hn(t) = (−1)net2 dn

dtn e−t2 is the Hermite polynomial of order n. For all
θ ∈ R let Fθ be the unitary operator on H defined by

Fθhn = einθhn for all n ∈ N.
Clearly {Fθ : θ ∈ R} is a group of unitary operators with F2nπ = Id and F ∗θ = F−θ.
It is well-known (see e.g. Chapter 4, Section 2, Example 4.18 and 4.22 in [6])
that each Fθ coincides with the operator Piθ of the analytic continuation of the
Ornstein-Uhlenbeck semigroup {Pt : t > 0} and, by the Mehler’s formula, it has
an integral representation

(Fθu)(t) = cθe−
it2
2 cot θ

∞∫

−∞
e

its
sin θ− is2

2 cot θu(s)ds

for all u ∈ H where
cθ = (2π| sin θ|)− 1

2 ei(
πsgn(θ)

4 − θ
2 ).
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Note that F(2n+1)π/2, n ∈ N coincides with the Fourier transform on H

(F(2n+1)π/2u)(t) = û(t) =
1√
2π

+∞∫

−∞
eitsu(s)ds.

For this reason the operators Fθ are also called fractional Fourier transforms (see
[8] and the references therein). The following lemma generalises the well-known
property of the Fourier transform Fπ/2f(q)F−π/2 = f(p).

Lemma 2.1. For each f in C0(R) and θ in ] − π, π[ we have f(qθ) =
Fθf(q)F−θ.

Proof. Using the well known relations H ′′
n(t) − 2tH ′

n(t) + 2nHn(t) = 0,
H ′

n(t) = 2nHn−1(t) and Hn+1(t)− 2tHn(t) + 2nHn−1(t) = 0 (see e.g. Section A.5
in [5]) we have

(q + ip)hn =
√

2nhn−1 for n > 0, (q + ip)h0 = 0,

(q − ip)hn =
√

2(n+ 1)hn+1 for n ∈ N.
Then a short calculation leads to FθqF

∗
θ = FθqF−θ = qθ. Therefore we have also

Fθf(q)F−θ = f(qθ) for all θ ∈]− π, π[.

Let Cc(R) denote the vector space of complex-valued continuous functions
on R with compact support.

Lemma 2.2. For each f, g in Cc(R) and θ in ]−π, π[ with θ 6= 0 the operator
f(qθ)g(q) is Hilbert-Schmidt and has kernel

(2.1) (t, s) 7→ 2π−
1
2 | sin θ|−1e−

i(t2−s2)
2 cot θf̂((t− s)/sin θ)g(s).

Proof. By Lemma 2.1, the operator f(qθ)g(q) can be written in the form
Fθf(q)F−θg(q). Moreover, for all u ∈ H we have

(Fθf(q)F−θu)(t) = cθc−θe−
it2
2 cot θ

∞∫

−∞
e

itr
sin θ f(r)

( ∞∫

−∞
e−

irs
sin θ + is2

2 cot θu(s)ds
)
dr

= cθc−θe−
it2
2 cot θ

∞∫

−∞
e

is2 cot θ
2 u(s)

∞∫

−∞
e

ir(t−s)
sin θ f(r)dr ds

=
√

2πcθc−θe−
it2
2 cot θ

∞∫

−∞
e

is2 cot θ
2 u(s)f̂((t− s)/sin θ)ds.

Thus f(qθ)g(q) has kernel (2.1).
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Proposition 2.3. For each f, g in C0(R) and θ1 6= θ2 in ] − π, π[, the
operator f(qθ1)g(qθ2) is compact.

Proof. By Lemma 2.1 the operator f(qθ1)g(qθ2) can be written in the form

Fθ1f(q)F−θ1Fθ2g(q)F−θ2 = Fθ2

(
Fθ1−θ2f(q)F−(θ1−θ2)

)
g(q)F−θ2

= Fθ2f(qθ1−θ2)g(q)F−θ2 .

Therefore it suffices to show that f(qθ)g(q) is compact for all non-zero θ ∈]−π, π[.
This is clear when f and g have compact support by Lemma 2.2. In the general
case when both f and g belong to C0(R), let (fn) and (gn) be sequences in Cc(R)
converging uniformly to f and g respectively. Since, for all n,m in N, the norm
‖fn(qθ)gn(q)− fm(qθ)gm(q)‖ is not bigger than

‖fn(qθ)(gn(q)− gm(q))‖+ ‖(fn(qθ)− fm(qθ))gm(q)‖
6 max

{
sup
n∈N

‖fn‖, sup
n∈N

‖gn‖
}

(‖gn − gm‖+ ‖fn − fm‖),

it follows that the sequence (fn(qθ)gn(q)) is Cauchy in B(H). Therefore f(qθ)g(q)
is compact as a norm limit of Hilbert-Schmidt operators.

As a corollary we deduce a generalization of a trace formula due to Accardi
(see [1]) for the special case θ1 − θ2 = π/2.

Corollary 2.4. For each f, g in Cc(R) and θ1 6= θ2 in ]−π, π[, the operator
f(qθ1)g(qθ2) is trace class and

tr(f(qθ1)g(qθ2)) =
1

2π| sin(θ1 − θ2)|

−∞∫

−∞
f(t)dt

−∞∫

−∞
g(s)ds.

Proof. Let θ ∈]− π, π[ \{0}, δ > 1/2 put g(q)f(qθ) = xy with

x = g(q)(1 + p2)−
δ
2 (1 + q2)

δ
2 , y = (1 + q2)−

δ
2 (1 + p2)

δ
2 f(qθ).

A computation as in the proof of Lemma 2.2 shows that both x and y have
a continuous square integrable kernel. Therefore x and y have bounded exten-
sions, these are Hilbert-Schmidt and g(q)f(qθ) = xy is trace class. It follows that
f(qθ1)g(qθ2) = Fθ2f(qθ1−θ2)g(q)F−θ2 is trace class for all θ1 6= θ2 in ]− π, π[. The
kernel (2.1) being continuous, the trace is given by the integral on the diagonal
i.e.

tr(f(qθ1)g(qθ2)) = tr(f(qθ1−θ2)g(q)) =
1√

2π| sin(θ1 − θ2)|

+∞∫

−∞
f̂(0)g(s)ds.

The conclusion follows from the definition of f̂(0).
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Lemma 2.5. The C∗-algebra QΘ contains all compact operators on H.

Proof. Suppose first that Θ contains 0 and a non-zero θ in ]− π, π[. Let g ∈
Cc(R) and let gθ(t) = e(it2 cot θ)/2g(t). The Fourier transform of the gaussian distri-
bution with variance ε, fε(t) = (2πε)−1/2e−t2/2ε, is f̂ε(t−s) = (2π)−1/2e−ε(t−s)2/2.
Therefore by (2.1) the operator 2π| sin θ| g(q)fε(qθ)g(q)− |gθ〉〈gθ| has the kernel

kε(t, s) =
√

2πe−
i(t2−s2) cot θ

2 f̂ε((t− s)/ sin θ)g(s)g(t)− gθ(s)gθ(t)

= e−
i(t2−s2) cot θ

2

(
e−

ε(t−s)2

2(sin θ)2 − 1
)
g(s)g(t).

Notice that kε converges to 0 in L2(R2) as ε goes to 0 by dominated convergence.
Therefore the operator 2π| sin θ| g(q)fε(qθ)g(q) converges to |gθ〉〈gθ| (as ε → 0)
in the Hilbert-Schmidt norm. Thus both |gθ〉〈gθ| and |g〉〈g| belong to QΘ. If
u ∈ H and (gn) is a sequence in Cc(R) converging in L2 norm to u, then |gn〉〈gn|
converges in norm to |u〉〈u|. Thus every finite rank operator belongs to QΘ and,
by norm closure, the same conclusion holds for all compact operators.

When Θ contains two points θ1, θ2 ∈ ]−π, π[ with θ1 6= θ2 it suffices to recall
the identity Q{θ1,θ2} = Fθ1Q{0,θ2−θ1}F−θ1 . Indeed, Fθ1KF−θ1 = K.

Proposition 2.6. If Θ is finite, then QΘ =
∑

θ∈Θ

Qθ +K.

Proof. Notice that Qθ1Qθ2 ⊂ K for all θ1 6= θ2 in Θ by Proposition 2.3, and
since for each real-valued f ∈ C0(R) and θ ∈ Θ, f(qθ) has continuous spectrum we
have Qθ ∩K = {0}. For each x =

∑
θ∈Θ

xθ + z and y =
∑

θ∈Θ

yθ + z′ in
∑

θ∈Θ

Qθ +K, we

have (x− z)(y − z′) =
∑

θ∈Θ

xθyθ +
∑

θ∈Θ
θ′∈Θ
θ′ 6=θ

xθyθ′ ∈
∑

θ∈Θ

Qθ +K, and so
∑

θ∈Θ

Qθ +K is

a ∗-subalgebra of B(H) containing K ∪ ⋃
θ∈Θ

Qθ. For each θ0 ∈ Θ and
∑

θ∈Θ

xθ + z ∈
∑

θ∈Θ

Qθ +K we have

‖xθ0‖
∥∥∥

∑

θ∈Θ

xθ + z
∥∥∥ >

∥∥∥xθ0

( ∑

θ∈Θ

xθ + z
)∥∥∥ > ‖x2

θ0
+ z′‖

for some z′ ∈ K, and since Qθ0 +K is a C∗-subalgebra of B(H) with Qθ0∩K = {0},
there is a constant cθ0 > 0 such that cθ0‖x2

θ0
+ z′‖ > ‖x2

θ0
‖ = ‖xθ0‖2. Thus

cθ0

∥∥∥ ∑
θ∈Θ

xθ + z
∥∥∥ > ‖xθ0‖ and c =

∑
θ∈Θ

cθ satisfies

(2.2) c
∥∥∥

∑

θ∈Θ

xθ + z
∥∥∥ >

∑

θ∈θ

‖xθ‖.

Let
( ∑

θ∈Θ

xn,θ + zn

)
be a sequence in

∑
θ∈Θ

Qθ + K converging to y ∈ B(H). By

(2.2), (xn,θ) is a Cauchy sequence converging to some xθ ∈ Qθ for all θ ∈ Θ, and( ∑
θ∈Θ

xn,θ

)
is Cauchy converging to

∑
θ∈Θ

xθ. Thus, (zn) is a Cauchy sequence with



264 Henri Comman and Franco Fagnola

some limit z ∈ K, and y =
∑

θ∈Θ

xθ + z. Therefore
∑

θ∈Θ

Qθ +K is closed and so it is

the C∗-algebra generated by K ∪ ⋃
θ∈Θ

Qθ which is equal to QΘ by Lemma 2.5.

Let F denote the set of finite subsets of Θ directed by inclusion; since
⋃

F∈F
QF

is a self-adjoint algebra containing K and all the Qθ with θ ∈ Θ, we obtain the
following:

Corollary 2.7. The C∗-algebra QΘ is the inductive limit of the directed
system {QF : F ∈ F }.

3. SPECTRUM OF QΘ

Let Irr(A) denote the set of irreducible representations of a C∗-algebra A and let
Â denote its spectrum. Moreover, for all π ∈ Irr(A) we denote by tπ the image of
π in Â.

Proposition 3.1. The atomic representation πa of QΘ is

πa = πId ⊕
⊕

θ∈Θ
πθ∈Irr(Qθ)

π̃θ

where πId is the inclusion QΘ ⊂ B(H) and π̃θ the unique element π ∈ Irr(QΘ)\{πId}
such that π|Qθ

= πθ.

Proof. Since QΘ acts irreducibly on H, (πId,H) is an irreducible represen-
tation of QΘ. Let (π,Hπ) ∈ Irr(QΘ)\{(πId,H)}. Since π must vanish on K ([7],
Theorem 10.4.6), there exists θ ∈ Θ such that π(Qθ) 6= {0} by Corollary 2.7. For
each xθ ∈ Qθ and x ∈ QΘ we have π(x)π(xθ) = limπ(xi)π(xθ) = limπ(xixθ) for
some net (xi) in

⋃
F∈F

QF by Corollary 2.7. Since Qθ′Qθ ⊂ K for all θ′ 6= θ in Θ,

we have π(xixθ) ∈ π(Qθ) and so

(3.1) π(x)π(xθ) ∈ π(Qθ).

Thus π(Qθ) is a closed ideal in π(QΘ). Since π(Qθ) 6= {0}, we have (π|Qθ
,

π(Qθ)Hπ) ∈ Irr(Qθ) ([10], Lemma 4.1.5), and since π(Qθ)Hπ is invariant for π by
(3.1), we have π(Qθ)Hπ = Hπ. Therefore (π|Qθ

,Hπ) ∈ Irr(Qθ). For each θ′ 6= θ
in Θ we have π(Qθ′)Hπ = π(Qθ′)π(Qθ)Hπ = {0} whence π|Qθ′ = 0. Thus for
each (π,Hπ) ∈ Irr(QΘ)\{(πId,H)} there is a unique θπ such that π(Qθπ ) 6= {0};
moreover (π|Qθπ

,Hπ) is a character on Qθπ and π|Qθπ
determines completely π by

Corollary 2.7. Therefore there is an injective map

(3.2) Irr(QΘ)\{(πId,H)} →
⋃

θ∈Θ

Irr(Qθ), π 7→ π|Qθπ
.

Each πθ0 ∈
⋃

θ∈Θ

Irr(Qθ) can be extended to an element π̃θ0 ∈ Irr(QΘ)\{πId} by

defining π̃θ0(K) = π̃θ0(Qθ) = {0} for all θ 6= θ0 in Θ; since θ
π̃θ0

= θ0 we have
π̃θ0 |Qθ0

= πθ0 and the map (3.2) is onto.
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Theorem 3.2. QΘ is a C∗-algebra of type I. If Θ is finite or countable,
then the family

{Jn : 0 6 n < Card(Θ) + 2 }
where J0 = {0}, J1 = K, J2 = Qθ1 + K, Jn = Q{θ1,...,θn−1} for all 3 6 n <
Card(Θ) + 2 is an essential composition series for QΘ such that Jn+1/Jn has
continuous trace for all 0 6 n < Card(Θ) + 1.

Proof. By Proposition 3.1, each π ∈ Irr(QΘ)\{πId} is one dimensional and
so QΘ is a C∗-algebra of type I. Assume that Θ is finite or countable. For each
0 6 n < Card(Θ)+2, Jn is closed in QΘ by Proposition 2.6, and since Qθ1Qθ2 ⊂ K
for all θ1 6= θ2 in Θ, Jn is an ideal in

⋃
06k<Card(Θ)+2

Jk; thus Jn is a closed

ideal in QΘ by Corollary 2.7. Since QΘ is the norm closure of
⋃

06n<Card(Θ)+2

Jn,

the family {Jn : 0 6 n < Card(Θ) + 2 } is a composition series for QΘ. Let
1 6 n < Card(Θ) + 2 and J a non-zero closed ideal in Jn+1. If J ∩ Jn = {0},
then each element x ∈ J has a form x = x1 + · · ·+xn +z with xi ∈ Qθi

, 1 6 i 6 n,
z ∈ K and xn 6= 0. Since Kxnx ∈ KJ = {0}, we have xnx = x2

n + z′ = 0 for some
z′ ∈ K, i.e., x2

n ∈ K which is impossible. Thus J ∩Jn 6= {0} and Jn is an essential
ideal in Jn+1. Since J1 = K and Jn+1/Jn = Qn for all 1 6 n < Card(Θ) + 1 the
theorem is proved.

Recall that the free union
∑
i∈I

Xi of a family {Xi : i ∈ I} of topological

spaces is the set
⋃
i∈I

{i} × Xi endowed with the topology
{
G ⊂ ⋃

i∈I

{i} × Xi :

G ∩ ({i} × Xi) is open in {i} × Xi for all i ∈ I
}

. If X is a topological space
and {Xi, i ∈ I} an open cover of X, then the family of homeomorphisms {ψi :
{i} × Xi → Xi : i ∈ I} defined by ψi(i, xi) = xi induces a homeomorphism( ∑

i∈I

Xi

)
/R ' X where (i, xi)R(j, x′j) if xi = x′j ([4], Theorem 8.5 and Example

2, p. 131).

Theorem 3.3. Q̂Θ =
∑

θ∈Θ

Q̂θ + {tId} where tId corresponds to πId. In par-

ticular, Q̂Θ is Hausdorff.

Proof. Since QΘ is a C∗-algebra of type I by Theorem 3.2, Q̂Θ coincides
with the primitive spectrum ([2], Proposition 1.5.4). By Proposition 3.1, for each
π ∈ Irr(QΘ)\{πId} there exists θπ ∈ Θ and a maximal ideal Mθπ of Qθπ such that

(3.3)
⋃

F∈F
θπ 6∈F

QF +Mθπ ⊂ Kerπ.

For each θ ∈ Θ, Qθ ⊂
⋂

t′∈Q̂Θ\Q̂θ

t′ by (3.3), and each t ∈ Q̂θ does not contain Qθ;

it follows that ∀t ∈ Q̂θ, t 6⊃
⋂

t′∈Q̂Θ\Q̂θ

t′, which shows that Q̂θ is open in Q̂Θ. The
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set {tId} is open in Q̂Θ since K ⊂ ⋂
t′∈Q̂Θ\{tId}

t′. Therefore {Q̂θ : θ ∈ Θ} ∪ {tId} is

an open cover of Q̂Θ. For each θ, θ′ in Θ, tθ ∈ Q̂θ and t′θ′ ∈ Q̂θ′ , we have by (3.3)
tθ = t′θ′ if and only if θ = θ′ and tθ = t′θ so that Q̂Θ =

∑
θ∈Θ

Q̂θ + {tId}. The last

assertion is obvious since Q̂θ is Hausdorff for all θ ∈ Θ.
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Bernardo O’Higgins 3363 Santiago Via Dodecaneso 35, I-16146 Genova

CHILE ITALIA

E-mail: hcomman@usach.cl E-mail: fagnola@dima.unige.it

Received September 13, 2002.


