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Abstract. We give a necessary and sufficient condition for the existence of
non-constant multipliers of minimal norm on complete NP spaces and use it,
along with a result of S. Shimorin, to answer a question posed by S. Axler.
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1. INTRODUCTION

The multipliers of a reproducing kernel Hilbert space ([4], [11]) are necessarily
bounded functions, whose sup norms are dominated by the operator norms of the
associated multiplication operators. This inequality is not necessarily strict. For
the best studied case, that of the Hardy space H2 on the open unit disk D, equality
occurs for all multipliers (that are all the bounded holomorphic functions on D).
The same happens for the Bergman space A2. However, for the Dirichlet space
D, formed by the holomorphic functions whose derivatives belong to A2, it is easy
to see that the inequality is strict for the identity function (the “Dirichlet shift”).
This led S. Axler to ask in [5] whether there are non-constant multipliers on D
with operator norm equal to the sup norm (or multipliers of minimal norm, as we
call them here, since the sup norm of a multiplier is a lower bound for its operator
norm).

Axler’s question was answered affirmatively by J. Lech, reportedly using
techniques similar to those in [7], but his work is not published.

Here we show that Axler’s question has an affirmative answer for a large
family of reproducing kernel Hilbert spaces, including all harmonically weighted
Dirichlet spaces, of which D is an example. This paper is organized as follows.
Sections 2 and 3 summarize some facts about multipliers and NP kernels which
will be used in our results. In Section 4 we give a necessary and sufficient condition
for the existence of multipliers of minimal norm on NP spaces. Finally in Section 5
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we apply our result and a theorem of Shimorin ([14]) to establish the existence of
multipliers of minimal norm on harmonically weighted Dirichlet spaces.

2. MULTIPLIERS

All functions are considered to be complex valued unless stated otherwise.
Let H be a Hilbert space of functions on a set X such that point evaluations

are bounded functionals. Then, for each x ∈ X there exists kx ∈ H such that for
f ∈ H,

〈f, kx〉H = f(x).

A function k defined on X × X is generally called a kernel (on X) and it
is said to be positive definite, semi-definite, etc., if for every x1, . . . , xn ∈ X the
matrix (k(xi, xj))n

i,j=1 is respectively positive definite, semi-definite, etc.
The kernel k(x, y) = ky(x) is called the reproducing kernel of H. It is positive

semi-definite because the matrix (k(xj , xi))n
i,j=1 is the Grammian of the vectors

kxj . The space H is called a reproducing kernel Hilbert space.
Any positive semi-definite kernel on X is the reproducing kernel of a uniquely

determined Hilbert space of functions on X, which we will denote by H(k). This
seems to have been first noted by E.H. Moore (Mem. Amer. Philos. Soc.,
1:2(1939), Chapter V). The theory of reproducing kernels was systematically de-
veloped in Aronszajn’s paper ([4]). A recent and very elegant account is [11].

Here are the reproducing kernels of some familiar spaces:

(i) the Hardy space H2 on the unit disk D whose kernel is the “Szegö
kernel”,

Sz(z, w) =
1

1− wz
;

(ii) the Bergman space A2 on the unit disk:

kA(z, w) =
1

(1− wz)2
,

the square of the Szegö kernel;
(iii) and finally, for the Dirichlet space D:

d(z, w) =
1

wz
log

1
1− wz

.

IfH is a reproducing kernel Hilbert space on X, a multiplier ofH is a function
ϕ on X with the property that ϕf belongs to H whenever f belongs to H. The
operator that maps f ∈ H to ϕf will be denoted by Mϕ. It follows from the
Closed Graph Theorem that Mϕ is bounded. We summarize the essential facts
about multipliers to be used in the sequel in the following proposition. Proofs can
be found in [4] and [11].
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Proposition 2.1.

(i) An operator T on H(k) is a multiplier Mϕ if and only if T is bounded
and T ∗kx = ϕ(x)kx for all x ∈ X.

(ii) A function ϕ on X is a multiplier of H(k) with operator norm smaller
or equal to r > 0 if and only if

(2.1) l(x, y) = (r2 − ϕ(x)ϕ(y))k(x, y)

is a positive semi-definite kernel on X.

It follows from part 1 that |ϕ(x)| 6 ‖Mϕ‖ for all multipliers ϕ.
Finally, we state here a result from [3] which will be useful in Section 4. Let

ρ denote the pseudo-hyperbolic metric on D, that is,

ρ(w, z) =
∣∣∣∣

z − w

1− wz

∣∣∣∣

for every z and w in D.

Proposition 2.2. ([3]) Let k be a positive definite kernel on a set X. Then
the function

(2.2) dk(x, y) =

√
1− |k(x, y)|2

k(x, x)k(y, y)

is a distance on X and if ϕ is a contractive multiplier of H(k) then

(2.3) ρ(ϕ(x), ϕ(y)) 6 dk(x, y).

3. NP KERNELS

Let k be a positive definite kernel on a set X. We say that k is a Nevanlinna-Pick
kernel, abbreviated to NP kernel if:

(i) there exists a point c ∈ X such that k(x, c) = 1 for all x ∈ X;
(ii) k has no zeros on X ×X;
(iii) the kernel 1− 1

k is positive semi-definite on X.

Condition (i) implies that the constant functions form an isometric embed-
ding of the complex plane C in H(k). A kernel which satisfies (ii) is called irre-
ducible (see [3]). Condition (iii) was introduced by Agler in [1] and studied by
Quiggin in [9].

The following proposition states the key property of NP kernels which will
be used here. A stronger form of this property characterizes NP kernels.

Let k be a positive semi-definite kernel on a set X and let Y ⊂ X be any
subset of X. The restriction of k to Y × Y is a positive semi-definite kernel on Y .
Abusively, we will denote that kernel on Y by k|Y .
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Proposition 3.1. ([9]) Let k be an NP kernel on a set X and let Y ⊂ X
be any subset of X. If ϕ is a function on Y and a contractive multiplier of H(k|Y )
then there exists an extension ϕ̃ of ϕ which is a contractive multiplier of H(k).

The Szegö kernel is easily seen to be an NP kernel on D: Sz(z, 0) = 1, it is
irreducible and

1− 1
Sz(z, w)

= wz,

which is a (rank one) positive semi-definite kernel on D. Proposition 3.1 is, in this
case, a generalization of a famous theorem of Pick ([8]):

Theorem 3.2. Let z1, . . . , zn be points in D and λ1, . . . , λn be complex val-
ues (in D too). Then, there exists a function f in the unit ball of H∞ such that
f(zj) = λj for 1 6 j 6 n if and only if the matrix

(3.1)
(

1− λiλj

1− zizj

)n

i,j=1

is positive semi-definite.

Note that the (i, j)-entry of the matrix in (3.1) equals

(1− λiλj)Sz(zi, zj);

by Proposition 2.1, part (ii), this matrix is positive semi-definite if and only if the
function zj 7→ λj is a contractive multiplier for the restriction of the Szegö kernel
to {z1, . . . , zn} ⊂ D.

The Bergman kernel is not an NP kernel while the Dirichlet kernel is. The
proof of these facts can be found in [9] and elsewhere. In [14], Shimorin established
that the reproducing kernels of a large family of Hilbert spaces are NP kernels.
We will use that result later on.

Conditions (i)-(iii) are not independent and they do not correspond to the
most general case of an NP kernel. Here we present them in this manner for
the sake of brevity and simplicity. In the general case conditions (i) and (ii) are
suppressed and condition (iii) suitably modified; however, in [3] it is shown that if k
is an NP kernel on X then X admits a partition {Xι}ι∈I such that k is irreducible
on each Xι, and

H(k) =
⊕

ι∈I

H(k|Xι).

Moreover if k is an irreducible kernel, condition (i) can be forced without changing
the multiplier algebra: choose a point c ∈ X and replace k by the kernel

kc(x, y) =
k(x, y)k(c, c)
k(x, c)k(c, y)

.

The origin of the concept of an NP kernel is the preprint [1], where Agler
applied Sarason’s commutant lifting approach from [12] to general reproducing
kernels. An application to a Sobolev space was published in [2] but the first
published work studying this subject in its full generality was [9]. A complete
account of the theory of NP kernels is [3], which contains many original results
and applications as well as a very complete bibliography.
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4. MULTIPLIERS AND MINIMAL NORM

We begin by stating some facts about positive semi-definite kernels.

Proposition 4.1. If k and l are two positive semi-definite kernels on a set
X, then so is their pointwise product.

This is a direct consequence of a celebrated theorem of Schur ([13]) which
states that the entrywise product (also called “Schur product”) of two positive
semi-definite matrices is a positive semi-definite matrix.

Lemma 4.2. Let k be a positive semi-definite kernel on X, and let a ∈ X
be such that k(a, a) > 0. Then, the kernel

k(a)(x, y) = k(x, y)− k(x, a)k(a, y)
k(a, a)

is also a positive semi-definite kernel on X.

The proof is obtained by noting that k(a)(x, y) equals 〈vy, vx〉H(k) where

vx = kx − k(a, x)
k(a, a)

ka,

and likewise for vy.
The boundedness of the diagonal of a reproducing kernel is reflected in the

boundedness of the functions of the generated Hilbert space. This is a known fact
of which we include a proof here, for the sake of completeness.

Proposition 4.3. The diagonal k(x, x) of a reproducing kernel k is un-
bounded if and only if there exists an unbounded function in H(k).

Proof. Sufficiency: Let f ∈ H(k) be an unbounded function. By the Cauchy–
Schwarz inequality,

|f(x)|2 = |〈f, kx〉|2 6 ‖f‖2‖kx‖2 = ‖f‖2k(x, x),

whence

k(x, x) > |f(x)|2
‖f‖2 ,

thus proving the unboundedness of the diagonal.
Necessity: If all functions in H(k) are bounded then consider the set of

point evaluation functionals {〈·, kx〉, x ∈ X}. On each function f ∈ H(k) the
evaluations of these functionals will form the range of f , which is bounded. Then
by the Principle of Uniform Boundedness, this must be a norm bounded set and
the norm of the functional 〈·, kx〉 is

√
k(x, x).

Greene, Richter and Sundberg prove in [6] that the column functions kx of
an NP kernel k are multipliers and supply an estimate for their multiplier norms.
Proposition 4.4 below is a slight improvement of their result.

For ϕ a multiplier of k, let ‖ϕ‖ denote its multiplier norm.
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Proposition 4.4. Let k be an NP kernel. Then, for all a ∈ X the function
k(·, a) is an invertible multiplier whose multiplier norm satisfies

(4.1) ‖k(·, a)‖ 6 1

1−
√

1− 1
k(a,a)

.

In particular, the functions k(·, a) are bounded on X.

Proof. Define

F (x, y) = 1− 1
k(x, y)

and let a ∈ X. The kernel F is positive semi-definite by condition (iii) in Section 3,
and so is

G(x, y) = F (a)(x, y) = F (x, y)− F (x, a)F (a, y)
F (a, a)

,

by Lemma 4.2. Then,(
1− F (x, a)F (a, y)

F (a, a)

)
k(x, y) = 1 + G(x, y)k(x, y)

is positive semi-definite which shows that F (·, a) is a multiplier of norm no greater
than

√
F (a, a), and F (a, a) < 1. Then,

k(·, a) =
1

1− F (·, a)
=

∑

n>0

F (·, a)n

so it is a multiplier of norm no greater than
1

1−
√

F (a, a)
whose inverse is a multiplier as well.

The estimate we present for the multiplier norm of k(·, a) can not be im-
proved: in the case of the Szegö kernel, equality holds for all a ∈ D.

We arrive now to our main result. Let B denote the closed unit ball of the
multiplier algebra of H(k).

Theorem 4.5. Let k be an NP kernel such that H(k) contains an unbounded
function. Then given any sequence (wn) in D there exists ϕ ∈ B whose range
contains wn for every n.

In particular, there exists a non-constant multiplier whose sup norm on X
equals its multiplier norm.

First we prove a stronger version of the theorem for finite sequences.

Lemma 4.6. Under the conditions of Theorem 4.5, given a sequence (wn)
in D, there exists a sequence (xn) in X such that for each n the matrix
(4.2) Wn(x1, . . . , xn) = ((1− wiwj)k(xi, xj))n

i,j=1

is positive definite.

The positive semi-definiteness of the matrix (4.2) suffices to imply the exis-
tence of a multiplier ϕn ∈ B such that ϕn(xi) = wi for 1 6 i 6 n because k is an
NP kernel.
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Proof. We will use induction to show that for each n, given x1, . . . , xn such
that

Wn(x1, . . . , xn) > 0,

there exists x ∈ X such that
Wn+1(x1, . . . , xn, x) > 0.

For n = 1, any point x ∈ X can be taken for x1 (reproducing kernels are assumed
non-degenerate). Assume now that for n > 1 we have points x1, . . . , xn for which
(4.2) is positive definite. All we need is to find an x ∈ X such that

bn+1(x) = det Wn+1(x1, . . . , xn, x)
is positive. In fact, Wn+1(x1, . . . , xn, x) will be positive definite if and only if all of
its principal minors (bj(xj), for 1 6 j 6 n and bn+1(x)) are positive, and those of
rank less than n must be so by the induction hypothesis. But computing bn+1(x)
by the Laplace rule using row n + 1 we see that

bn+1(x) = (1− |wn+1|2)k(x, x)bn(xn) + s(x)
where s(x) is a fixed polynomial function whose coefficients are polynomials in the
entries of Wn+1 other than the lower right corner, all of which have absolute value
no bigger than

max
16j6n

(sup |2k(·, xj)|),
and these suprema are finite by Proposition 4.4 and the observation that follows
it. So, s(x) is bounded. But, by Proposition 4.3 k(x, x) is not bounded, so we can
certainly choose x such that this determinant is positive (it must be real because
this is a hermitian matrix).

We can now prove Theorem 4.5.

Proof. Let (wn) be a sequence in D. By Lemma 4.6 there exists a sequence
(xn) in X such that for each n ∈ N there exists ϕn ∈ B such that ϕn(xj) = wj

for j 6 n. All these functions take values in D, which has compact closure, so by
Tychonoff’s Theorem the sequence (ϕn) has an accumulation point ϕ. It is easy
to check that ϕ must belong to B (by the positive semi-definiteness of the NP
matrix associated with ϕ for any finite set of points), and clearly ϕ(xn) = wn.

The following proposition holds for all reproducing kernels satisfying condi-
tion (i) in the definition of an NP kernel given above and it is actually a corollary
of Proposition 2.2. However, when applied to NP kernels, it shows that the impli-
cation in Theorem 4.5 is actually an equivalence.

Proposition 4.7. If H(k) contains only bounded functions then every non-
constant multiplier has multiplier norm strictly larger than the supremum norm.

Proof. By Proposition 4.3, there exists R > 0 such that k(x, x) < R for all
x. Let ϕ be a multiplier of norm 1. It follows from Proposition 2.2 that∣∣∣∣∣

ϕ(x)− ϕ(c)
1− ϕ(c)ϕ(x)

∣∣∣∣∣ 6 dk(x, c) =

√
1− 1

k(x, x)
6

√
1− 1

R
< 1,

so the range of ϕ is contained in the pseudo-hyperbolic ball of radius
√

1− 1/R
about ϕ(c). It is thus bounded away from the unit circle unless ϕ(c) is itself
unimodular, in which case ϕ must be constant, by Proposition 2.2.
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The Sobolev space W 1 on [0, 1] is the space formed by those absolutely
continuous functions whose derivatives belong to L2([0, 1]). It is a Hilbert space
with the inner product

〈f, g〉 = 〈f, g〉L2 + 〈f ′, g′〉L2 ,

for f, g ∈ W 1. All the functions in W 1 are bounded. It is easy to see that point
evaluations are bounded functionals and so W 1 is a reproducing kernel Hilbert
space. The results proved above imply that W 1 does not have multipliers of
minimal norm.

In [9] it is proved that a certain family of weighted Sobolev spaces on the
interval have NP kernels. For the case of W 1 the proof can also be found in [3].

This space has the distinction of coinciding with its own multiplier algebra.
However, not all reproducing kernel Hilbert spaces consisting only of bounded func-
tions coincide with their multiplier algebras. Easy examples are the restrictions of
the Szegö kernel to infinite subsets of D bounded away from the boundary.

5. APPLICATION TO AXLER’S QUESTION

The Szegö kernel on D is an immediate example of a complete NP kernel whose
diagonal is unbounded. A less trivial example is the Dirichlet kernel ([1], [9])

(5.1)
1

wz
log

1
1− wz

.

In [5] Axler asked if there exist in the Dirichlet space multipliers of minimal
norm. The results in the previous section and the fact that the Dirichlet kernel
is an NP kernel give an affirmative answer to this question. Actually it turns out
that these multipliers exist for all so-called harmonically weighted Dirichlet spaces.
These spaces were introduced by S. Richter in [10], where he used them to classify
two-isometries (Hilbert space operators T that satisfy T ∗2T 2 − 2T ∗T + I = 0) up
to unitary equivalence. The spaces are defined as follows.

Let µ be a positive finite Borel measure on the unit circle ∂D. Denote by
Pµ(z) the Poisson integral of µ evaluated at z,

Pµ(z) =

2π∫

0

1− |z|2
|eiθ − z|2 dµ(θ).

The holomorphic functions on D for which the integral

Dµ(f) =
1
π

∫ ∫

D

|f ′(x + iy)|2Pµ(x + iy)dxdy

is finite is a linear subspace of the Hardy space H2. It forms a Hilbert space,
denoted by D(µ) for the norm

‖f‖2D(µ) = ‖f‖2H2 + Dµ(f).

The Dirichlet space D is D(dθ/2π), i.e., take for µ the normalized Lebesgue
measure on ∂D.

Shimorin proved the following theorem in [14].
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Theorem 5.1. ([14]) The reproducing kernels of all the spaces D(µ) are NP
kernels.

In view of this and the previous results, the following proposition establishes
the existence of multipliers of minimal norm on each of these spaces.

Proposition 5.2. All D(µ) spaces contain unbounded functions.
Proof. For w ∈ D let

f(z, w) = log
(

1
1− wz

)
.

Note that
d(z, w) =

1
wz

f(z, w)

is the kernel function of the Dirichlet space D.
Let µ be a positive finite Borel measure on ∂D. We have

‖f(·, w)‖2D(µ) = |w|2‖d(·, w)‖2H2 + Dµ(f(·, w))

6 |w|2‖d(·, w)‖2D + Dµ(f(·, w))

= f(w, w) + Dµ(f(·, w)).
Let h denote the Poisson integral of µ and z = x + iy. We have:

Dµ(f(·, w)) =
1
π

∫ ∫

D

∣∣∣∣
∂f(z, w)

∂z

∣∣∣∣
2

h(z)dxdy =
1
π

1∫

0

2π∫

0

∣∣∣∣
w

1− wreiθ

∣∣∣∣
2

h(reiθ)rdθdr

=
1
π

1∫

0

2π∫

0

∣∣∣∣
w

eiθ − wr

∣∣∣∣
2

h(reiθ)rdθdr =

1∫

0

2|w|2r
1− |w|2r2

h(r2w)dr.

Let w = ρeiα. We have
2π∫

0

1∫

0

2|w|2r
1− |w|2r2

h(r2w)drdα =

1∫

0

2π∫

0

2ρ2r

1− ρ2r2
h(r2ρeiα)dαdr

=

1∫

0

2ρ2r

1− ρ2r2
2πh(0)dr = 2πh(0) log

(
1

1− ρ2

)
.

So, for each ρ ∈]0, 1[ there is a α ∈ [0, 2π[ such that for w = ρeiα we have
Dµ(f(·, w)) 6 h(0)f(w, w).

Thus, letting |w| tend to 1 and choosing an appropriate argument for w,

f(w, w)
‖f(·, w)‖D(µ)

>
√

f(w, w)
1 + h(0)

tends to infinity, and from the Cauchy-Schwarz inequality we have that
|g(x)| 6 ‖g‖‖kx‖

when g belongs to a Hilbert space with reproducing kernel k. When k is the
reproducing kernel of D(µ), the above calculations show that k(w, w) will tend to
infinity for an adequate choice of values of w. The conclusion now follows from
Proposition 4.3.
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