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Abstract. We study the continuity of the map Lat sending an ultraweakly
closed operator algebra to its invariant subspace lattice. We provide an exam-
ple showing that Lat is in general discontinuous and give sufficient conditions
for the restricted continuity of this map. As consequences we obtain that Lat
is continuous on the classes of von Neumann and Arveson algebras and give a
general approximative criterion for reflexivity, which extends Arveson’s the-
orem on the reflexivity of commutative subspace lattices.
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1. INTRODUCTION

The invariant subspace theory explores the map Lat, which sends any collection
M of operators on a Banach space X to the set lat M of all (closed) subspaces of
X invariant under all operators T ∈ M . The set S(X ) of all closed subspaces of X
is a lattice with respect to the operations of the intersection and the closed linear
span of the union, and it is evident that lat M is a sublattice of S(X ).

If X = H is a Hilbert space then denoting by [E] the orthogonal projection
on the closure of a linear subspace E ⊂ H, we obtain a bijection between S(H) and
the set Proj(H) of all orthogonal projections in B(H). This allows us to transfer
to S(H) the standard operator topologies from B(H). Clearly weak and strong
(as well as σ-weak and σ-strong) operator topologies coincide on Proj(H), but we
prefer to consider the strong operator topology (s), because Proj(H) is s-closed in
the algebra B(H) of all operators on H. It is easy to see that lat M is s-closed, for
any M ⊆ B(H).

It is always possible (though not always convenient) to replace M by the
weakly (or, equivalently, strongly) closed unital subalgebra A(M) of B(H), gener-
ated by M (since lat M = latA(M)). Thus one can consider Lat as a map from
the set of ultraweakly closed unital operator algebras to the set of strongly closed
subspace lattices.
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We are mainly interested in criteria for the continuity of Lat and conditions
under which a lattice belongs to the image of Lat (or is reflexive, in now standard
terminology, introduced by Halmos ([7])).

To explain what is meant by “continuity”, recall the general notion of the
limit space structure in the set 2X of all subsets of a topological space X. For a
net {Aλ} of subsets of X, denote by lim inf Aλ the set of all points x ∈ X which
are limits of nets {xλ} with xλ ∈ Aλ and by lim sup Aλ the set of all points x ∈ X
which are cluster points of such nets. We say that a net of subsets {Aλ} of X
tends to a set A ∈ 2X , and write A = lim

λ
Aλ, if lim inf Aλ = lim sup Aλ = A.

Now the (partial) continuity of Lat means the validity of the equality

(1.1) lat
(

lim
λ
Aλ

)
= lim

λ
(latAλ)

for all (some) converging nets {Aλ}λ of ultraweakly closed unital operator algebras.
Important special classes of converging nets consist of nets which are downward or
upward directed (the limits are the intersection and the closed hull of the union,
respectively). For upward directed nets {Aλ} the equality (1.1) trivially holds. It
will be shown in Section 3 that there is a descending sequence of weakly closed al-
gebras An such that

⋃
n

latAn differs from lat
( ⋂

n
An

)
. Thus, to have “continuity”,

one must impose restrictions. In Section 3 we prove that continuity holds if all
Aλ are von Neumann algebras or Arveson algebras (ultraweakly closed algebras,
containing masa’s) or are contained in a Bercovici algebra (an algebra, whose com-
mutant contains two isometries with orthogonal ranges). Note that Davidson ([4])
proved the “norm-continuity” of Lat on (and even in) reflexive Arveson algebras.

In Section 4 we apply the results of Section 3 and prove a general “approx-
imative” criterion for reflexivity (Theorem 4.4) which implies immediately the
celebrated Arveson’s theorem ([1]) on the reflexivity of commutative subspace lat-
tices (CSL’s). Establishing a general framework for Arveson’s result was one of
our most stimulating aims.

2. A COUNTEREXAMPLE

We begin by presenting an example which shows that the map sending an operator
algebra A to its invariant subspace lattice latA is in general discontinuous. We fix
a complex separable Hilbert space H. If H1 and H2 are Hilbert spaces, we denote
by C1(H1,H2) the space of nuclear operators from H1 to H2 and set C1(H) =
C1(H,H).

When considering the relation (1.1) (see Section 1) one should point out
which topology Proj(H) is being endowed with. Note that a hierarchy of topologies
on a set X does not imply the same hierarchy of the corresponding limit structures
in 2X . Indeed if the topology τ2 is stronger than τ1 then τ2-lim inf Aλ ⊂ τ1-
lim inf Aλ and τ2-lim supAλ ⊂ τ1-lim supAλ. But the following result disproves
(1.1) in all possible versions.
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Theorem 2.1. There exists a descending sequence {An}∞n=1 of weakly closed
algebras acting on a separable Hilbert space and containing the identity operator
such that

lat
(⋂

n

An

)
6=

⋃
n

latAn.

The proof will require several steps.
Lemma 2.2. There exists a sequence xn⊕yn ∈ H⊕H dense in H⊕H such

that the set {xn, yn : n ∈ N} is linearly independent.
Proof. Let H1 and H2 be (non-closed) subspaces of H such that H1 ∩H2 =

{0} and Hi is dense in H, i = 1, 2. There exist x′n ∈ H1 and y′n ∈ H2 such that
{x′n ⊕ y′n : n ∈ N} is dense in H ⊕H. For each n ∈ N choose xn ∈ H1 in such a
way that ‖xn − x′n‖ < 1/n and {x1, . . . , xn} are linearly independent. Choose a
sequence {yn}∞n=1 in a similar way. It is obvious that the sequences {xn}∞n=1 and
{yn}∞n=1 have the desired properties.

Lemma 2.3. There exists a dense subspace of C1(C2,H) which does not
contain a rank one-operator.

Proof. Let {xn}∞n=1 and {yn}∞n=1 be sequences of vectors in H constructed
in Lemma 2.2. Define operators Tn ∈ C1(C2,H), n ∈ N by letting Tne1 = xn,
Tne2 = yn, where {e1, e2} is the usual basis of C2. Let U0 be the linear span of the
operators Tn, n ∈ N. It is immediate that U0 is dense in C1(C2,H) = B(C2,H).
Suppose that A ∈ U0 is a rank one operator. This means that, for some coefficients
αn ∈ C, n ∈ N, the vectors

∑
n

αnxn and
∑

n

αnyn are proportional. But this is

impossible since the family {xn, yn : n ∈ N} is linearly independent.
Lemma 2.4. There exists a dense subspace of C1(H) which consists of op-

erators of finite rank and does not contain a rank one operator.

Proof. Write H =
∞⊕

k=1

Hk, where each Hk is isomorphic to C2 and let πk :

H → Hk be the corresponding projections. Let Tn : C2 → H be the operators
from the proof of Lemma 2.3, Tk,n = Tnπk, k, n ∈ N, and U be the linear span
of the operators Tk,n, k, n ∈ N. If T =

∑
αk,nTk,n and αk0,n0 6= 0, then the

compression of T to Hk0 is a non-zero operator of rank strictly greater than 1.
It follows that rank T > 1. Suppose, on the other hand, that A ∈ B(H) and
〈A, Tk,n〉 = tr(ATk,n) = 0 for each k, n ∈ N. Since Tk,n = Tnπk it follows that, for
a fixed k, tr((πkA)Tn) = 0 for each n ∈ N. Thus πkA = 0 for each k ∈ N and so
A = 0.

Lemma 2.5. There exists a descending sequence {Mn}∞n=1 of weakly closed
transitive subspaces of B(H) such that

⋂
n
Mn = {0}.

Proof. Let U ⊂ C1(H) be a subspace which satisfies the conditions of Lem-
ma 2.4, {Tn}∞n=1 a sequence dense in U in the trace norm and Mn = {A ∈ B(H) :
〈Tk, A〉 = 0, k = 1, 2, . . . , n}. Since the operators Tk have finite rank, the space
Mn is weakly closed for each n ∈ N. Since there are no rank one operators in the
preannihilator of Mn, we have that Mn is transitive for each n ∈ N. Since U is
dense in C1(H), it follows that

⋂
n
Mn = {0}.
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Proof of Theorem 2.1. Let H̃ = H⊕H,Mn ⊂ B(H) be the spaces constructed
in Lemma 2.5 and

An =
{(

λ1 X
0 µ1

)
: X ∈Mn, λ, µ ∈ C

}
.

Then ⋂
n

An =
{(

λ1 0
0 µ1

)
: λ, µ ∈ C

}

and lat
( ⋂

n
An

)
= {L⊕M : L, M closed subspaces of H}. On the other hand,

latAn = {L⊕ 0 : L a closed subspace of H}
∪ {I ⊕ L : L a closed subspace of H},

for each n ∈ N, thus lat
( ∞⋂

n=1
An

)
6=

∞⋂
n=1

latAn.

3. SUFFICIENT CONDITIONS FOR CONTINUITY

We are now going to obtain some partial positive results on the continuity of Lat.
The set Proj(H) will always be endowed with the strong operator topology (s).
In B(H) we consider the ultraweak operator topology (uw). But in order to work
with general nets instead of sequences we should consider the bounded ultraweak
convergence. Thus, if {Aλ}λ∈Λ is a net of uw-closed algebras, then lim inf

λ
Aλ

consists of all operators A for which there exists a bounded net {Aλ}λ∈Λ with
Aλ ∈ Aλ such that Aλ →λ A ultraweakly and lim supAλ is defined similarly but
with cofinal subnets. Since weak and ultraweak topologies coincide on bounded
sets, our convergence space is suitable for work with weakly closed algebras as well.
In what follows {Aλ}λ∈Λ denotes a net of ultraweakly closed algebras containing
the identity operator.

Some of the results that follow rely on a certain condition on representability
of functionals in a “vector” form. Let x, y ∈ H; by ωx,y|A we denote the functional
on an algebra A given by A → (Ax, y), A ∈ A. The functionals on A of the form
ωx,y|A are called vector functionals.

Definition 3.1. Let M be an ultraweakly closed algebra of operators on a
Hilbert spaceH. We say thatM possesses property (CR) if for each net {ϕλ}λ∈Λ of
uw-continuous functionals on M with ϕλ →λ ωx,y|M in norm, there exist vectors
xλ, yλ, λ ∈ Λ, such that ‖xλ − x‖ →λ 0, ‖yλ − y‖ →λ 0 and ϕλ = ωxλ,yλ

|M.

It is clear that (CR) is equivalent to the following two conditions:
(CR1) each uw-continuous functional on M is a vector functional;
(CR2) for any x, y ∈ H and ε > 0, there exists δ = δ(x, y, ε) > 0 such that if f is
an uw-continuous functional on M and ‖f − ωx,y|M‖ < δ then there exist x′, y′

in H with f = ωx′,y′ |M and ‖x− x′‖ < ε, ‖y − y′‖ < ε.
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Lemma 3.2. ([12]) Every von Neumann algebra with properly infinite com-
mutant possesses property (CR).

Question 1. Does any von Neumann algebra with cyclic commutant possess
property (CR)?

Katsoulis and Trent ([10]) gave a proof of Lemma 3.2 that actually establishes
(CR) for any von Neumann algebraM such thatM⊗M2(C) has cyclic commutant.

Several other conditions, related to (and stronger than) property (CR) can
be found in [2] and [3]. We mention only a remarkable result by Bercovici ([2]).
Let us call an operator algebra M a Bercovici algebra if its commutant contains
two isometries with orthogonal ranges. The following lemma is a special case of
Theorem 4.3 ([2]).

Lemma 3.3. Every Bercovici algebra possesses property (CR).

Since every properly infinite von Neumann algebra contains two isometries
with orthogonal ranges, Lemma 3.2 is a partial case of Lemma 3.3.

Question 2. Suppose that Aλ ⊆M, where M is an algebra with the prop-
erty (CR) and A = limAλ. Is it true that latA = lim latAλ?

We do not know the answer to this question even in the case M is a com-
mutative von Neumann algebra. Some partial results will be presented below. In
particular, we will show that the answer is affirmative if M is a Bercovici algebra.

Lemma 3.4. Let X and Xλ, λ ∈ Λ, where Λ is a directed set, be subspaces
of a Banach space Y and X⊥, X⊥

λ be their annihilators in Y ∗. Consider the norm
topology in Y and the bounded weak* topology in Y ∗. If lim sup

λ
X⊥

λ ⊆ X⊥, then

X ⊆ lim inf
λ

Xλ.

Proof. Let x ∈ X, ‖x‖ = 1. Since Xλ are normed spaces, to conclude that
x ∈ lim inf

λ
Xλ, it suffices to show that d(x,Xλ) → 0. Suppose that this is not

true. Then there exists a subnet Λ0 ⊆ Λ and ε > 0 such that d(x,Xλ) > ε for each
λ ∈ Λ0. For each λ ∈ Λ0 choose fλ ∈ X⊥

λ such that |fλ(x)| > ε and ‖fλ‖ = 1.
There exists a cluster point, say f , for the net {fλ}λ∈Λ0 in the weak* topology.
Since lim sup

λ
X⊥

λ ⊆ X⊥, we have f ∈ X⊥. Thus f(x) = 0. On the other hand,

|f(x)| = lim
λ
|fλ(x)| > ε, a contradiction.

For us, the important case of Lemma 3.4 occurs when Y = C1, the ideal of
nuclear operators on H; then Y ∗ = B(H). It will be convenient to formulate it
separately. Recall that by X⊥ we denote the preannihilator of a subspace X ⊂
B(H) in C1.

Corollary 3.5. If lim sup
λ

Aλ ⊂ A then A⊥ ⊂ lim inf
λ

Aλ⊥.

The following lemma settles the easy part of (1.1).
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Lemma 3.6. If A ⊆ lim inf
λ

Aλ then lim sup
λ

latAλ ⊆ latA.

Proof. Let P ∈ lim sup
λ

latAλ and A ∈ A. It suffices to show that (Ax, y) = 0

for all unit vectors x ∈ PH and y ∈ P⊥H. By definition, there exists a bounded
net {Aλ}λ∈Λ, such that Aλ ∈ Aλ, Aλ →λ A weakly, and a net {Pµ}µ∈Λ0 , where
Λ0 ⊆ Λ is a cofinal subset, Pµ ∈ latAµ, Pµ →µ P strongly. Let C = sup

µ∈Λ0

‖Aµ‖,
xµ = Pµx, yµ = P⊥µ y. Then

|(Ax, y)| 6 |((A−Aµ)x, y)|+ |(Aµx, y)|
6 |((A−Aµ)x, y)|+ |(Aµx, y − yµ)|+ |(Aµx, yµ)|
6 |((A−Aµ)x, y)|+ C‖y − yµ‖+ |(Aµ(x− xµ), yµ)|

+ |(Aµxµ, yµ)| 6 |((A−Aµ)x, y)|
+ C‖y − yµ‖+ C‖x− xµ‖.

Since Aµ → A weakly we have that |((A − Aµ)x, y)| →n 0. Thus (Ax, y) = 0,
P ∈ latA.

Remark 3.7. It is not difficult to see that the conclusion of the previ-
ous lemma is valid under a weaker condition: A ⊆ uw-closure(lim inf Aλ). In-
deed, we proved that (Ax, y) = 0 for A ∈ lim inf Aλ. Hence this holds for
A ∈ uw-closure(lim inf Aλ).

We do not know if lim inf Aλ is uw-closed if all Aλ are uw-closed. This forces
us in what follows to consider the case

(3.1) lim supAλ ⊂ A ⊂ uw-closure(lim inf Aλ),

which is more general that the condition A = lim
λ
Aλ. This will be important in

the proof of Theorem 3.14.

Let Lλ = latAλ and L = latA. Given a subset N ⊆ Proj(H), we set
EN = {(x, y) ∈ H ×H : ∃ P ∈ N with Px = x and Py = 0} ([13]).

Lemma 3.8. Suppose that (3.1) holds and all Aλ are contained in an algebra
M with the property (CR). Then EL = lim

λ
ELλ

with respect to the norm in H×H.

Proof. Let (x, y) ∈ EL and ε > 0. By Lemma 2.2 of [13], we have ωx,y ∈ A⊥
whence, by Corollary 3.5, ωx,y ∈ lim inf Aλ⊥. Thus, for any δ > 0 there exists
λ0 ∈ Λ such that if λ º λ0 then there exists fλ ∈ Aλ⊥ with ‖ωx,y − fλ‖ < δ.
Suppose that δ = δ(x, y, ε) of (CR2). Then fλ|M = ωxλ,yλ

|M with ‖xλ − x‖ < ε,
‖yλ − y‖ < ε. Since fλ|Aλ = 0, we have that (xλ, yλ) ∈ ELλ

. This shows that
(x, y) ∈ lim inf

λ
ELλ

, EL ⊆ lim inf ELλ
.

The inclusion lim sup
λ

ELλ
⊆ EL can be proved in the same way as Lemma 3.6.

Let L̃ = lim inf Lλ. It is clear that L̃ ⊆ Proj(H). Note that L̃ need not be a
lattice.
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Proposition 3.9. Suppose that (3.1) holds and all Aλ are contained in an
algebra M with the property (CR). Then the inclusion EL̃ ⊆ EL holds. If {Aλ}λ∈Λ

is a downward directed net, then
⋃

λ

ELλ
⊆ EL̃ ⊆

⋃

λ

ELλ
= EL.

Proof. Suppose that (x, y) ∈ EL̃ and L ∈ L̃ is such that Lx = x and Ly = 0.
Let Lλ →λ L strongly, Lλ ∈ Lλ. Then (x, y) = lim

λ
(xλ, yλ), where xλ = Lλx and

yλ = L⊥λ y. It is clear that (xλ, yλ) ∈ ELλ
. By Lemma 3.8, (x, y) ∈ EL.

If {Aλ}λ∈Λ is a downward directed net, then {Lλ}λ∈Λ is upward directed
and L̃ =

⋃
λ

Lλ
s
. Since Lλ ⊆ L, for each λ, we have that

⋃
λ

ELλ
⊆ EL̃. The fact

that
⋃
λ

ELλ
= EL follows from Lemma 3.8.

We next state a “one-point” continuity result. Recall that strongly closed
sublattices of Proj(H) are traditionally called subspace lattices. If Lλ, λ ∈ Λ, are
subspace lattices on H, we set

1- lim inf
λ

Lλ = {P ∈ Proj(H) : ∀x ∈ H ∃ Pλ ∈ Lλ, λ ∈ Λ, with Pλx → Px}
and

1- lim sup
λ

Lλ = {P ∈ P(H) : ∀x ∈ H ∃ a subnet Λ0 ⊆ Λ and Pµ ∈ Lµ,

µ ∈ Λ0, with Pµx → Px}.
We note that (1- lim inf

λ
Lλ)⊥ = 1- lim inf

λ
L⊥λ and similarly for 1- lim sup. If L is a

subspace lattice on H for which 1-lim inf
λ

Lλ = 1- lim sup
λ

Lλ = L, we say that L is

a one-point limit of the net {Lλ} and write L = 1- lim
λ
Lλ.

Theorem 3.10. Let A,Aλ, λ ∈ Λ, be ultraweakly closed algebras containing
the identity operator and contained in an algebra M with the property (CR). If
lim
λ
Aλ = A or, more generally, (3.1) holds, then 1- lim

λ
latAλ = latA.

Proof. Set L = latA, Lλ = latAλ, λ ∈ Λ. Let P ∈ L and x ∈ H. Then
(Px, P⊥x) ∈ EL. By Lemma 3.8, there exist pairs (xλ, yλ) ∈ ELλ

such that
(Px, P⊥x) = lim(xλ, yλ). By the definition of the sets ELλ

, there exist Pλ ∈ Lλ

such that Pλxλ = xλ and P⊥λ yλ = yλ. Thus ‖PλPx − xλ‖ = ‖Pλ(Px − xλ)‖ 6
‖Px − xλ‖ →λ 0. It follows that PλPx →λ Px. Similarly, P⊥λ P⊥x →λ P⊥x. It
follows that Pλx →λ Px, so L ⊆ 1-lim inf Lλ.

Let P ∈ 1-lim supLλ. Fix x, y ∈ H with Px = x and P⊥y = y and let
z = x + y. There exist Pµ ∈ Lµ, µ ∈ Λ0, Λ0 ⊆ Λ, such that Pµz →µ Pz = x and
therefore Pµ

⊥z →µ y. Let B ∈ lim inf Aλ. Then there exist Aλ ∈ Aλ, λ ∈ Λ, such
that sup

λ
‖Aλ‖ < ∞ and B = uw- lim Aλ. We then have

(Bx, y) = lim
µ∈Λ0

(AµPµz, P⊥µ z) = 0.

It follows that (Ax, y) = 0 for each A ∈ A, which shows that P ∈ latA = L.
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Recall ([13]) that for a set M of projections on a Hilbert space H, the 1-
closed hull of M is M1

= {P ∈ Proj(H) : Px ∈ Mx ∀x ∈ H}. The set M is
called 1-closed, if M = M1

.

Corollary 3.11. Suppose that {Aλ}λ∈Λ is a decreasingly directed net of
ultraweakly closed algebras containing the identity operator and contained in an
operator algebra with the property (CR) and let A =

⋂
λ∈Λ

Aλ. Then

latA =
⋃

λ∈Λ

latAλ

1

.

In [13], we posed the question whether every subspace lattice is 1-closed.
Corollary 3.11 shows that an affirmative answer to this question would imply an
affirmative answer to Question 2, for decreasingly directed nets.

Recall ([13]) that a set M of projections is called semistrongly closed, if the
set of all ranges of elements of M is closed as a collection of subsets in 2H (where
H is endowed with its norm topology).

Corollary 3.12. Under the assumptions of Corollary 3.11, latA is the
semistrongly closed subspace lattice generated by latAλ, λ ∈ Λ.

Proof. Let Lλ = latAλ, L = latA and L0 be the smallest semistrongly
closed subspace lattice, containing latAλ for each λ ∈ Λ. By Proposition 3.1 of
[13], reflexive lattices are semistrongly closed, and the latters are 1-closed. From
Corollary 3.11 we have that

L0 ⊆ L =
⋃

λ∈Λ

Lλ

1

⊆ L0
1

= L0.

Thus L0 = L.

Let C be the algebra of compact operators on H.

Corollary 3.13. If, under the assumptions of Corollary 3.11, A ∩ C is
dense in A in the ultraweak topology, then latA is the subspace lattice generated
by latAλ, λ ∈ Λ.

Proof. Let Lλ = latAλ, λ ∈ Λ and L = latA. Suppose that P = L2 − L1

where L1, L2 ∈ L and L1 < L2. If (A∩C)PH ⊆ L1H, then (A∩C)L2H ⊆ L1H and
AL2H ⊆ L1H which is impossible because A contains the identity operator. Thus
P (A ∩ C)P 6= 0 for each interval P of L. By Theorem 2.2 of [15] it follows that
L is compact. Let L0 be the subspace lattice, generated by Lλ, λ ∈ Λ. Clearly
L0 ⊆ L and thus L0 is compact. From [13], L0 is 1-closed and by Corollary 3.11,
L0 = L.

Let K be an infinite dimensional Hilbert space. By E(B(K)) we will denote
the space of all uw-continuous linear functionals on B(K). For each ϕ ∈ E(B(K)),
we let Lϕ : B(K⊗H) → B(H) be Tomiyama’s right slice map, given on elementary
tensors by Lϕ(B⊗A) = ϕ(B)A, A ∈ B(H), B ∈ B(K). If A ⊆ B(H) and B ⊆ B(K)
are ultraweakly closed algebras, then B ⊗ A will denote the ultraweakly closed
subalgebra of B(K ⊗ H), generated by the elementary tensors B ⊗ A, A ∈ A,
B ∈ B.
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Theorem 3.14. Suppose that the algebras Aλ, λ ∈ Λ, are contained in a
Bercovici algebra and A = lim

λ
Aλ. Then latA = lim

λ
latAλ.

Proof. Let K denote a separable infinite dimensional Hilbert space. It is clear
that the algebras B(K) ⊗ A, B(K) ⊗ Aλ, λ ∈ Λ, are ultraweakly closed, contain
the identity operator and are contained in B(K) ⊗M, which is easily seen to be
a Bercovici algebra. We claim that lim

λ
(B(K) ⊗ Aλ) = B(K) ⊗ A. Indeed, it is

obvious that all operators T⊗S where T ∈ B(K), S ∈ A belong to lim inf
λ

B(K)⊗Aλ

which implies the inclusion B(K)⊗A ⊆ lim inf
λ

B(K)⊗Aλ
uw

. Suppose that Tµ ∈
B(K)⊗Aµ, µ ∈ Λ0 (Λ0 being a cofinal subset of Λ) and Tµ →µ T for some operator
T ∈ B(K)⊗ B(H). Then, if ϕ ∈ E(B(K)), we have that Lϕ(Tµ) →µ Lϕ(T ). Since
Lϕ(Tµ) ∈ Aµ, µ ∈ Λ0, and lim sup

λ
Aλ ⊆ A, it follows that Lϕ(T ) ∈ A. By

Theorem 1.9 of [11], T ∈ B(K)⊗A; hence lim sup
λ

B(K)⊗Aλ ⊆ B(K)⊗A.

Applying Theorem 3.10 and Proposition 4.2 (iii) of [13] to the algebras B(K)⊗
Aλ and B(K)⊗A, we obtain 1-lim

λ
(1⊗ latAλ) = 1⊗ latA. Let {ei} and {fi} be

orthonormal bases of K and H respectively and let x =
∞∑

i=1

1
i
ei ⊗ fi. Take P ∈

latA. Then, for each λ ∈ Λ, there exists Pλ ∈ latAλ such that (I⊗P )x = lim
λ

(I⊗
Pλ)x. This means that Pλfi →λ Pfi for each i ∈ N, and hence Pλ → P strongly.
In other words, latA ⊆ lim inf

λ
latAλ. By Lemma 3.6, latA = lim

λ
latAλ.

The following evident consequence of Theorem 3.14 was first obtained in [12].
It is important for applications in Section 4, where only the case M = 1 ⊗ B(H)
will be considered.

Corollary 3.15. If {Aλ}λ∈Λ is a decreasingly directed net of ultraweakly
closed subalgebras of a von Neumann algebra M with properly infinite commutant
then latA =

⋃
λ

latAλ
s
.

Now we apply some results of [13]. If L1 and L2 are subspace lattices acting
on Hilbert spaces H1 and H2, we will denote by L1 ⊗ L2 the subspace lattice on
(the Hibert space tensor product)H1⊗H2, generated by all projections of the form
L1⊗L2, where Li ∈ Li, i = 1, 2. For a subspace lattice L ⊆ Proj(H), let convL be
the weakly closed convex hull of L. If A ∈ B(H) is a positive contraction, let Es(A)
be the spectral projection of A, corresponding to the set [s, 1], 0 6 s 6 1. Let also
Φ(L) be the collection of all positive contractions A on H such that Es(A) ∈ L
for each s ∈ [0, 1].

We recall some definitions from [13].

Definition 3.16. Let L be a subspace lattice and P the lattice of all pro-
jections on a separable infinite dimensional Hilbert space. We say that L possesses
property (p), if P ⊗ L is reflexive. We say that L possesses property (c) (respec-
tively, (c′)) if Lϕ(P ⊗ L) ⊆ convL (respectively Lϕ(P ⊗ L) ⊆ Φ(L)) for each
uw-continuous state ϕ on B(H).
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Theorem 3.17. Let Aλ, λ ∈ Λ, be reflexive algebras such that latAλ pos-
sesses properties (c′) and (p) for each λ ∈ Λ. If A = lim

λ
Aλ, then latA =

lim
λ

latAλ.

Proof. We first show that, for any ϕ ∈ E(B(K)),

(3.2) Lϕ(lat(1⊗Aλ)) ⊆ Φ(latAλ).

Indeed, by formula (3.1), Section 4 of [13],

P ⊗ latAλ = lat(1⊗ alg latAλ) = lat(1⊗Aλ),

since Aλ is reflexive. Now

Lϕ(lat(1⊗Aλ)) = Lϕ(P ⊗ latAλ) ⊆ Φ(latAλ)

by (c′). If P ∈ latA, we have I ⊗ P ∈ lat(1 ⊗ A) and so, by Corollary 3.15,
there is a net {Qλ}λ∈Λ of projections such that Qλ ∈ lat(1 ⊗ Aλ), Qλ → I ⊗ P .
Setting Tλ = Lϕ(Qλ) we have Tλ →λ P and, by the proof of the Theorem of [9],
E1/2(Tλ) →λ P . By (3.2), E1/2(Tλ) ∈ latAλ and so P ∈ lim inf

λ
latAλ. Hence

latA ⊆ lim inf latAλ. The validity of the inclusion lim supAλ ⊆ latA follows from
Lemma 3.6.

Theorem 3.17 has two immediate corollaries.

Corollary 3.18. Let Aλ, λ ∈ Λ, be von Neumann algebras. If A =
lim
λ
Aλ, then latA = lim

λ
latAλ.

Proof. By Corollary 4.10 and Proposition 4.17 of [13], the algebras Aλ pos-
sess properties (p) and (c′). The conclusion follows from Theorem 3.17.

Recall that by an Arveson algebra we mean an ultraweakly closed subalgebra
of B(H) containing a maximal abelian selfadjoint algebra of B(H).

Corollary 3.19. Let Aλ, λ ∈ Λ, be Arveson algebras. If A = lim
λ
Aλ,

then latA = lim
λ

latAλ.

Proof. It follows from the proof of Theorem 3.17 that it suffices to prove
(3.2). It was done essentially by Arveson ([1], Theorem 2.1.5). The proof was
coordinate-free in spirit but not in details. A proof of (3.2), completely released
of the separability restriction, can be found in Lemma 22.16 of [5] (there is a
difference in the formulations, but it is not difficult to see their equivalence).

Recall that the commutant A′ of a set A ⊆ B(H) is the algebra of those
operators on H which commute with all operators in A. The above results on the
continuity of Lat allow us to establish the continuity of the map A → A′ on the
class of von Neumann algebras.
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Corollary 3.20. If A,Aλ are von Neumann algebras and A = lim
λ
Aλ

with respect to the bounded ultraweak convergence then A′ = lim
λ
A′λ with respect

to the bounded ∗-strong convergence.

Proof. Any operator B ∈ A′ is a norm limit of finite linear combinations∑

k

αkPk with
∑

k

|αk| 6 4‖B‖, where Pk ∈ Proj(A′). Since by Corollary 3.18

each projection in A′ is a strong limit of projections in A′λ, B is a ∗-strong limit of
a bounded net (Bλ)λ∈Λ with Bλ ∈ A′λ. In other words A′ ⊆ ∗-strong lim inf

λ
Aλ.

Let Bµ ∈ A′µ (µ ∈ Λ0 ⊆ Λ) form a bounded net that converges ∗-strongly to
an operator B. For A ∈ A let Aµ ∈ Aµ be a bounded net converging weakly to
A. Then, for all x, y ∈ H,

((BA−AB)x, y) = (B(A−Aµ)x, y)− ((A−Aµ)Bx, y) + (Aµx, (B∗ −B∗
µ)y)

−(Aµ(B −Bµ)x, y) → 0.

Thus B ∈ A′ that is lim sup
λ

A′ ⊆ A′.

4. APPROXIMATIVITY AND REFLEXIVITY

In this section we look at the equality lat
( ⋂

λ

Aλ

)
=

⋃
λ

latAλ
s

from “the reverse

side”, that is, we consider the properties of the union of a directed net of lattices.
For example, the above equality implies that the strongly closed hull of the union
of a directed net of reflexive lattices is (under certain conditions) a reflexive lattice.

One of the obstacles in the work with projection lattices is that the lattice
operations are not completely consistent with the topology. In particular, the
closure of a projection lattice, even in finite-dimensional spaces, need not be a
lattice. Some interesting counterexamples and positive results can be found in the
papers of Gilfeather and Larson ([6]) and Symes ([14]).

Thus, the closed hull of the union of an increasing net of subspace lattices
need not be a lattice. This forces us to distinguish (at least) two types of “ap-
proximativity”. Let us say that a property (Pr) is approximative, if each lattice
L with L =

⋃
λ

Lλ
s
, where {Lλ} is an upward directed net of lattices possessing

(Pr), possesses (Pr) as well. Say that (Pr) is strictly approximative, if the fact that
Lλ possesses (Pr) for each λ ∈ Λ implies that the subspace lattice generated by
the union of Lλ, λ ∈ Λ, possesses (Pr) as well. It is clear that if (Pr) is strictly
approximative, then (Pr) is approximative.

Note also that if a lattice L is the (strong) closure of the union of an increasing
net {Lλ} of subspace lattices, then one cannot conclude that N ⊗L is the closure
of the union of the net {N ⊗ Lλ}, but only that

(4.1) N ⊗L =
∨

λ

N ⊗Lλ,
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where by
∨
λ

Nλ is denoted the smallest subspace lattice, containing the union of

the lattices Nλ. If the lattices N and Lλ, λ ∈ Λ, act on the same space, then

(4.2) N ∨
( ∨

λ∈Λ

Lλ

)
=

∨

λ∈Λ

(N ∨ Lλ).

Identity (4.2) is evident while (4.1) follows from (4.2) and the identities N ⊗L =
(N ⊗ 1) ∨ (1⊗ L) and

∨
λ

(1⊗ Lλ) = 1⊗
(∨

λ

Lλ

)
.

Proposition 4.1. Property (p) is strictly approximative, hence approxima-
tive.

Proof. Let {Lλ} be an increasingly directed net of subspace lattices, each of
which possesses (p) and let L be the subspace lattice, generated by their union.
Set Aλ = algLλ, λ ∈ Λ, and A = algL. Then {Aλ} is a downward directed net
of reflexive algebras and A =

⋂
λ

Aλ. Indeed, it is clear that A ⊆ Aλ for each λ.

On the other hand, Lλ ⊆ lat
( ⋂

λ

Aλ

)
for each λ, whence L ⊆ lat

( ⋂
λ

Aλ

)
. Thus

⋂
λ

Aλ ⊆ algL = A.

We have

P ⊗ L ⊇
⋃

λ

P ⊗ Lλ

s

=
⋃

λ

lat(1⊗Aλ)
s

= lat(1⊗A).

The first inclusion in the above chain is obvious. The second equality follows from
the fact that the lattices Lλ possess property (p); indeed, a lattice M possesses
(p) if and only if P ⊗M = lat(1 ⊗ algM) (see identity (2) of [13]). The third
equality follows from Corollary 3.15. On the other hand, P⊗L is clearly contained
in lat(1⊗A). We thus obtained that P ⊗L is reflexive, that is, L possesses (p).

The next result strengthens Theorem 4.9 of [13].

Proposition 4.2. Let L be a CSL, N0 and N the projection lattices of von
Neumann algebras, least one of which is injective and suppose that N commutes
with L. Then the lattice N0 ⊗ (N ∨ L) possesses property (p).

Proof. Note first that

(4.3) N0 ⊗ (N ∨ L) = (N0 ⊗N ) ∨ (1⊗ L).

Indeed, we have that

N0 ⊗ (N ∨ L) = (N0 ⊗ 1) ∨ (1⊗ (N ∨ L))

= (N0 ⊗ 1) ∨ (1⊗N ) ∨ (1⊗ L) = (N0 ⊗N ) ∨ (1⊗ L).

Since any CSL is the strongly closed hull of the union of an upward directed net
of finite lattices, Proposition 4.1 and identity (4.2) allow us to assume that L is
finite. On the other hand, by Theorem 4.9 of [13], N0 ⊗ N is a von Neumann
lattice which moreover commutes with 1⊗ L. By Theorem 4 of [10] and identity
(4.3), N0 ⊗ (N ∨ L) is reflexive in this case and the proof is complete.
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It will be convenient to formulate separately some immediate consequences
of the above result.

Corollary 4.3. (i) Every CSL possesses property (p).
(ii) The tensor product of a CSL and a von Neumann lattice possesses prop-

erty (p).
(iii) If a CSL L commutes with a von Neumann lattice N , then N ∨ L

possesses property (p).

The main result in the present section is the following.

Theorem 4.4. Let {Lλ}λ∈Λ be an increasingly directed net of subspace lat-
tices possessing properties (p) and (c) and L be the subspace lattice generated by
its union. Then L is reflexive.

Proof. By Proposition 4.1, we have that L possesses (p) and moreover, as is
seen from its proof,

P ⊗ L =
⋃

λ

P ⊗ Lλ

s

.

If Q ∈ P ⊗ L, then there exist projections Qλ ∈ P ⊗ Lλ for each λ, such that
Qλ →λ Q in the strong operator topology. It follows that Lϕ(Qλ) → Lϕ(Q)
strongly, for each ϕ ∈ E(B(K)). On the other hand, Lϕ(Qλ) ∈ convLλ ⊆ convL
for each λ and since convL is strongly closed, we conclude that Lϕ(Q) ∈ convL for
each ϕ ∈ E(B(K)). We hence have that L possesses property (c). By Theorem 4.14
and Proposition 4.16 of [13], L is reflexive.

Remarks 4.5. (i) From Proposition 4.1 and the proof of Theorem 4.4 it
follows that the property “(p) and (c)” is strictly approximative. Is (c) approxi-
mative?

(ii) A less general result than Theorem 4.4, namely if we replace (c) by (c′),
follows from Theorem 3.17.

(iii) Theorem 4.4 extends Arveson’s reflexivity theorem for CSL’s ([1]). To
see this, we need only to check that finite CSL’s possess property (c). But, if
L is a finite CSL, every projection Q ∈ P ⊗ L can be written in the form Q =∑

E∈a(L)

P (E) ⊗ E, where P (·) is a decreasing (in the sense that P (E) 6 P (F ) if

FB(H)E ⊆ algL) projection valued function defined on the set a(L) of atoms of
L. Hence Lϕ(Q) =

∑

E∈a(L)

t(E)E, where t : a(L) → [0, 1] is a decreasing function.

Writing each atom of L as the difference of two projections in L, it is easy to see
that such a sum belongs to conv(L).

Question 3. Is the tensor product of a CSL and a von Neumann lattice
reflexive? In particular, if Pn is the subspace lattice of all projections in an n-
dimensional Hilbert space, is Pn ⊗ L reflexive for each CSL L?

For properly infinite von Neumann lattices the affirmative answer follows
easily from Corollary 4.10 of [13] and Corollary 4.3 (ii) (see also more general
results of Katsoulis ([10]) and Symes ([14]) based on the continuity theorem of
[12]).
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