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ABSTRACT. In this paper we identify QD(A, B), the quasidiagonal classes in
KK1(A, B), in terms of K∗(A) and K∗(B), and we use these results in various
applications. Here is our central result:

Let Ñ denote the category of separable nuclear C∗-algebras which satisfy
the Universal Coefficient Theorem. Suppose that A ∈ Ñ and A is quasidiago-
nal relative to B. Then there is a natural isomorphism

QD(A, B) ∼= Pext1
Z(K∗(A), K∗(B))0.

Thus, for A ∈ Ñ quasidiagonality of KK-classes is indeed a topological
invariant.
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1. INTRODUCTION: QUASIDIAGONALITY AND KK-THEORY

This is the third in a series of papers in which the topological structure of the
Kasparov groups, systematically studied first by Salinas, is developed and put to
use. The first two papers [21] and [22] are devoted to general structural results
and serve as the theoretical background for the present work, which centers about
quasidiagonality. From the point of view of [21] and [22], this is an exploration
of the closure of zero in the Kasparov groups, which we have termed the fine
structure subgroup.

Quasidiagonality was defined by P.R. Halmos [12] in 1970. A bounded op-
erator on Hilbert space is quasidiagonal if it is a compact perturbation of a block-
diagonal operator. This soon was generalized to C∗-algebras. Quasidiagonality
is thus a finite dimensional approximation property. It is not well understood.

L.G. Brown, R.G. Douglas, and P.A. Fillmore ([6]) first recognized that the
study of quasidiagonality for operators and for C∗-algebras might be approached
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by topological methods. They topologized their functor Ext(X) (which is known
now to be isomorphic to the Kasparov group KK1(C(X),C)) and announced that
the closure of zero corresponded to the quasidiagonal extensions. L.G. Brown
pursued this theme, particularly in [4] (cf. Section 6 and Section 7).

Salinas ([15]) studied the topology on the Kasparov group KK1(A, B) and
showed that this topology is related to relative quasidiagonality. The quasidiago-
nal classes QD(A, B) (defined precisely in Section 2) constitute a certain subgroup
of KK-theory:

QD(A, B) ⊆ KK1(A, B).

If A is in the category Ñ of separable nuclear C∗-algebras which satisfy the Uni-
versal Coefficient Theorem, then more can be said. The UCT is a natural short
exact sequence

0 → Ext1
Z(K∗(A), K∗(B)) δ−→ KK∗(A, B)

γ−→ HomZ(K∗(A), K∗(B)) → 0

which splits unnaturally and thus computes KK∗(A, B) in terms of K∗(A) and
K∗(B). In particular, it identifies a canonical subgroup of KK∗(A, B), namely

Ext1
Z(K∗(A), K∗(B))

δ∼= Ker(γ) ↪→ KK∗(A, B).

Henceforth we generally suppress mention of the map δ. (Note that the map δ has
degree one and so the elements of degree zero in the group Ext1

Z(K∗(A), K∗(B)),
denoted by Ext1

Z(K∗(A), K∗(B))0, are contained in KK1(A, B).)
Salinas has shown in 5.1 of [15], that if A is quasidiagonal relative to B then

QD(A, B) ⊆ Ker(γ)

and in fact (by Theorem 5.2(a) of [15]) as reformulated by M. Dădârlat (private
communication) that if A ∈ Ñ so that the UCT holds and identifies

Ker(γ) ∼= Ext1
Z(K∗(A), K∗(B))

then
QD(A, B) ⊆ Pext1

Z(K∗(A), K∗(B))0

where Pext1
Z(G, H) is the subgroup of Ext1

Z(G, H) consisting of pure extensions.
(A subgroup H ⊆ J is said to be pure if for each n ∈ N,

nH = H ∩ nJ

and an extension of abelian groups

0 → H → J → G → 0

is said to be pure if H is a pure subgroup of J. If H is a direct summand of J
then H is a pure subgroup, but the most interesting cases involve non-split pure
extensions. For example, tJ, the torsion subgroup of J, is always a pure subgroup
of J but it is not necessarily a direct summand of J: see Section 53 of [11], and
[23].)
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A topological space is polonais if it is separable, complete, and metric. If it is
a topological group then we insist that the metric be invariant. A pseudopolonais
group is a separable topological group with invariant pseudometric whose Haus-
dorff quotient group is polonais.

In the first two papers in this series ([21],[22]) we demonstrated the follow-
ing facts:

1.1. There is a natural structure of a pseudopolonais group on KK∗(A, B)
([21], 6.2).

1.2. The Kasparov pairing is jointly continuous with respect to this topol-
ogy, provided that all C∗-algebras which appear in the first variable are K-nuclear
([21], 6.8).

1.3. If K∗(A) is finitely generated then KK∗(A, B) is polonais ([21], 6.2).
1.4. The index map

γ : KK∗(A, B) → HomZ(K∗(A), K∗(B))

is continuous. If Im(γ) is closed (e.g., if γ is onto), then γ is an open map. If γ is
an algebraic isomorphism then it is an isomorphism of topological groups ([21],
7.4).

1.5. The Universal Coefficient Theorem short exact sequence is a sequence
of pseudopolonais groups and each of the splittings of the UCT constructed in
[14] is a topological splitting ([22], 4.5).

1.6. If A ∈ Ñ then there is a natural isomorphism

Z∗(A, B) ∼= Pext1
Z(K∗(A), K∗(B))

where Z∗(A, B) denotes the closure of zero in the group KK∗(A, B) ([22], 3.3).
1.7. If A ∈ Ñ then it has an associated KK-filtration diagram for (A, B)

which is functorial into the category of pseudopolonais groups [22]. (We proved
1.6 and 1.7 in [22] for A ∈ N . However, the results hold for A ∈ Ñ as may easily
be seen by inspection.) In particular, the Milnor and Jensen sequences take values
in this category and are natural with respect to both A and B.

The following theorem is the most important result in this paper; all of our
applications flow from it. Salinas ([15]) proved the theorem under certain strin-
gent assumptions on A and K∗(A) which we have removed.

THEOREM 2.3. Suppose that A ∈ Ñ and A is quasidiagonal relative to B. Then
there is a natural isomorphism of topological groups

QD(A, B) ∼= Pext1
Z(K∗(A), K∗(B))0

regarded as topological subgroups of KK∗(A, B) via the canonical inclusion δ in the UCT.

Note as an immediate consequence of this theorem that quasidiagonality of
extensions is a topological invariant for A ∈ Ñ , answering the relative form of a
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question of D. Voiculescu ([24], [25]). For instance (see Theorem 3.5), if

0 −−−−→ B⊗K −−−−→ Eτ −−−−→ A −−−−→ 0
y1

yeτ

yτ

0 −−−−→ B⊗K −−−−→ .L(HB) −−−−→ Q(HB) −−−−→ 0

is an essential extension classified by τ such that A ∈ Ñ and A is quasidiagonal
relative to B, then eτ(Eτ) is B-quasidiagonal if and only if both of the following
topological conditions hold:

(1) γ(τ) = 0 : K∗(A) → K∗(B); and
(2) τ ∈ ⋂

n
nExt1

Z(K∗(A), K∗(B))0 = Pext1
Z(K∗(A), K∗(B))0.

If K∗(A) is torsionfree then condition (2) is automatically satisfied, so eτ(Eτ) is B-
quasidiagonal if and only if γ(τ) = 0. Thus when A ∈ Ñ with K∗(A) torsionfree,
the index invariant γ is a complete obstruction to relative quasidiagonality.

The remainder of the paper is organized as follows.
In Section 2 the definitions of quasidiagonality are recalled and Theorem 2.3

is established.
Theorem 2.3 has several corollaries which are developed in Section 3. Here

is one. Suppose that f : A → B so that

[ f ] ∈ KK0(A, B)
βA

−→ KK1(SA, B)

where βA denotes the Bott periodicity isomorphism in the first variable. When is
βA([ f ]) a quasidiagonal class? It is easy to show that the following are necessary
conditions:

(1) The induced homomorphism f∗ : K∗(A) → K∗(B) is trivial; and,
(2) The associated short exact sequence

0 → K∗(SB) → K∗(C f ) → K∗(A) → 0

is pure exact, where C f denotes the mapping cone of f .

It is shown that (for A ∈ Ñ ) these conditions are also sufficient. If K∗(A)
is torsionfree then (2) is automatic, and so βA([ f ]) is a quasidiagonal class if and
only if f∗ = 0. The section concludes with Theorem 3.5, which demonstrates the
topological nature of relative quasidiagonality in a concrete manner.

The remaining four sections are devoted to applications.
Section 4 is devoted to the application of some of the theory of infinite

abelian groups to obtain results on quasidiagonality.
In Section 5 we answer a question raised by L.G. Brown ([4]) concerning the

relation between quasidiagonality and the kernel of the map

θ∗ : Ext1
Z(K∗(A), K∗(B)) → Ext1

Z(K∗(A)t, K∗(B)),

induced by the natural inclusion of K∗(A)t, the torsion subgroup of A, into K∗(A).
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Section 6 deals with another result of L.G. Brown. Brown constructed ([4])
an operator T which was not quasidiagonal but such that T ⊕ T was quasidiago-
nal. In Section 7 we analyze such phenomena.

Section 7 presents a converse to a theorem of Davidson, Herrero, and Salinas
which deals with conditions under which the quasidiagonality of A/K implies
the quasidiagonality of A.

We require nuclearity for two reasons. First, we need at least K-nuclearity
so that the Kasparov product will be continuous (cf. 1.2). Second, we apparently
need nuclearity in order to satisfy the hypotheses of Salinas’s result identifying
the quasidiagonal elements with the closure of zero in the Kasparov groups (cf.
2.2). It seems possible that if one restricts attention to extensions that have addi-
tive inverses so that the identification

Ext∗(A, B) ∼= KK∗(A, B)

holds, then his result might generalize to the K-nuclear setting.
It is a pleasure to acknowledge helpful correspondence and conversations

regarding quasidiagonality and abelian groups with L.G. Brown, N. Brown,
M. Dădârlat, H. Lin, T. Loring, N. Salinas, and D. Voiculescu, with a special
thanks to N. Salinas for his help and encouragement.

In this paper all C∗-algebras are assumed separable with the obvious excep-
tions of multiplier algebrasM(B⊗K) and their quotients. Whenever we speak of
quasidiagonal classes in KK1(A, B) it is understood that B is separable, B⊗K has
a countable approximate unit consisting of projections, (Dădârlat calls this prop-
erty stably unital. Note that if B is unital and {pi} ⊂ K is a countable approximate
unit for K consisting of projections, then {1⊗ pi} is a countable approximate unit
for B⊗K consisting of projections. Thus if B is unital then B⊗K is stably unital.)
and A is quasidiagonal relative to B.

An isomorphism of topological groups is an algebraic isomorphism which
is a homeomorphism of topological spaces. We use the topologists’ notation for
graded abelian groups. For example,

Pext1
Z(K∗(A), K∗(B))0 = Pext1

Z(K0(A), K0(B))⊕ Pext1
Z(K1(A), K1(B)).

2. QUASIDIAGONALITY

Our description of the various definitions of quasidiagonality leans heavily
upon the remarkable survey paper of Nathaniel P. Brown ([7]) and upon the paper
of Marius Dădârlat ([9]). We are most grateful to them for clarifying these issues.

Halmos ([12]) introduced the notion of a quasidiagonal operator. A bounded
linear operator on a separable Hilbert space T ∈ L(H) is a block diagonal operator
if there exists a countable approximate unit consisting of projections, that is, an
increasing sequence of finite rank projections P1 6 P2 6 P3 · · · converging to the
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identity in the strong operator topology, which is central with respect to T:

PnT − TPn = 0 ∀ n.

An operator T ∈ L(H) is quasidiagonal if there exists a countable approximate
unit consisting of projections {Pn} which is quasicentral with respect to T:

lim
n→∞

‖PnT − TPn‖ = 0.

The sum of a compact operator and a block diagonal operator is quasidiagonal,
and Halmos proved that in fact every quasidiagonal operator has this form.

The concept extends to C∗-algebras as follows. Suppose that B is a separable
C∗-algebra. Let HB = B⊗ H. We write

L(HB) = M(B⊗K) and Q(HB) = M(B⊗K)/B⊗K.

A separable subset E ⊂ L(HB) is called a B-quasidiagonal set if there exists a count-
able approximate unit {pn} of B ⊗ K consisting of projections p1 6 p2 6 p3 · · ·
which is quasicentral with respect to each a ∈ E:

lim
n→∞

‖pna− apn‖ = 0 ∀ a ∈ E.

This definition is not correct if E is not separable; see [7] for the correct definition.
Dădârlat calls this “quasidiagonal”, but we prefer to keep track of B.

A representation ρ : A → L(HB) of a separable C∗-algebra A is said to be
a B-quasidiagonal representation if the set ρ(A) is a B-quasidiagonal set. If a sep-
arable C∗-algebra A has a faithful essential (that is, the induced homomorphism

A
ρ−→ L(HB) → Q(HB) is faithful, or, equivalently, ρ(A) ∩ (B ⊗ K) = {0}) and

absorbing B-quasidiagonal representation, then A is said to be a B-quasidiagonal
C∗-algebra.

Note that a set is C-quasidiagonal if and only if there exists a countable
approximate unit consisting of projections in K such that each operator in the set
is quasicentral with respect to the countable approximate unit. In other words,
each operator must be quasidiagonal in the classical sense, and there must be
a countable approximate unit consisting of projections which works for every
operator. We write quasidiagonal rather than C-quasidiagonal.

Salinas ([15], 4.3) shows that if A is quasidiagonal (say via a quasidiago-
nal representation ρ) and B has a countable approximate unit consisting of pro-
jections then A is B-quasidiagonal, since we may easily construct the requisite
countable approximate unit in B ⊗ K which is quasicentral with respect to the
representation

A
ρ−→ L(H) ∼= M(K) →M(B⊗K) ∼= L(HB).

Every commutative C∗-algebra is quasidiagonal — this is a consequence of
the spectral theorem. It is easy to show that any AF algebra is also quasidiagonal.
As subalgebras of quasidiagonal algebras are obviously quasidiagonal, it follows
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that any C∗-algebra which embeds in an AF algebra is itself quasidiagonal. For
example, this implies that the irrational rotation C∗-algebras are quasidiagonal.

The unitalization of a quasidiagonal C∗-algebra is quasidiagonal, as is the
product and minimal tensor product of quasidiagonal C∗-algebras. Quasidiago-
nality does not pass to quotients in general. We return to this point in Section 7.

Any quasidiagonal Fredholm operator must have Fredholm index zero. Hal-
mos used this fact to show that the unilateral shift is not quasidiagonal. Then any
C∗-algebra containing the shift cannot be quasidiagonal. More generally, quasidi-
agonal C∗-algebras must be stably finite — they and matrix rings over them may
not contain proper isometries.

Voiculescu proved ([25]) that if A and B are homotopy equivalent C∗-algebras
then if one of them is quasidiagonal then the other must be as well. Thus for in-
stance CA, the cone on any C∗-algebra, is quasidiagonal, being homotopy equiv-
alent to 0, and the suspension SA is quasidiagonal, as it is a subalgebra of CA.
Salinas extended this to the B-quasidiagonality setting. We state his result for-
mally as part of Proposition 2.1.

Blackadar and Kirchberg ([3], [4]) introduce the class of NF algebras and
demonstrate that this class coincides with the class of separable nuclear quasidi-
agonal C∗-algebras.

Suppose that an injection

τ : A → Q(HB)

classifies an extension of C∗-algebras. Taking pullbacks yields the corresponding
extension

0 → B⊗K → Eτ → A → 0

together with the canonical faithful representation

eτ : Eτ → L(HB).

We say that this extension is a quasidiagonal extension if eτ is a B-quasidiagonal
representation. Equivalently, the extension is quasidiagonal if there is an approx-
imate unit consisting of projections in B⊗K which is quasicentral in Eτ . Salinas
shows that this property depends only upon the equivalence class

[τ] ∈ KK1(A, B)

and hence it makes sense to speak of a quasidiagonal class in KK1(A, B).
Suppose given an essential extension

0 → B⊗K → Eτ → A → 0

together with the canonical faithful representation eτ : Eτ → L(HB), and suppose
given a ∗-homomorphism f : A′ → A which is an injection. Then the induced
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extension f ∗τ is obtained by the pullback diagram

0 −−−−→ B⊗K −−−−→ E f ∗τ −−−−→ A′ −−−−→ 0
y

y f̃
y f

0 −−−−→ B⊗K −−−−→ Eτ −−−−→ A −−−−→ 0

with f̃ also an injection. Then e f ∗τ : E f ∗τ → L(HB) is given by the composition

E f ∗τ
f̃−→ Eτ

eτ−→ L(HB).

If eτ is a B-quasidiagonal representation then it is clear from the construction that
the canonical faithful representation e f ∗τ is also B-quasidiagonal. Using Salinas’s
result (last part of Proposition 2.1) we can see that it is not necessary to stipulate
that f be an injection, once it is established that the homomorphism

f ∗ : KK∗(A, B) → KK∗(A′, B)

is continuous.
A separable nuclear C∗-algebra A is said to be quasidiagonal relative to B if the

class of the trivial extension 0 ∈ KK1(A, B) is quasidiagonal. If A is quasidiagonal
relative to B then trivial extensions are quasidiagonal, obviously, but there may
be no other quasidiagonal classes. For example, if K∗(A) is a direct sum of cyclic
groups then Theorem 2.3 implies that every quasidiagonal extension is trivial. We
discuss such matters in some length in later sections.

N. Brown remarks ([7], 8.2) that it is possible to have an extension

0 → B⊗K → E → A → 0

with E quasidiagonal relative to B without either B or A being quasidiagonal.
However, given a separable C∗-algebra D ⊂ L(H) then D is a quasidiagonal set
if and only if the extension

0 → K → C∗{D,K} → C∗{D,K}/K → 0

is a quasidiagonal extension, where C∗{D,K} denotes the C∗-algebra generated
by D and by K in L(H). We expand upon this remark as follows.

PROPOSITION 2.1. Let A and B be separable nuclear C∗-algebras. Then the fol-
lowing are equivalent:

(i) A is quasidiagonal relative to B;
(ii) A is B-quasidiagonal.
If these hold then they also hold for ∗-subalgebras of A. In addition, if A is B-

quasidiagonal and A is homotopy equivalent to A′ then A′ is B-quasidiagonal.

Proof. Suppose first that A is quasidiagonal relative to B. Then there exists
an essential extension τ representing 0 ∈ KK1(A, B) and a commuting classifying
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diagram

0 −−−−→ B⊗K −−−−→ Eτ −−−−→ A −−−−→ 0y1
yeτ

yτ

0 −−−−→ B⊗K −−−−→ L(HB) −−−−→ Q(HB) −−−−→ 0

and the map τ lifts to a ∗-homomorphism τ̃ : A → L(HB) since [τ] = 0. By
assumption eτ is a B-quasidiagonal representation, and hence eτ(Eτ) is a B-quasi-
diagonal set. The representation τ̃ has range contained in eτ(Eτ) and hence τ̃(A)
is a B-quasidiagonal set. Thus τ̃ is an essential B-quasidiagonal representation of
A. So A is B-quasidiagonal.

In the other direction, suppose that A is B-quasidiagonal. Then there exists
an essential B-quasidiagonal representation τ̃ : A → L(HB). Let

E = C∗{τ̃(A), B⊗K}
and let e : E → L(HB) denote the natural inclusion. Then e is a B-quasidiagonal
representation and

0 → B⊗K → E → A → 0

is an essential quasidiagonal extension which is split by the map τ̃. Thus A is
quasidiagonal relative to B.

If the properties hold then one uses the fact pointed out previously that the
restriction of a B-quasidiagonal extension to a subalgebra of A is again a B-quasi-
diagonal extension. The final statement was established by Salinas in Theorem 4.8
of [15].

Let QD(A, B) denote the set of quasidiagonal classes of KK1(A, B). This set
is non-empty if and only if A is quasidiagonal relative to B, by Theorem 4.4 of [15].
Salinas has shown that the quasidiagonal elements may be described in terms of
the topology on KK1(A, B). For B = K the following theorem was established by
L.G. Brown in p. 63, Remark 1 of [4].

THEOREM 2.2. ([15], Theorem 4.4) If A is quasidiagonal relative to B then there
is a natural isomorphism

(2.1) Z1(A, B) ∼= QD(A, B).

Of course this implies that QD(A, B) is a subgroup of KK∗(A, B).
Here is the principal result of this paper.

THEOREM 2.3. Suppose that A ∈ Ñ , B is a separable C∗-algebra, and A is qua-
sidiagonal relative to B. Then there is a natural isomorphism of topological groups

QD(A, B) ∼= Pext1
Z(K∗(A), K∗(B))0

regarded as subgroups of KK1(A, B) via the canonical inclusion δ in the UCT.
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Proof. We have isomorphisms of topological groups

QD(A, B) ∼= Z1(A, B) ∼= Pext1
Z(K∗(A), K∗(B))0,

by (2.1), and by Theorem 1.6, respectively. This completes the proof.

COROLLARY 2.4. Suppose that A ∈ Ñ and that A is quasidiagonal. Then

QD(A,K) ∼= Pext1
Z(K0(A),Z).

Theorem 2.3 and Corollary 2.4 may be used readily since much is known
about computing the Pext groups shown; see [23].

REMARK 2.5. The group QD(A, B) may well have torsion. For instance,
suppose that A ∈ Ñ , A is quasidiagonal and K∗(A) is torsionfree but not free.
Then, since

Pext1
Z(G, H) ∼= Ext1

Z(G, H)

whenever G is torsionfree,

QD(A,K) ∼= Pext1
Z(K0(A),Z) ∼= Ext1

Z(K0(A),Z)

which is always an uncountable, divisible group (cf. Theorem 9.7 of [23], due to
C.U. Jensen.)

Now choose A ∈ Ñ with K0(A) = Zp, the integers localized at p. Then

QD(A,K) ∼= Qℵ0 ⊕ Z(p∞)

where Z(p∞) denotes the p-torsion subgroup ofQ/Z. This point was overlooked
in Corollary 5.4 of [15]. In that paper the primary interest was the case with
K∗(B) torsionfree and K∗(A) finitely generated. If G is finitely generated then
Pext1

Z(G, H) = 0 for all H, so if A ∈ Ñ with K∗(A) finitely generated then every
quasidiagonal extension of the form

0 → B⊗K → E → A → 0

is trivial in KK1(A, B).
Recall that a group is algebraically compact if it is a direct summand in ev-

ery group that contains it as a pure subgroup. Equivalently, it is algebraically
compact if it is algebraically a direct summand in a group which admits a com-
pact topology. Examples include compact groups, divisible groups, and bounded
groups. A group is algebraically compact if and only if it is of the form

D⊕∏
p

Dp

where D is divisible and for each prime p the group Dp is the completion in the p-
adic topology of the direct sum of cyclic p-groups and groups of p-adic integers.
For any sequence of abelian groups {Gi} the group ∏ Gi/ ⊕ Gi is algebraically
compact and its structure is known.
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COROLLARY 2.6. Suppose that A ∈ Ñ , A is quasidiagonal relative to B, and
either

(i) K∗(A) is a direct sum of (finite and/or infinite) cyclic groups; or
(ii) K∗(B) is algebraically compact.
Then any essential quasidiagonal extension

0 → B⊗K → E → A → 0

is a trivial extension.

Proof. If G is a direct sum of cyclic groups then Pext1
Z(G, H) = 0 for all

groups H. Dually, if H is algebraically compact then Pext1
Z(G, H) = 0 for all

groups G. The result is then immediate from Theorem 2.3.

COROLLARY 2.7. Suppose that A ∈ Ñ , A is quasidiagonal relative to B, K∗(A)
is torsionfree, and we are given an essential extension

τ : 0 → B⊗K → E → A → 0.

Suppose further that the connecting homomorphism

K∗(A) → K∗−1(B)

is trivial. Then the extension is quasidiagonal. If K∗(A) is a direct sum of (finite and/or
infinite) cyclic groups then the extension is trivial.

Proof. The fact that the connecting homomorphism vanishes implies that
the class of τ lies in the group Ext1

Z(K∗(A), K∗(B))0. Since K∗(A) is torsionfree we
know [23] that

Ext1
Z(K∗(A), K∗(B))0 = Pext1

Z(K∗(A), K∗(B))0

and then we have

[τ] ∈ Pext1
Z(K∗(A), K∗(B))0 = QD(A, B)

as required. If K∗(A) is a direct sum of (finite and/or infinite) cyclic groups then
Pext1

Z(K∗(A), H) = 0 for any abelian group H and so Q(A, B) = 0 and the exten-
sion is trivial.

REMARK 2.8. The group Pext1
Z(G, H) is either zero or huge. For example:

(i) (Warfield) If both G and H are countable groups with Pext1
Z(G, H) 6= 0

and H torsionfree, then Pext1
Z(G, H) has Qℵo as a direct summand. It also may

have torsion.
(ii) (R. Baer) If G is a torsionfree group and H is a countable torsion group

then
Pext1

Z(G, H) = Qn

with either n = 0 or n > ℵo.
For proofs and references to these facts and for many more examples, please

see [23].
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3. HOMOMORPHISMS AND SPLIT MORPHISMS

In this section the identification of the quasidiagonal elements of Theo-
rem 2.3 is made concrete. For instance, we answer a simple question. Suppose
that f : A → B. Then when is the canonically associated class βA[ f ] ∈ KK1(SA, B)
a quasidiagonal class? There are certain easy algebraic necessary conditions, and
we show that (for A ∈ Ñ ) these conditions are sufficient. Finally, we demonstrate
how to deal with an extension given explicitly.

In applications many of the most interesting classes in KK-theory come from
∗-homomorphisms f : A → B. The class [ f ] ∈ KK0(A, B) determines the struc-
ture of KK∗(A, B) as a module over the ring KK∗(A, A) and hence has special
importance.

Let
τC : 0 → C⊗K → T → SC→ 0

denote the universal Toeplitz extension which generates the group

KK1(SC,C) ∼= Z.

We may tensor the extension with B to obtain the extension

τB : 0 → B⊗K → B⊗ T → SB → 0.

Note that γ(τB) = 1 : K∗(B) → K∗(B) and hence γ(τB) = 0 if and only if K∗(B) =
0, which would imply that KK∗(B, B) = 0 if B ∈ Ñ . Thus if B ∈ Ñ then the
extension τB is B-quasidiagonal if and only if it is trivial, and this only happens
when K∗(B) = 0.

There is a commuting diagram

KK0(C,C)
βC−−−−→ KK1(SC,C)

yιB

yιB

KK0(B, B)
βB

−−−−→ KK1(SB, B)

where βA represents the Bott isomorphism in the first variable of KK and ιB the
canonical structural map. Then τB = ιB(τC) (by construction) = ιBβC([1C]) (since
this is the universal Toeplitz extension) = βBιB([1C]) (since the diagram com-
mutes) = βB([1B]).

The diagram

KK0(B, B)
βB

−−−−→ KK1(SB, B)y f ∗
y(S f )∗

KK0(A, B)
βA

−−−−→ KK1(SA, B)
commutes by the naturality of the Bott isomorphism, and hence we conclude that

βA([ f ]) = βA f ∗([1B]) = (S f )∗βB([1B]) = (S f )∗τB ∈ KK1(SA, B).
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Thus we may represent the class βA([ f ]) as the pullback of the extension τB
by S f , namely

0 −−−−→ B⊗K −−−−→ E −−−−→ SA −−−−→ 0
y∼=

y
yS f

0 −−−−→ B⊗K −−−−→ B⊗ T −−−−→ SB −−−−→ 0

.

(If S f is not mono then as usual we add on a trivial extension so that the resulting
Busby map classifying the pullback is mono.) So, here is a canonical extension
associated to the map f . The C∗-algebra SA is always quasidiagonal and so the
trivial extension added on to make S f mono was quasidiagonal. Thus it makes
sense to ask when the class βA([ f ]) is quasidiagonal.

Note that γ(βA[ f ]) = (βA)∗γ( f ) = (βA)∗ f∗, where

(βA)∗ : HomZ(K∗(A), K∗(B))
∼=−→ HomZ(K∗(SA), K∗(B)),

and since (βA)∗ is an isomorphism (shifting parity, of course), we see that

γ(βA[ f ]) = 0 if and only if f∗ = 0 : K∗(A) → K∗(B).

In order to state the answer, we must first introduce the mapping cone of f .
Recall that the mapping cone C f is the C∗-algebra

C f = {(ξ, a) ∈ B[0, 1]⊕ A : ξ(0) = 0, ξ(1) = f (a)}
with associated mapping cone sequence (cf. [18]) 0 → SB → C f → A → 0 that
has equivalence class βB[ f ] ∈ KK1(A, SB) where βB represents Bott periodicity in
the second variable of KK. Note that the diagram

KK0(A, B)
βA

−−−−→ KK1(A, SB)
x f∗

x f∗

KK0(A, A)
βA

−−−−→ KK1(A, SA)

commutes and hence

βB([ f ]) = βB f∗([1A]) = (S f )∗βA([1A]),

where βA([1A]) is the class of the mapping cone of the identity map 1 : A → A
which has the form

0 → SA → CA → A → 0.

This class is KK-invertible with KK-inverse the Toeplitz class τA ∈ KK1(SA, A).
This fact is the core case in the proof of Bott periodicity in the KK-context.

PROPOSITION 3.1. Suppose that A ∈ Ñ . Let f : A → B be a ∗-homomorphism.
Then the class βA[ f ] ∈ KK1(SA, B) is quasidiagonal if and only if both of the following
conditions hold:

(i) the induced homomorphism f∗ : K∗(A) → K∗(B) is trivial; and,
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(ii) the associated short exact sequence

0 → K∗(SB) → K∗(C f ) → K∗(A) → 0

is pure exact.
If K∗(A) is torsionfree then condition (ii) is automatically satisfied, so that βA[ f ]

is quasidiagonal if and only if f∗ = 0.

Proof. By virtue of Theorem 2.2 it suffices to determine when the class βA[ f ]
is in Z1(SA, B). The Bott map is a homeomorphism, by (1.2), and hence it is
equivalent to ask when the class [ f ] ∈ KK0(A, B) lies in the subgroup Z0(A, B).
By Theorem 2.3 it suffices to show that

[ f ] ∈ Pext1
Z(K∗(A), K∗(B))0

if and only if conditions (i) and (ii) hold. Condition (i) is necessary and sufficient
for

[ f ] ∈ Ext1
Z(K∗(A), K∗(B))

by the UCT, and condition (ii) picks out those elements of Ext1
Z(K∗(A), K∗(B))

which lie in Pext1
Z(K∗(A), K∗(B)). If K∗(A) is torsionfree then

Pext1
Z(K∗(A), K∗(B)) = Ext1

Z(K∗(A), K∗(B))

and the corollary follows.

Suppose given an extension of C∗-algebras

0 → B i−→ E
p−→ A → 0

which is split by a ∗-homomorphism s : A → E. Then there is a unique class
πs ∈ KK0(E, B) called the splitting morphism with the property that

i∗(πs) = [1]− [sp] ∈ KK0(E, E).

Note that πs induces a homomorphism γ(πs) : K∗(E) → K∗(B) but this homo-
morphism generally does not arise from a ∗-homomorphism E → B⊗K.

Every KK-class may be represented as the KK-product of a class induced
by a homomorphism and by a splitting morphism ([1], Section 17.1.2 and Sec-
tion 17.8.3). So we wish to know when a splitting morphism corresponds to a
quasidiagonal class. Here is the answer.

PROPOSITION 3.2. Suppose that A and B ∈ Ñ . Further, suppose given an exten-
sion of C∗-algebras

0 → B i−→ E
p−→ A → 0

which is split by a ∗-homomorphism s : A → E. Let πs ∈ KK0(E, B) be the associated
splitting morphism. Consider the class

βE(πs) ∈ KK1(SE, B).

Then the following are equivalent:
(i) βE(πs) is a quasidiagonal class;
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(ii) K∗(B) = 0;
(iii) KK∗(B, B) = 0;
(iv) πs = 0.

Proof. The implication (iv) ⇒ (i) is obvious. We shall show that (i) ⇒ (ii) ⇒
(iii) ⇒ (iv).

Suppose first that βE(πs) is a quasidiagonal class. Then γ(βE(πs)) = 0 by
Theorem 2.3, which implies that γ(πs) = 0. Then

1− s∗p∗ = γ([1]− [sp]) = γ(i∗(πs)) = i∗(γ(πs)) = 0

so that p∗ : K∗(E) → K∗(A) is an isomorphism and thus K∗(B) = 0 as required.
Thus (i) ⇒ (ii).

If K∗(B) = 0 then KK∗(B, B) = 0 by the UCT. Thus (ii) → (iii).
If KK∗(B, B) = 0 then the class [1B] ∈ KK0(B, B) of the identity map 1B :

B → B is trivial. However, KK∗(E, B) is a right module over KK∗(B, B) and so
πs = πs ⊗B [1B] = 0 as required. Thus (iii) → (iv).

Proposition 3.1 tells when a class βA[ f ] is quasidiagonal. Proposition 3.2
tells when the class βA(πs) is quasidiagonal. The following theorem describes
when a class with factorization

x = [ f ]⊗D πs = f ∗(πs)

corresponds to a quasidiagonal class βA(x). Every KK-class has this form. Thus
this theorem gives a complete solution to the quasidiagonality of the associated
class βA(x) ∈ KK1(SA, B). We state the theorem for the class x for simplicity,
remembering that βA(x) is a quasidiagonal class if and only if x ∈ Z0(A, B) ∼=
Pext1

Z(K∗(A), K∗(B))1.

THEOREM 3.3. Suppose that A ∈ Ñ . Let x ∈ KK0(A, B), with factorization
x = [ f ]⊗D πs = f ∗(πs), with respect to the map f : A → D, and extension

0 → B⊗K → D
p−→ A → 0,

with splitting s : A → D, and splitting morphism πs ∈ KK0(D, B).
Then:
(a) The following conditions are equivalent:

(3.1) γ(x) = 0 ∈ HomZ(K∗(A), K∗(B))0,

Im( f∗ : K∗(A) → K∗(D)) ⊆ Ker(γ(πs) : K∗(D) → K∗(B))

= Im(s∗ : K∗(A) → K∗(D)).
(3.2)

(b) Suppose that γ(x) = 0, so that x ∈ Ext1
Z(K∗(A), K∗(B))1 ⊆ KK0(A, B).

Then

(3.3) x = z⊗D πs
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for some z ∈ Ext1
Z(K∗(A), K∗(D))1 ⊆ KK0(A, D). The element z is unique modulo the

subgroup

s∗(Ext1
Z(K∗(A), K∗(A)))1

and if desired we may take z = i∗x. Conversely, any element x of form (3.3) is in the
group Ext1

Z(K∗(A), K∗(B))1.
(c) Suppose that x ∈ Pext1

Z(K∗(A), K∗(B))1 ⊆ KK0(A, B). Then

(3.4) x = z⊗D πs

for some z ∈ Pext1
Z(K∗(A), K∗(D))1 ⊆ KK0(A, D). The element z is unique modulo

the subgroup

s∗(Pext1
Z(K∗(A), K∗(A)))1

and if desired we may take z = i∗x. Conversely, any element of form (3.4) is in the group
Pext1

Z(K∗(A), K∗(B))1 .

Proof. For Part (a) we compute:

γ(x) = γ( [ f ]⊗D πs ) = γ(πs) f∗

and hence γ(x) = 0 if and only if Im( f∗) ⊆ Ker( γ(πs) ). The identification
Ker( γ(πs) ) = Im(s∗) is immediate from the definition of γ(πs). This proves Part
(a). Parts (b) and (c) follow from the decomposition of KK∗(A, D) into compo-
nents KK∗(A, A) and KK∗(A, B) which results from the splitting and the UCT.

We note in passing the following naturality property of our decomposition
of the UCT. It uses the notation and assumptions of Theorem 3.3.

PROPOSITION 3.4. The diagram

Ext1
Z(K∗(A), K∗(D))∗−1

δD−−−−→ KK∗(A, D)yγ(πs)∗
y(−)⊗Dπs

Ext1
Z(K∗(A), K∗(B))∗−1

δB−−−−→ KK∗(A, B)

commutes, where the maps δ are the inclusion maps from the UCT.

Proof. This does not follow immediately from the naturality of the UCT,
since the map (−) ⊗D πs is not induced by a map of C∗-algebras. We argue as
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follows. Expand the diagram to the diagram

0 0
y

y

Ext1
Z(K∗(A), K∗(A))∗−1

δA−−−−→ KK∗(A, A)ys∗
ys∗

Ext1
Z(K∗(A), K∗(D))∗−1

δD−−−−→ KK∗(A, D)
yγ(πs)∗

y(−)⊗Dπs

Ext1
Z(K∗(A), K∗(B))∗−1

δB−−−−→ KK∗(A, B)
y

y
0 0

.

Each column is split exact, since s is a splitting, and the upper square com-
mutes by the naturality of the UCT (since the map s∗ is induced by the map
s : A → D) and it is easy to see that the map δB is the quotient map, making
the lower square commute.

Here is our solution to the relative quasidiagonality problem, applied to a
concrete extension.

THEOREM 3.5. Suppose that A ∈ Ñ is quasidiagonal relative to B. Suppose given
an essential extension

0 → B⊗K → Eτ → A → 0

representing τ ∈ KK1(A, B) with associated faithful representation eτ : Eτ → L(HB).
Then the representation eτ is B-quasidiagonal if and only if both of the following condi-
tions hold:

(i) γ(τ) = 0, or, equivalently, the boundary homomorphism K∗(A) → K∗−1(B)
is trivial; and

(ii) τ ∈ ⋂
n

nExt1
Z(K∗(A), K∗−1(B))0 or, equivalently,

τ ∈ Ker[ϕ : Ext1
Z(K∗(A), K∗(B))0 → Ext1

Z(K∗(A), K∗(B))0
∧]

where G∧ denotes the Z-adic completion of G.
If K∗(A) is torsionfree then condition (ii) is satisfied automatically, so that eτ is

a B-quasidiagonal representation if and only if the boundary homomorphism K∗(A) →
K∗−1(B) is trivial.

Proof. Conditions (i) and (ii) are exactly the conditions that guarantee that τ
lies in the subgroup QD(A, B).
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4. PURITY AND QUASIDIAGONALITY

In this section we take advantage of standard results in infinite abelian
groups to deduce results on quasidiagonality.

PROPOSITION 4.1. (a) Suppose that H is a countable abelian group. Then the
following are equivalent:

(i) Pext1
Z(G, H) = 0 for all countable abelian groups G;

(ii) Pext1
Z(G, H) = 0 for the groups G = Q and Q/Z;

(iii) H is algebraically compact.

(b) Suppose that G is a countable abelian group. Then the following are equivalent:

(i) Pext1
Z(G, H) = 0 for all countable abelian groups H;

(ii) Pext1
Z(G, H) = 0 for all countable direct sums of cyclic groups H;

(iii) G is the direct sum of cyclic groups.

Proof. First concentrate on Part (a). Of course (a)(i) implies (a)(ii). The impli-
cation (a)(iii) implies (a)(i) is immediate from 53.4 of [11]. The implication (a)(ii)
implies (a)(iii) is the least obvious, but it is also found in page 232 of [11].

Turning to part (b), the implication (b)(i) implies (b)(ii) is trivial, and the im-
plication (b)(iii) implies (b)(i) follows from 53.4 of [11] as well. For the following
argument that (b)(ii) implies (b)(iii) I am indebted to John Irwin. Suppose that G
satisfies condition (b)(ii). Let G̃ be the free abelian group on the (countable) set

{[g] : g ∈ G}
modulo the relations given by

n[g] = 0

if g ∈ G has order n. There is an obvious surjection G̃ → G and hence a short
exact sequence

Θ : 0 → K → G̃ → G → 0.

This sequence is pure, since every torsion element of G lifts to a torsion element
of G̃ of the same order. The group G̃ is countable by construction, hence K is
countable. Further, G̃ is a direct sum of cyclic groups. The group K is thus a
subgroup of a direct sum of cyclic groups and by Kulikov’s theorem (cf. 20.1 of
[11]) K itself is a direct sum of cyclic groups. Thus

Θ ∈ Pext1
Z(G, K) = 0

and hence the extension Θ must be split. This implies that G is isomorphic to a
subgroup of a direct sum of cyclic groups and hence (by Kulikov’s theorem) is
itself a direct sum of cyclic groups.

The following theorem is the KK-version of the preceding, purely algebraic
results. First a bit of notation. For G any countable abelian group, let CG be a
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separable commutative C∗-algebra such that for each j = 0, 1,

Kj(CG) = G.

Note that CG exists by geometric realization ([17]) and is unique up to KK-equiv-
alence by the UCT. Each CG is quasidiagonal, since it is commutative, and hence
CG is B-quasidiagonal for all separable B. If desired we may choose

CG = C0
G ⊕ C1

G

where Ki(Cj
G) = G if i = j and Ki(Cj

G) = 0 if i 6= j. Then we could use the Cj
G

separately in parts (ii) and (iii) of Theorem 4.2.

THEOREM 4.2. (a) Suppose that B is a separable C∗-algebra. Then the following
are equivalent:

(i) for each A ∈ Ñ with A quasidiagonal relative to B, QD(A, B) = 0;
(ii) for G = Q and G = Q/Z, QD(CG, B) = 0;

(iii) K∗(B) is algebraically compact.
(b) Suppose given a quasidiagonal C∗-algebra A ∈ Ñ . Then the following are

equivalent:
(i) for each separable C∗-algebra B, QD(A, B) = 0;

(ii) for H any direct sum of cyclic groups, QD(A, CH) = 0;
(iii) K∗(A) is the direct sum of cyclic groups.

Proof. First consider (a). The implication (a)(i) implies (a)(ii) is immediate.
The implication (a)(iii) implies (a)(i) is elementary, since if K∗(B) is algebraically
compact then

(4.1) Pext1
Z(G, K∗(B)) = 0

for all groups G, by Theorem 4.1(i). If A ∈ Ñ with A quasidiagonal relative to B
then

QD(A, B) ∼= Pext1
Z(K∗(A), K∗(B))

by Theorem 2.3, and

Pext1
Z(K∗(A), K∗(B)) = 0

by (4.1), completing the argument.
Next we show that (a)(ii) implies (a)(iii). The condition (a)(ii) implies that

Pext1
Z(G, K∗(B)) = 0

for G = Q and G = Q/Z and then Theorem 4.1 implies that K∗(B) is algebraically
compact. This completes the proof of part (a).

The proof of part (b) is quite similar, and we comment only on the deep
implication (b)(ii) implies (b)(iii). Condition (b)(ii) together with Theorem 1.2
imply that

Pext1
Z(K∗(A), H) = 0
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whenever H is a direct sum of cyclic groups, and then Theorem 4.1(i) implies
that K∗(A) is itself a direct sum of cyclic groups. This completes the proof of
Theorem 4.2.

5. A PROBLEM OF L.G. BROWN

Let θ : K∗(A)t → K∗(A) be the canonical inclusion of the torsion subgroup
of K∗(A). L.G. Brown page 63 in [4], showed that (with B = K) there is a relation
between quasidiagonality and the kernel of the induced map

θ∗ : Ext1
Z(K∗(A), K∗(B)) → Ext1

Z(K∗(A)t, K∗(B)).

We generalize his result as follows. Let Gt denote the torsion subgroup of a group
G and G f = G/Gt denote the maximal torsionfree quotient of G. Recall ([20]) that
given A, there is an associated extension of C∗-algebras

0 → A⊗K → A f → SAt → 0

whose K-theory long exact sequence degenerates to the pure short exact sequence

(5.1) 0 → K∗(A)t
θ−→ K∗(A) → K∗(A) f → 0.

In particular,
K∗(At) ∼= K∗(A)t and K∗(A f ) ∼= K∗(A) f .

Further, if A ∈ Ñ then so are both At and A f . We established this in Theorem 1.1
of [20], for A ∈ N but once again it is clear by inspection of that proof that the
statement holds for A ∈ Ñ .

THEOREM 5.1. Suppose that A ∈ Ñ and A is quasidiagonal relative to B. Then:
(i) There is a natural commutative diagram with exact columns:

0 0y
y

Ker(Qθ∗)
∼=−−−−→ Ker(θ∗)y

y
QD(A, B)

∼=−−−−→ Pext1
Z(K∗(A), K∗(B))0yQθ∗

yθ∗

QD(At, B)
∼=−−−−→ Pext1

Z(K∗(A)t, K∗(B))0y
y

0 0

.
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(ii) There is a natural exact sequence

HomZ(K∗(A)t, K∗(B))0
δ′−→ QD(A f , B) → Ker(θ∗) → 0,

where δ′ is the boundary map in the Hom-Pext long exact sequence associated to the pure
short exact sequence (5.1).

(iii) If Im(δ′) = 0 (this condition usually holds: for instance, it holds if K∗(A)t is
a direct summand of K∗(A) or if K∗(B) is torsion free, and, of course, it holds whenever
HomZ(K∗(A)t, K∗(B)) = 0), then there is a natural isomorphism

QD(A f , B) ∼= Ker(θ∗).

Proof. The short exact sequence (5.1) is pure exact and thus produces a six
term Hom-Pext sequence in the first variable. Identifying entries using Theo-
rem 2.3, one obtains the left column below, which is exact. The six term Hom-Ext
exact sequence contributes the right column below, and this column is also exact.

HomZ(K∗(A)t, K∗(B))0
∼=−−−−→ HomZ(K∗(A)t, K∗(B))0yδ′

yδ

QD(A f , B)
∼=−−−−→ Ext1

Z(K∗(A) f , K∗(B))0y
y

QD(A, B) −−−−→ Ext1
Z(K∗(A), K∗(B))0yQθ∗

yθ∗

QD(At, B) −−−−→ Ext1
Z(K∗(A)t, K∗(B))0y

y
0 0

.

The diagram commutes, the horizontal maps are injections, and the map

QD(A f , B) → Ext1
Z(K∗(A f ), K∗(B))0

is an isomorphism since K∗(A f ) is torsionfree. An easy diagram chase shows
that Ker(Qθ∗) ∼= Ker(θ∗) from which (i) is immediate. Part (ii) follows from
expressing Ker(Qθ∗) as the quotient of QD(A f , B) modulo the group Im(δ′).

6. QUASIDIAGONALITY AND TORSION

One of the early applications of the Brown-Douglas-Fillmore theory was
contained in work of L.G. Brown ([4]). He exhibited an example of a bounded
operator T which was not quasidiagonal but such that T ⊕ T was quasidiagonal.
In fact Brown showed that T ⊕ T generated a trivial extension.

Here is an analysis of such behavior from our perspective.
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THEOREM 6.1. Suppose that A ∈ Ñ , A is quasidiagonal relative to B, and x ∈
KK1(A, B). Then:

(i) If γ(x) 6= 0 then x is not a quasidiagonal class.
(ii) If γ(x) has infinite order in the group HomZ(K∗(A), K∗(B)) then no multiple

of x is a quasidiagonal class.
(iii) If γ(x) = 0 then x is a quasidiagonal class if and only if it is in the kernel of

the natural map

ϕ : Ext1
Z(K∗(A), K∗(B)) → Ext1

Z(K∗(A), K∗(B))̂.

(iv) If K∗(A) is torsionfree then x is a quasidiagonal class if and only if γ(x) = 0.

Proof. This is all immediate from Theorem 2.3.

We apply Theorem 6.1 to the setting of x ∈ KK1(A,C).

THEOREM 6.2. Suppose that A ∈ Ñ and A is a quasidiagonal C∗-algebra. Sup-
pose given an essential extension

τ : 0 → K → Eτ
p−→ A → 0

representing τ ∈ KK1(A,C) so that γ(τ) : K1(A) → K0(K) ∼= Z. Then:
(i) If γ(τ) 6= 0 then τ is not a quasidiagonal extension.

(ii) If γ(τ) = 0 then τ is a quasidiagonal extension if and only if the short exact
sequence

0 → Z→ K0(Eτ)
p∗−→ K0(A) → 0

is a pure short exact sequence.
(iii) If K0(A) is torsionfree then τ is quasidiagonal if and only if γ(τ) = 0.
(iv) If K0(A) is a direct sum of (finite and/or infinite) cyclic groups then τ is a

quasidiagonal extension if and only if it is a trivial extension.

Proof. The group HomZ(K1(A),Z) is torsionfree since Z is torsionfree. Thus
Theorem 6.1(i) and (ii) imply (i). Part (ii) is a restatement of Theorem 6.1(iv).
Part (iii) follows from Theorem 6.1(iv). Part (iv) holds since Pext1

Z(G, H) = 0
whenever G is a direct sum of cyclic groups.

REMARK 6.3. There are examples ([19]) where the surjection

ϕ : Ext1
Z(K∗(A), K∗(B)) → Ext1

Z(K∗(A), K∗(B))̂
is not a split surjection. In fact, using the example of Christensen-Strickland cited
there, it is possible to produce an extension τ ∈ KK1(A, B) which satisfies all of
the following conditions:

(1) γ(τ) = 0;
(2) ϕ(τ) 6= 0 so that τ is not a quasidiagonal class; and
(3) for some k ∈ N, kτ is a quasidiagonal class but is not trivial.

This sort of phenomenon can occur only when both K∗(A) and K∗(B) have p-
torsion for some fixed prime p and then only rarely.
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Theorem 6.1 implies an early result ([6]) of Brown, Douglas, and Fillmore
(BDF) on quasidiagonality. Recall that a bounded operator T on a separable
Hilbert space H is essentially normal if T∗T − TT∗ is compact. The essential spec-
trum of T is the spectrum of πT ∈ Q(H). We let ind(T) denote the Fredholm
index of the operator T.

THEOREM 6.4 (BDF). Suppose that T ∈ L(H) is an essentially normal operator.
Let X denote the essential spectrum of T. Then the following are equivalent:

(i) T is a quasidiagonal operator;
(ii) for each λ ∈ C− X, ind(T − λI) = 0;

(iii) T is of the form (normal) + (compact).

Proof. There is a natural extension

0 → K → C∗{T,K} → C(X) → 0

which gives rise to an element

[T] ∈ KK1(C(X),C).

The operator T is quasidiagonal if and only if [T] is a quasidiagonal class, by 2.2
and the remark preceding it. The fact that X ⊂ C implies that K∗(C(X) ∼= K∗(X)
is torsionfree. Hence [T] is a quasidiagonal class if and only if γ([T]) = 0, by
Theorem 6.1. So it suffices to compute γ([T]). BDF ([6]) show that there is a
natural isomorphism

KK1(C(X),C)
γ−→ HomZ(K1(X),Z) ∼= H̃0(C− X)

and this map takes [T] to the function

λ 7−→ ind(T − λI)

so that [T] = 0 if and only if ind(T − λI) = 0 where defined. This completes the
proof.

7. LIFTING QUASIDIAGONALITY

In this section we present a converse to the following theorem of Davidson,
Herrero, and Salinas.

THEOREM 7.1. ([10]) Suppose that

(7.1) τ : 0 → K → Eτ → A → 0

is an essential extension with associated faithful representation

eτ : Eτ → L(H)

and suppose further that Eτ is separable and nuclear. If eτ is a quasidiagonal representa-
tion then A is a quasidiagonal C∗-algebra.
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There is an obvious obstruction to a converse to this theorem, known al-
ready to Halmos ([12]). Suppose that S is the unilateral shift. Then there is a
canonical associated extension

τS : 0 → K → C∗{S,K} → A → 0

and the quotient A ∼= C(S1) is commutative, hence quasidiagonal. However the
C∗-algebra C∗{S,K} itself is not quasidiagonal since it contains the unilateral shift
S, which is not quasidiagonal. Halmos demonstrates this by observing that S has
non-trivial Fredholm index, whereas any Fredholm quasidiagonal operator must
have trivial Fredholm index. In modern jargon, the index map

γ : KK1(C(S1),K) → HomZ(K1(S1),Z) ∼= Z

satisfies
γ(τS)(z) = −1 6= 0

which is an obstruction to quasidiagonality.
Here is the complete story, at least within the category Ñ .

THEOREM 7.2. Suppose given the essential extension (7.1) with A ∈ Ñ and qua-
sidiagonal. Then the representation eτ : Eτ → L(H) is a quasidiagonal representation if
and only if the following two conditions hold:

(i) γ(τ) = 0; and
(ii) the resulting K-theory short exact sequence

0 → Z→ K0(Eτ) → K0(A) → 0

is a pure exact sequence.
If in addition K0(A) is torsionfree then condition (ii) is automatically satisfied, so

that eτ is a quasidiagonal representation if and only if γ(τ) = 0.

Proof. Theorem 2.3 reduces in this case to the identification

QD(A,K) ∼= Pext1
Z(K0(A),Z).

Condition (i) is equivalent to τ ∈ Ext1
Z(K0(A),Z) and condition (ii) is simply a

statement that τ ∈ Pext1
Z(K0(A),Z). If in addition K0(A) is torsionfree then

Pext1
Z(K0(A),Z) ∼= Ext1

Z(K0(A),Z).

This completes the proof.

REMARK 7.3. It is instructive to compare our Theorem 7.2 with a related
result due to N. Brown and M. Dădârlat ([5]) where they overlap. Consider the
essential extension

τ : 0 → K → Eτ → A → 0

with associated faithful representation

eτ : Eτ → L(H)
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and suppose that A ∈ Ñ with A quasidiagonal. Brown and Dădârlat show ([5],
Theorem 3.4) specialized to this case) that if γ(τ) = 0 then Eτ is also quasidiago-
nal. We show that if γ(τ) = 0 and the resulting K-theory short exact sequence is
pure then the representation eτ is a quasidiagonal representation. If γ(τ) = 0 but
the K-theory short exact sequence is not pure then we conclude that even though
Eτ is quasidiagonal, the representation eτ is not a quasidiagonal representation.

Here is an example. Let G be any countable torsion group. Then

Ext1
Z(G,Z) ∼= HomZ(G,Q/Z) = P(G)

the Pontrjagin dual group of G. For example, if G is finite then P(G) = G. If G =
∞⊕
1
Z/p, the sum of countably many copies of the groupZ/p, then P(G) =

∞
∏
1
Z/p

which is, of course, uncountable. Note that P(P(G)) = G by the Pontrjagin
duality theorem, and hence if G 6= 0 then Ext1

Z(G,Z) 6= 0.
Choose a commutative C∗-algebra A with K0(A) = G and K1(A) = 0. This

is always possible, and A is unique up to KK-equivalence. Then

HomZ(K∗(A),Z) = 0

and hence the index map γ is identically zero. Thus there is a natural isomor-
phism

KK1(A,K) ∼= Ext1
Z(K0(A),Z) ∼= Ext1

Z(G,Z) ∼= P(G).

Using Brown and Dădârlat’s result, we conclude that if

0 → K → Eτ → A → 0

is any essential extension then the C∗-algebra Eτ is quasidiagonal. On the other
hand,

QD(A,K) ∼= Pext1
Z(K0(A),Z) = Pext1

Z(G,Z) = 0

since G is a torsion group and Z is torsionfree, by Theorem 9.1 of [23]. Thus
among all of the various τ ∈ KK1(A,K) ∼= P(G) and associated representations

eτ : Eτ → L(H),

the only representation eτ that is quasidiagonal is the one corresponding to the
trivial extension, where

[τ] = 0 ∈ KK1(A,K)

This also illustrates the phenomenon discovered by L.G. Brown and dis-
cussed in Section 6, since any non-trivial extension τ ∈ KK1(A,K) will have the
property that it itself is not quasidiagonal, but when added to itself enough times
it becomes quasidiagonal and trivial.

Acknowledgements. This paper, and to a small extent [21], [22], replace and very sub-
stantially extend the preliminary preprint entitled Continuity of the Kasparov pairing and
relative quasidiagonality which will not appear.
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