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ABSTRACT. The first half of this paper studies the Mq-type submodules over
the bidisk. Because of their structural simplicity, Mq-type submodules are
used to address several issues regarding the unitary equivalence of submod-
ules. Mq-type submodules lie inside a much bigger class — the class of Hilbert-
Schmidt submodules which we will define in the second half of the paper. Sev-
eral facts are put in place to raise two conjectures about Hilbert-Schmidt sub-
modules. The Hilbert-Schmidt submodule possesses a numerical invariant
which is a natural analogue of Arveson’s curvature invariant over the unit
ball.

KEYWORDS: Hilbert-Schmidt submodules.

MSC (2000): Primary 47A13; Secondary 46E20.

0. INTRODUCTION

The Hardy space over the torus H2(Γ2), under action defined by multipli-
cation of functions, is a module over the polynomial ring C[z1, z2]. Submodules
of H2(Γ2) have very complicated yet intriguing structure which has attracted a
continuing effort in search of an elucidation. One prevalent idea in recent ap-
proaches is to define equivalence relations among submodules and study equiv-
alence classes. Various kinds of questions regarding unitary equivalence thus
arise. This paper has two objectives, one is to single out and study what we call
Mq-type submodules of the form

M = q1(z1)H2(Γ2) + q2(z2)H2(Γ2),

where q1 and q2 are nontrivial inner functions. Mq-type submodules enable us to
answer a few questions (cf. [10], [14]) regarding unitary equivalence. The other
objective is to define the Hilbert-Schmidt submodule. This definition is motivated
by the fact that, on the one hand, it is broad enough to include almost all known
examples of submodules, and on the other hand, this class of submodules is good
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enough so that some fine analysis tools apply. Much work could be done for the
Hilbert-Schmidt submodules, but the purpose in this paper is to raise two conjec-
tures and relate a natural numerical invariant for the Hilbert-Schmidt submod-
ules to Arveson’s notion of curvature invariant over the unit ball Bn (cf. [3]).

We begin our discussion by fixing some notation. With every inner function
θ(w) in the Hardy space H2(Γ) over the unit circle Γ ⊂ C, there is an associated
contraction S(θ) on H2(Γ)ª θH2(Γ) defined by

S(θ) f = Pθw f , f ∈ H2(Γ)ª θH2(Γ),

where Pθ is the orthogonal projection from H2(Γ) onto H2(Γ)ª θH2(Γ). The op-
erator S(θ) is called a Jordan block, and its properties have been very well studied
(cf. [4], [12]). On the Hardy space H2(Γ2) with coordinate functions z1 and z2,
the Toeplitz operators Tz1 and Tz2 are unilateral shifts of infinite multiplicity. One
sees that a closed subspace M ⊂ H2(Γ2) is a submodule if and only if M is in-
variant for both Tz1 and Tz2 . In the setting of H2(Γ2), it is necessary to distinguish
between the Hardy space H2(Γ) in the variable z1 and that in the variable z2, for
which we denote by H1 and H2, respectively. Two evaluation operators L(0) and
R(0) are defined by

L(0) f = f (0, z2), R(0) f = f (z1, 0), f ∈ H2(Γ2).

Two essential associates of a submodule M ⊂ H2(Γ2) are the pairs (S1, S2)
and (R1, R2) defined by

Si f = (I − p)zi f , Rig = zig, i = 1, 2,

where f ∈ H2(Γ2) ª M, g ∈ M, and p is the orthogonal projection from H2(Γ2)
onto M. One verifies that (S1, S2) is a pair of commuting contractions on H2(Γ2)ª
M and (R1, R2) is a pair of commuting isometries acting on M. These two pairs of
operators capture every piece of information about M and are subjects of many
recent studies. Three results are important for the study in this paper (cf. [11], [8]
and [14], respectively). As usual, [A, B] means AB− BA.

THEOREM 0.1. For a submodule M, [S∗1 , S2] = 0 if and only if

H2(Γ2)ª M = (H1 ª q1H1)⊗ (H2 ª q2H2),

where q1(z1) and q2(z2) are either one variable inner functions or the constant 0.

One observes that relative to the tensor product in Theorem 0.1, S1 = S(q1)⊗
I and S2 = I ⊗ S(q2). It is also not hard to check that

(H1 ª q1H1)⊗ (H2 ª q2H2) = H2(Γ2)ª (q1H2(Γ2) + q2H2(Γ2)).

For convenience, submodules like q1H2(Γ2) + q2H2(Γ2) are said to be of Mq-type
in this paper.

THEOREM 0.2. For a submodule M, [R∗1, R2] = 0 if and only if

M = ψH2(Γ2),
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for some inner function ψ(z1, z2).

THEOREM 0.3. For a submodule M, if the unit disk D is not a subset of σc(S1) ∩
σc(S2), then [R∗1, R2] and [R∗1, R1][R∗2, R2] are both Hilbert-Schmidt.

Here σc(A) means the continuous spectrum of A. For a Hilbert-Schmidt
operator A, we let ‖A‖HS denote its Hilbert-Schmidt norm. The condition in The-
orem 0.3 is mild enough to include almost all known examples of submodules,
and this fact, together with some other observations, motivates the definition of
the Hilbert-Schmidt submodule in Section 5.

1. [S∗1 , S2] VERSUS [R∗1 , R2]

In this section we study how the equation [R∗1, R2] = 0 affects the commuta-
tor [S∗1 , S2] and likewise how the equation [S∗1 , S2] = 0 affects [R∗1, R2]. The study
is based on Theorem 0.1 and Theorem 0.2. One verifies first (cf. [7]) that for every
submodule M,

(1.1) S∗z1
Sz2 f − Sz2 S∗z1

f = (I − p)z1 pz2 f , f ∈ H2(Γ2)ª M.

It is not hard to check that pz2 f ∈ M ª z2M for every f ∈ H2(Γ2) ª M. When
[R∗1, R2] = 0, i.e., M = ψH2(Γ2) for some inner function ψ(z1, z2), {ψzj

1 : j > 0} is
an orthonormal basis for Mª z2M. Therefore

S∗z1
Sz2 f − Sz2 S∗z1

f = (I − p)z1 pz2 f

= (I − p)z1

( ∞

∑
j=0
〈z2 f , ψzj

1〉ψzj
1

)

=
∞

∑
j=0
〈z2 f , ψzj

1〉(I − p)z1(ψzj
1)

= 〈z2 f , ψ〉(I − p)z1ψ

= 〈 f , z2(ψ− R(0)ψ)〉z1(ψ− L(0)ψ),

which shows that S∗z1
Sz2 − Sz2 S∗z1

is a rank one operator, and moreover, that

(1.2) ‖[S∗z1
, Sz2 ]‖2

HS = ‖ψ− R(0)ψ‖2‖ψ− L(0)ψ‖2.

Next we study [R∗1, R2] on Mq-type submodules. To this end, let us first
consider a backward shift invariant subspace H2(Γ)ª θH2(Γ) and the map D(θ) :
H2(Γ)ª θH2(Γ) → θH2(Γ) defined by

D(θ) f (w) = 〈w f , θ〉θ(w).

D∗(θ) is evidently a rank 1 operator and one checks that

D∗(θ)g = 〈g, θ〉w(θ − θ(0)).
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Moreover,
‖D(θ)‖2

HS = ‖D∗(θ)θ‖2 = 1− |θ(0)|2.

Given a pair of inner functions q1(z1) and q2(z2), we can decompose H2(Γ2)
as

(
(H1 ª q1H1)⊕ q1H1

)⊗ (
(H2 ª q2H2)⊕ q2H2

)

= (H1 ª q1H1)⊗ (H2 ª q2H2)⊕ (H1 ª q1H1)⊗ q2H2 ⊕ q1H1⊗
(H2 ª q2H2)⊕ q1H1 ⊗ q2H2.

It is not hard to see that

(H1 ª q1H1)⊗ (H2 ª q2H2) = H2(Γ2)ª (q1H2(Γ2) + q2H2(Γ2)).

Relative to the decomposition

q1H2(Γ2) + q2H2(Γ2)

= (H1 ª q1H1)⊗ q2H2 ⊕ q1H1 ⊗ (H2 ª q2H2)⊕ q1H1 ⊗ q2H2,(1.3)

R1 and R2 have the following matrix forms:

R1 =




S(q1)⊗ I 0 0
0 S⊗ I 0

D(q1) 0 S⊗ I


 , R2 =




I ⊗ S 0 0
0 I ⊗ S(q2) 0
0 I ⊗ D(q2) I ⊗ S


 .

One then calculates that

R∗1R2 =




S∗(q1)⊗ S D∗(q1)⊗ D(q2) D∗(q1)⊗ S
0 S∗ ⊗ S(q2) 0
0 S∗ ⊗ S(q2) S∗ ⊗ S


 ,

and

R2R∗1 =




S∗(q1)⊗ S 0 D∗(q1)⊗ S
0 S∗ ⊗ S(q2) 0
0 S∗ ⊗ S(q2) S∗ ⊗ S


 ,

from which it follows that

R∗1R2 − R2R∗1 =




0 D∗(q1)⊗ D(q2) 0
0 0 0
0 0 0


 .

This shows that R∗1R2 − R2R∗1 is in fact a rank 1 operator that maps q1H1 ⊗ (H2 ª
q2H2) into (H1ª q1H1)⊗ q2H2, and ‖[R∗1, R2]‖2

HS = ‖D∗(q1)‖2
HS‖D(q2)‖2

HS = (1−
|q1(0)|2)(1− |q2(0)|2). We summarize these observations in

COROLLARY 1.1. For a submodule M,
(i) If [R∗1, R2] = 0 then [S∗1 , S2] is of at most rank 1, and

‖[S∗z1
, Sz2 ]‖2

HS = ‖ψ− R(0)ψ‖2‖ψ− L(0)ψ‖2,

where ψ is the inner function such that M = ψH2(Γ2).
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(ii) If [S∗1 , S2] = 0 then [R∗1, R2] is of at most rank 1, and

‖[R∗1, R2]‖2
HS = (1− |q1(0)|2)(1− |q2(0)|2),

where q1 and q2 are the one variable inner functions such that M = Mq.

It is then not hard to see that [R∗1, R2] and [S∗1 , S2] are both 0 if and only if
M = gH2(Γ2) for some one variable inner function g.

2. UNITARY EQUIVALENCE Mq-TYPE SUBMODULE

Two submodules are said to be unitarily equivalent if there is a unitary mod-
ule map between them. The unitary equivalence of Mq-type submodules is not
difficult to determine. The following lemma holds the key.

LEMMA 2.1. If M is a submodule that contains two nontrivial one variable func-
tions f1(z1) and f2(z2), then a submodule N is unitarily equivalent to M if and only
if

N = φM
for some inner function φ(z1, z2).

Proof. By a result in [1], if M is unitarily equivalent to N then there is a
φ(z1, z2) ∈ L∞(Γ2) with |φ(z1, z2)| = 1 almost everywhere on Γ2 such that

N = φM.

This in particular means φ(z1, z2) f1(z1) ∈ H2(Γ2), which implies that φ(z1, z2) is
analytic in z2. Similarly, φ(z1, z2) f2(z2) ∈ H2(Γ2) implies φ(z1, z2) is analytic in
z1. This shows that φ is an inner function in two variables.

It is easy to see that if M is a submodule with finite codimension, then M
satisfies the condition for Lemma 2.1. For example, if g1(z1) and g2(z2) are the
characteristic polynomials of S1 and S2 (for S1 and S2 are finite matrices in this
case), respectively, then

(I − p)(gi) = gi(Si)(1− p1) = 0, i = 1, 2,

i.e., g1 and g2 are in M. The following result in [1] is now a direct consequence of
Lemma 2.1.

COROLLARY 2.2. If M is a submodule with finite codimension and if N is unitar-
ily equivalent to M, then

N = φM,
for some inner function φ(z1, z2).

COROLLARY 2.3. If pi, qi, i = 1, 2 are one variable inner functions, and if

Mp = p1(z1)H2(Γ2) + p2(z2)H2(Γ2), Mq = q1(z1)H2(Γ2) + q2(z2)H2(Γ2),

then Mp is unitarily equivalent to Mq only if Mp = Mq.
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Proof. By Lemma 2.1, there is an inner function φ such that

Mq = φMp.

Since it implies Mp = φMq, φ is also inner, which is possible only if φ is a con-
stant.

When pi, qi, i = 1, 2 are all finite Blaschke products, Corollary 2.3 is also
a consequence of the Rigidity Theorems in [6]. The Mq-type submodule can be
used to settle some questions regarding the unitary equivalence of the fringe oper-
ator and the core operator, both of which are very useful associates of submodules.

3. THE FRINGE OPERATOR AND UNITARY EQUIVALENCE

For a submodule M, the fringe operator F is defined on Mª z1M by

F f = [R∗1, R1]z2 f .

The fringe operator has a very close connection with the pair (R1, R2) (cf. [5],
[14], [16]) and was used in [14] to deduce a trace-index relation for (R1, R2). It
is known that the unitary equivalence of submodules implies the equivalence of
their respective fringe operators. But it is a question to decide how faithful the
fringe operator represents a submodule. The answer to this question, as mani-
fested by the following two examples, depends on the type of the fringe operator
as well as the type of submodule on which it is defined.

EXAMPLE 3.1. For a submodule M, its fringe operator F is unitarily equiv-
alent to the unilateral shift (denoted by S) if and only if M is unitarily equivalent
to H2(Γ2). The sufficiency follows from a result in [1] which asserts that M is uni-
tarily equivalent to H2(Γ2) if and only if M = ψH2(Γ2) for some inner function
ψ(z1, z2). Therefore, Mª z1M = ψH2, and it is easy to see that F is multiplication
by z1, i.e., the unilateral shift. On the other hand, if F is unitarily equivalent to S
then the kernel of F∗ is one dimensional. Pick ψ ∈ kerF∗ with ‖ψ‖ = 1. Since F is
an isometry, F f = z2 f for every f ∈ Mª z2M, and it follows that

〈zm
1 zn

2 ψ, zi
1zj

2ψ〉 = 〈zm
1 Fnψ, zi

1Fjψ〉 = 0

for non-negative integers m, n, i, j with (m, n) 6= (i, j). This implies
∫

Γ2

|ψ(z1, z2)|2zl
1zs

2dm(z) = 0

for all integers l, s not both 0, and hence |ψ(z1, z2)| is the constant 1 almost every-
where on Γ2. The fact that in this case M = ψH2(Γ2) is easy to verify.

In this example, the fringe operator is a faithful representation of the sub-
module because of its particular operator theoretical properties.



HILBERT-SCHMIDT SUBMODULES AND ISSUES OF UNITARY EQUIVALENCE 175

The Mq type submodules are good examples of a different situation. The
following lemma is useful to this end.

LEMMA 3.2. Mª z1M = q1(z1)(H2 ª q2(z2)H2)⊕ q2(z2)H2.

Proof. Based on (1.3), we can write Mq as

Mq = q1H1 ⊗ (H2 ª q2H2)⊕ H1 ⊗ q2H2,

and the lemma follows easily.

EXAMPLE 3.3. Under the decomposition in Lemma 3.2, one readily checks
that for f ∈ H2 ª q2H2, g ∈ q2H2,

F(q1 f + g) = q1S(q2) f + q1(0)D(q2) f + z2g.

Pick any inner function θ(z1) ∈ H1 with θ(0) = q1(0), let M′ = θH2(Γ2) +
q2H2(Γ2) and consider the map U : Mª z1M → M′ ª z1M′ defined by

U(q1 f + g) = θ f + g.

It is easy to see that U is a unitary operator. Moreover, if F′ denotes the fringe
operator for M′, then

F′U(q1 f + g) = F′(θ f + g)

= θS(q2) f + θ(0)D(q2) f + z2g

= θS(q2) f + q1(0)D(q2) f + z2g

= UF(q1 f + g),

which shows that F and F′ are unitarily equivalent. But by Corollary 2.3, M′ is
not equivalent to M when θ is not a scalar multiple of q1. Apparently, the fringe
operator in this example only represents “a half” of the submodule.

4. THE CORE OPERATOR AND UNITARY EQUIVALENCE

If KM(λ, z), λ, z ∈ D2 is the reproducing kernel for a submodule M, then
the core function GM(λ, z) for M is

GM(λ, z) := (1− λ1z1)(1− λ2z2)KM(λ, z),

and the core operator is defined on H2(Γ2) as

CM( f )(z) :=
∫

Γ2

GM(λ, z) f (λ)dm(λ), z ∈ D2,

where dm(λ) is the normalized Lebesgue measure on Γ2. For simplicity, we sup-
press the “M” in our writing of GM and CM when no confusion may result. It is
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shown in [10] that on every submodule M, C is a bounded self-adjoint operator
with ‖C‖ = 1, and moreover,

(4.1) C = 1− R1R∗1 − R2R∗2 + R1R2R∗1R∗2.

EXAMPLE 4.1. When M = H2(Γ2), G(λ, z) = 1, and hence C is the rank 1
operator which evaluates f ∈ H2(Γ2) at (0, 0).

The core operator has other essential connections with the pair (R1, R2) as
well, in particular, with [R∗1, R2] and [R∗1, R1][R∗2, R2]. For simplicity, we let

Σ0 = ‖[R∗1, R1][R∗2, R2]‖2
HS , Σ1 = ‖[R∗1, R2]‖2

HS.

The next theorem from [10] is useful in the sequel.

THEOREM 4.2. For a submodule M,
(i) ‖C‖2

HS = Σ0 + Σ1, and when C is Hilbert-Schmidt, Σ0 − Σ1 = 1;
(ii) trC = 1 when C is trace class.

Since G(λ, z) is the integral kernel of C, C is Hilbert-Schmidt if and only if
G ∈ L2(Γ2 × Γ2) and moreover ‖C‖HS = ‖G‖ (cf. [9]). For an eigenvalue of C,
say µ, we let Eµ denote the corresponding eigenspace. The following lemma is
also from [10].

LEMMA 4.3. For every submodule M, E1 = Mª (z1M + z2M).

In this section, we make a detailed study of the core operator for Mq-type
submodules. First of all, from (1.3) Mq can be decomposed as

Mq = q1(z1)H2(Γ2)⊕ q2(z2)(H2(Γ2)ª q1(z1)H2(Γ2)).

This decomposition leads to an explicit expression of its reproducing kernel
KMq (λ, z), namely,

KMq (λ, z) =
q1(λ1)q1(z1) + q2(λ2)q2(z2)− q1(λ1)q2(λ2)q1(z1)q2(z2)

(1− λ1z1)(1− λ2z2)
,

and consequently,

(4.2) G(λ, z) = q1(λ1)q1(z1) + q2(λ2)q2(z2)− q1(λ1)q2(λ2)q1(z1)q2(z2).

This expression, in particular, shows that C is of rank 3 in this case. For handy
reference, we write down the expression

|G(λ, z)|2 = |q1(λ1)q1(z1)|2 + |q2(λ2)q2(z2)|2 + |q1(λ1)q1(z1)|2|q2(λ2)q2(z2)|2

+ q1(λ1)q1(z1)q2(λ2)q2(z2) + q1(λ1)q1(z1)q2(λ2)q2(z2)

− |q1(λ1)q1(z1)|2(q2(λ2)q2(z2) + q2(λ2)q2(z2))(4.3)

− |q2(λ2)q2(z2)|2(q1(λ1)q1(z1) + q1(λ1)q1(z1)).
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Taking into account the fact qi, i = 1, 2 are inner, one obtains that

‖C‖2
HS =

∫

Γ2×Γ2

|G(λ, z)|2dm(λ)dm(z) = 1 + 2(1− |q1(0)|2)(1− |q2(0)|2).

As one consequence, one sees that ‖C‖2
HS, depending only on q1(0) and q2(0), can

take on any value in (1, 3]. By Lemma 4.3, 1 is an eigenvalue of C, so we assume
η1 and η2 are the other two nonzero eigenvalues of C (for C has rank 3!). So

‖C‖2
HS = 1 + η2

1 + η2
2 .

By Theorem 4.2(ii), 1 + η1 + η2 = 1, and hence

(4.4) η1 := (1− |q1(0)|2)1/2(1− |q2(0)|2)1/2, η2 = −η1.

Since C is self-adjoint, when its kernel is neglected, C is unitarily equivalent to
the diagonal 3× 3 matrix 


1 0 0
0 η1 0
0 0 −η1


 .

The above arguments also show that a rank 3 core operator is determined by its
Hilbert-Schmidt norm. Another interesting consequence of Lemma 4.2(ii) and
Theorem 4.3 is the fact that there is no rank 2 core operator. This fact, as well as
some other examples, make the following question seem interesting.

QUESTION 4.4. Is there a submodule for which rank(C) = 4 ?

In fact, we suspect that if C is of finite rank the number of its positive eigen-
values is the number of its negative eigenvalues plus 1. For a submodule not of
Mq-type, the eigenvalues of its core operator may be very difficult to compute,
and one reason is that it is not clear what analytic properties they reflect.

It was shown in [10] that if M and N are unitarily equivalent submodules,
then CM and CN are unitarily equivalent operators. Since the core operator C for
H2(Γ2) is the rank 1 projection, we readily have the following

COROLLARY 4.5. Mq-type submodules are not unitarily equivalent to H2(Γ2).

However, the unitary equivalence of the core operators does not imply the
unitary equivalence of the submodules.

EXAMPLE 4.6. It is clear from the calculations above (cf. (4.4)) that if M =
q1(z1)H2(Γ2) + q2(z2)H2(Γ2) and M′ = q2(z1)H2(Γ2) + q1(z2)H2(Γ2), then the
core operators on M and M′ are unitarily equivalent. However, if q1(w) is not
a scalar multiple of q2(w), M and M′ are not unitarily equivalent submodules
by Corollary 2.3. On another matter, it was shown in [10] that if M is unitarily
equivalent to a submodule of finite codimension, then the core operator for M has
finite rank. It is natural to ask whether the converse is true. A counterexample is
now easy to come by. For example, by Lemma 2.1 a submodule equivalent to Mq
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must be of the form φMq for some inner function φ. But φMq does not have finite
codimension unless φ = 1. So if q1 is singular, then Mq is not equivalent to any
submodule of finite codimension.

5. HILBERT-SCHMIDT SUBMODULE AND TWO CONJECTURES

Submodules in H2(Γ2) can have extremely complicated structure. In fact,
it is known that for every strict contraction, say A, there are two submodules M
and N with N ⊂ M such that A is unitarily equivalent to the compression of Tz1

to Mª N. This means that the structure of submodules is at least as complicated
as that of a general bounded linear operator on Hilbert space. So seeking out a
manageable class of submodules is very important for our study. The following
definition attempts to identify a candidate.

DEFINITION 5.1. A submodule M ⊂ H2(Γ2) is said to be Hilbert-Schmidt if
its core operator C is Hilbert-Schmidt, or equivalently, its core function G(λ, z) is
in L2(Γ2 × Γ2). In this case, we set

τ(M) :=
∫

Γ2×Γ2

|G(λ, z)|2dm(λ)dm(z).

One nice feature of this definition is that given a Hilbert-Schmidt submod-
ule M, one has naturally associates to it a self-adjoint Hilbert-Schmidt operator C
and a representing L2 function G(λ, z), which is directly connected to the repro-
ducing kernel KM(λ, z). The prominence of being Hilbert-Schmidt (instead of be-
ing trace class or in some Schatten-p class, for p 6= 2) in this definition is suggested
by several observations. For example, it is known through Theorem 0.3 and The-
orem 4.2 that if a submodule M is such that D is not a subset of σc(S1) ∩ σc(S2),
then M is Hilbert-Schmidt. Almost all known examples of submodules, includ-
ing some seemingly pathological ones (cf. [14]), satisfy this condition, and hence
are Hilbert-Schmidt. While on the other hand the core operator fails to be trace
class very easily.

EXAMPLE 5.2. If M = [z1 − z2] is the submodule generated by function
z1 − z2, then one can verify (with some calculations!) that its core operator has
eigenvalues

1,±1
2

,±1
3

,±1
4

, . . . ,

and hence is not trace class.

Clearly, if a submodule M is Hilbert-Schmidt, then by Lemma 4.3, dim(Mª
(z1M + z2M)) < ∞. We have several good reasons to believe the converse is also
true.
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CONJECTURE 5.3. A submodule M is Hilbert-Schmidt if and only if dim(M
ª (z1M + z2M)) < ∞.

A quantitative property of (S1, S2) can be deduced for Hilbert-Schmidt sub-
modules.

THEOREM 5.4. If M is a Hilbert-Schmidt submodule, then [S∗1 , S2] is Hilbert-
Schmidt with

‖[S∗1 , S2]‖2
HS 6 τ(M) + 1

2
.

Proof. By (1.1), [S∗1 , S2] = (I − p)z1 pz2. It is not hard to check that pz2 maps
H2(Γ2)ªM into Mª z2M and (I− p)z1 = 0 on z1M. Therefore, pz2 = [R∗2, R2]pz2
and (I − p)z1 = (I − p)z1[R∗1, R1], and hence

[S∗1 , S2] = (I − p)z1 pz2

= (I − p)z1[R∗1, R1][R∗2, R2]pz2.

This implies
‖[S∗1 , S2]‖2

HS 6 ‖[R∗1, R1][R∗2, R2]‖2
HS,

and hence by Theorem 4.2,

‖[S∗1 , S2]‖2
HS 6 τ(M) + 1

2
.

The equality in Theorem 5.3 is attained for some submodules, for example,
for M = z1z2H2(Γ2) ‖[S∗1 , S2]‖2

HS = τ(M)+1
2 = 1.

Although many unitary invariants can be defined for submodules, it seems
difficult to find a complete one. Since submodule M is completely determined
by its core function G(λ, z), it is natural to attempt to extract a complete unitary
invariant from G(λ, z). Many examples have led us to believe that the function
|G(λ, z)| on Γ2 × Γ2 is likely to be a candidate.

CONJECTURE 5.5. Two submodules M and N are unitarily equivalent if and
only if |GM(λ, z)| = |GN(λ, z)| almost everywhere on Γ2 × Γ2.

If M and N are unitarily equivalent then there exists a φ(z) ∈ L∞(Γ2) with
|φ(z)| = 1 almost everywhere on Γ2 such that N = φM, and it then follows that
GN(λ, z) = φ(λ)GM(λ, z)φ(z) almost everywhere on Γ2 × Γ2. So the necessity
of the conjecture is obvious. Here are two examples to support the sufficiency of
this conjecture.

EXAMPLE 5.6. It is obvious that the core function for H2(Γ2) is 1. In this
example we show that |GM(λ, z)| = 1 implies M is equivalent to H2(Γ2). To see
this fact, we recall that E1 = Mª (z1M + z2M) 6= ∅, so

τ = ‖G‖2 = 1

implies that CM has only one non-zero eigenvalue, namely 1, and its multiplicity
is 1. CM is therefore a rank 1 operator, for which we can write CM = ψ⊗ψ, where
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ψ ∈ E1 with ‖ψ‖ = 1. It follows then GM(λ, z) = ψ(λ)ψ(z). Since |GM(λ, z)| = 1
a.e. on Γ2 × Γ2, ψ is an inner function and one checks that M = ψH2(Γ2).

EXAMPLE 5.7. For a Mq-type submodule, we let Gq(λ, z) denote its core
function. In this example, we show that if |Gp| = |Gq| on Γ2 then Mp = Mq.
We fix λ1, λ2 and z2 in Γ2 such that p2(λ2)p2(z2) 6= 1, q2(λ2)q2(z2) 6= 1, and for
simplicity denote p1(λ1) by α1, q1(λ1) by β1, p2(λ2)p2(z2) by α2 and q2(λ2)q2(z2)
by β2. So by (4.3),

|(α1 − α1α2)p1(z1) + α2| = |(β1 − β1β2)q1(z1) + β2|.
Squaring both sides, we have

|α1 − α1α2|2 + |α2|2 + 2Re((α1 − α1α2)p1(z1))

= |β1 − β1β2|2 + |β2|2 + 2Re((β1 − β1β2)q1(z1)),

which implies Re((α1 − α1α2)p1(z1) − (β1 − β1β2)q1(z1)) is a constant. For sim-
plicity, we let f (z1) = (α1 − α1α2)p1(z1)− (β1 − β1β2)q1(z1). Since f ∈ H1, f + f
being a constant certainly implies f is a constant. Since p1 and q1 both map Γ
into Γ, it is not hard to check that this constant must be 0, which means p1 and q1
differ by a scalar multiple. Similarly, p2 and q2 differ by a scalar multiple, which
shows that Mp = Mq.

6. ARVESON CURVATURE AND POISSON FLOW

The idea of core function and core operator applies to any other reproducing
kernel Hilbert space. For example, a study was made in [18] for the Bergman
space. In [2] and [3], Arveson studied the analytic function space H2

n on the unit
ball Bn ⊂ Cn with the reproducing kernel

K(λ, z) =
1

1− λ1z1 − λ2z2 − · · · − λnzn
, λ, z ∈ Bn.

H2
n is also a module over the polynomial ring C[z] with module action defined by

multiplication of functions. Likewise, the core function for a submodule M ⊂ H2
n

is
G(λ, z) = (1− λ1z1 − · · · − λnzn)KM(λ, z),

and the core operator is defined by

C( f )(z) = 〈 f , G(z, ·)〉,
where 〈−,−〉 is the inner product in H2

n. If Ti stands for multiplication by zi on
M, then it is not difficult to verify that

C = I − T1T∗1 − T2T∗2 − · · · − TnT∗n ,
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which is in fact the square of the defect operator (denoted by ∆) for the n-contraction
(T1, T2, . . . , Tn). Let

T(z) = z1T1 + z2T2 + · · ·+ znTn, z ∈ Bn,

and

F(z) =(1− |z|2)∆(I − T(z)∗)−1(I − T(z))−1∆

=K−1(z, z)∆K∗(z, T)K(z, T)∆.(6.1)

When ∆ is trace class, Arveson shows that for almost every ζ ∈ ∂Bn

K0(ζ) := lim
r→1−1

trF(rζ)

exists, and he defines the curvature by

K(M) =
∫

∂Bn

K0(ζ)dm(ζ),

where dm(ζ) is the Lebesgue measure. The curvature invariant is the primary
focus in [3].

This final section aims to identify a bidisk analogue of Averson’s curva-
ture invariant. Much of the study here can be generalized to the Hardy spaces
over other type of domains. We let kλ(z) denote the normalized Szegö kernel for
H2(Γ2), i.e.,

kλ(z) =

√
(1− |λ1|2)(1− |λ1|2)

(1− λ1z1)(1− λ2z2)
.

So |kλ(z)|2 is in fact the Poisson-Szegö kernel. Here we let T1 and T2 stand for the
Toeplitz operators Tz1 and Tz2 , respectively. So

kλ(T) =
√

(1− |λ1|2)(1− |λ1|2)(1− λ1T1)−1(1− λ2T2)−1.

One sees that for every f ∈ H2(Γ2), kλ(T) f (z) = kλ(z) f (z) and hence

‖kλ(T) f ‖2 =
∫

Γ2

|kλ(z)|2| f (z)|2dm(z),

so by the property of the Poisson-Szegö kernel, for almost every z ∈ Γ2 and λ
converging nontangentially to z,

(6.2) lim
λ→z

‖kλ(T) f ‖2 = | f (z)|2.

In the setting of H2(Γ2), the core operator is in general not a positive operator
and hence does not has a square root, nor is it trace class in general (cf. Exam-
ple 5.2). But for a Hilbert-Schmidt submodule M, there is a good substitute of
(6.1), namely Ck∗λ(T)kλ(T)C, and we define

H(λ) = trCk∗λ(T)kλ(T)C = ‖kλ(T)C‖2
HS , λ ∈ D2.
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THEOREM 6.1. For every Hilbert-Schmidt submodule, H(z) is a 2-harmonic func-
tion with nontangential L1 boundary value on Γ2, and for almost every z ∈ Γ2,

H(z) =
∫

Γ2

|G(λ, z)|2dm(λ).

Proof. If {ηj, f j(z) : > 0} is the sequence of eigenvalues (counting multi-
plicity) and corresponding eigenfunctions of C such that { f j(z) : > 0} form an
orthonormal basis for the range of C, then for every λ ∈ D2

H(λ) = trCk∗λ(T)kλ(T)C

= ∑
j>0
〈Ck∗λ(T)kλ(T)C f j, f j〉

= ∑
j>0

η2
j ‖kλ(T) f j‖2.

By (6.2), H has nontangential boundary value at almost every z ∈ Γ2 (note here
we regard +∞ as a meaningful boundary value), and in fact, H(z) = ∑

j>0
η2

j | f j(z)|2

a.e. on Γ2. Since G is the integral kernel of C,

G(λ, z) = ∑
j>0

ηj f j(λ) f j(z),

therefore,

H(z) =
∫

Γ2

|G(λ, z)|2dm(λ),

for almost every z ∈ Γ2. Since |kλ(z)|2 is the Poisson-Szegö kernel, H is 2-
harmonic (i.e., harmonic in both z1 and z2!) and is in fact the least harmonic
majorant of the function

∑
j>0

η2
j | f j(z)|2 =

∫

Γ2

|G(λ, z)|2dm(λ), z ∈ D2.

Therefore, we have

(6.3) H(0) =
∫

Γ2

H(z)dm(z) = τ(M),

which means that, in the setting of H2(Γ2), a meaningful analogue of Arveson’s
curvature invariant is indeed τ(M)! However, algebraic properties of τ(M) are
mostly unknown at this time. The proof of Theorem 6.1 provides an upper bound
for the eigenfunctions of C.
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COROLLARY 6.2. If M is a Hilbert-Schmidt submodule and ηj, f j are as in the
proof of Theorem 6.1, then

∑
j>0

η2
j | f j(z)|2 6 H(z), z ∈ D2.

So in particular, when G is bounded, ‖ f j‖∞ 6 |ηj|−1‖G‖∞ for every j.
The 2-harmonic function H(z) is easy to calculate for some submodules.

EXAMPLE 6.3. If M = ψH2(Γ2) for some inner function ψ, then H = 1. If
M = Mp, then on Γ2,

H(z) =
∫

Γ2

|G(λ, z)|2dm(λ)

= 3 + 2Re
(

p1(0)p2(0)p1(z1)p2(z2)− p1(0)p1(z1)− p2(0)p2(z2)
)
.

In this case, H′s harmonic extention into D2 bears the same expression, and, not
surprisingly, H(0) = 1 + 2(1− |p1(0)|2)(1− |p2(0)|2). So for two submodules Mp
and Mq, Hp = Hq implies that Cp and Cq are unitarily equivalent. It is not clear
if this is a general fact. However, it is easy to see that the equation Hp = Hq does
not imply the unitary equivalence of Mp with Mq.
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