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ABSTRACT. In this article, we will study the structure of the von Neumann
algebra W∗(F, P) generated by the Thompson group von Neumann algebra
L(F) and a projection P on l2(F). We show that the algebra (not necessarily ∗)
algebraically generated by two generating unitaries of the Thompson group
factor L(F) and the commutant L(F)′ is strong-operator dense in B(H) and
that L∗x0

is contained in the strong-operator closure of the algebra (not ∗) gen-
erated by Lx0 and the commutant L(F)′ where x0 is one of generators in F.
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1. INTRODUCTION AND PRELIMINARIES

The Thompson group F was introduced in the 1960s by Richard J. Thomp-
son in connection with studies in logic. It was used to construct finitely presented
groups with unsolvable word problems. The Thompson group is known as a very
interesting group and it appears in a variety of mathematical areas: word prob-
lems, dynamical system, homotopy theory, group cohomology and analysis.

The Thompson group F can be realized as the group of piecewise linear
homeomorphisms of [0, 1] which, except at finitely many dyadic rational num-
bers, are differentiable with derivatives equal to powers of 2. Furthermore, it has
the presentation

(1.1) F = 〈x0, x1, . . . | x−1
i xnxi = xn+1, 0 6 i < n〉.

From this relation x−1
i xnxi = xn+1, 0 6 i < n, we have xn+1 = x−n

0 x1xn
0 for n > 1,

so that F is generated by x0 and x1.
If F1 is a group defined by 〈A, B | [AB−1, A−1BA], [AB−1, A−2BA2]〉, then

there exists a group isomorphism from F1 to F which maps A to x0 and B to x1.
Hence the Thompson group F is the finite presentation with two generators and
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two relators. In the geometric realization of F, the corresponding homeomor-
phisms xn are defined by

xn(t) =





t if 0 6 t 6 1− 2−n,
t
2 + 1

2 (1− 2−n) if 1− 2−n 6 t 6 1− 2−n−1,
t− 2−n−2 if 1− 2−n−1 6 t 6 1− 2−n−2,
2t− 1 if 1− 2−n−2 6 t 6 1.

See the expository note [3] for a good introduction, more details and historical
remarks to the Thompson group.

Geoghegan conjectured that the Thompson group F does not contain a non-
abelian free subgroup and that F is non-amenable. It was proved by Brin and
Squier ([2]) that F has no free non-abelian subgroups and it is proved in [3] that
F is not elementary amenable. In analysis, the existence of the Thompson group
describes that either there is a non-amenable finitely presented group without a
free subgroup on two generators or there is a finitely presented amenable group
that is not elementary amenable.

Many questions about the Thompson group are still open, in particular it
is unknown whether or not F is amenable. This question is of considerable interest
since F is expected to be a counterexample to the von Neumann’s conjecture for
finitely presented groups. The operator algebra analogue of von Neumann’s con-
jecture on embeddings of non-abelian free groups into non-amenable groups is:
Does any non-hyperfinite II1-factor contain a copy of a free group factor L(F2) on two
generators? This is still open and the Thompson group F is also expected to be a
counterexample of this question.

If B is a subalgebra (not necessarily ∗-subalgebra) of B(H) and B has no
non-trivial common invariant subspace in H, then is B strong-operator dense in
B(H)? This question is well-known as the transitive algebra question. When
Kadison posed the transitive algebra question, he thought that some self-adjoint
maximal abelian subalgebra of B(H) together with some elements not in the sub-
algebra might generate a non-trivial (strong-operator closed) transitive algebra.
However, Arveson proved in [1] that Kadison’s original idea does not work. That
is, if A is a transitive subalgebra of B(H) which contains a self-adjoint maximal
abelian subalgebra, then A is strong-operator dense in B(H). Even though this
question has been considered by many people, it is still open. See the monograph
[8] for a general discussion of the transitive algebra question and related topics.

To find non-trivial transitive algebras, we considered some factorM of type
II1 and some elements from its commutant M′. We proved that two unitaries in
the hyperfinite II1 factor R with the irrational rotation relation and the commu-
tant R′ generate B(H) and that the algebra generated by only two generators of
L(F∞) and the commutant L(F∞)′ is strong-operator dense in B(H) where F∞ is
the free group with countably infinite generators. See [6] and [7] for more details.
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In this paper, we show that W∗(F, Px) is of type II or of type I where W∗(F, Px)
is the von Neumann algebra generated by L(F) and an orthogonal projection Px of
l2(F) onto l2(F(x)) where F(x) is the set of elements in F with their normal forms
starting with x. It is proved that the algebra algebraically (not necessarily ∗) gen-
erated by two unitaries {Lx0 , Lx1} and the commutant L(F)′ is strong-operator
dense in B(H). Furthermore, we can see that each L∗xi

= L−1
xi

is contained in the
strong-operator closure of the algebra (not ∗) generated by Lxi and the commu-
tant L(F)′. Finally, we introduce an order two automorphism α of L(F) which is
not inner and ask a question to see if the Thompson group F is non-amenable. Is
α not approximately inner?

2. SOME FACTORS GENERATED BY A C∗-ALGEBRA AND A PROJECTION

Let G be a discrete group with the identity e and H the Hilbert space l2(G)
with the usual inner product. We shall assume that G is countable, so that H is
separable. For each g ∈ G, let Lg denote the left translation of functions in H by
g−1. Then the map g 7→ Lg is a faithful unitary representation of G on the Hilbert
space H. That is, L : G → B(H) is the left regular representation of G defined
by Lg(χh) = χgh for all g, h ∈ G where {χh : h ∈ G} is the function defined by
χh(h) = 1 and χh(h′) = 0 for all h′ ∈ G \ {h}.

Let L(G) be the von Neumann algebra generated by {Lg : g ∈ G}. Similarly,
let Rg be the right translation by g on H and R(G) the von Neumann algebra
generated by {Rg : g ∈ G}. Then L(G)′ = R(G) and R(G)′ = L(G). The function
χg that is 1 at g and 0 elsewhere is a cyclic trace vector for L(G) (and R(G)). In
general, L(G) and R(G) are finite von Neumann algebras. They are factors (of
type II1) precisely when each conjugacy class in G (other than that of e) is infinite.
In this case we say that G is an infinite conjugacy class (i.c.c.) group.

As a vector, each operator in L(G) can be expressed as an l2 sequence, that is,
if T ∈ L(G), then T = ∑

g∈G
λgLg with ∑

g∈G
|λg|2 < ∞. The subset {g ∈ G : λg 6= 0}

of G is called the support of T and denoted by suppT. If S is a subset of G, we
define TS as the element ∑

g∈S
λgLg which has the support in S . In convention, we

will also denote Lg by g for each element g ∈ G.
Let Γ = G1 ∗ · · · ∗ Gn with n ∈ {2, 3, . . .} ∪ {∞} be a free product of at

least two but at most countably many cyclic groups. In [9], the weak closure
W∗(Γ, PΛ) of C∗(Γ, PΛ) is a type II∞-factor or a type I∞-factor where C∗(Γ, PΛ) is
a C∗-algebra generated by the reduced group C∗-algebra Cr(Γ) and a collection
PΛ of projections onto the l2-spaces over certain subsets of Γ.

Note that every non-trivial element x of the Thompson group F can be ex-
pressed in a unique normal form

x = xi1 · · · xim x−1
jk
· · · x−1

j1
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where 0 6 i1 6 · · · 6 im, jk > · · · > j1 > 0, im 6= jk and if xi and x−1
i appear

in the decomposition of x, then so does xi+1 or x−1
i+1 ([2]). Throughout this pa-

per, F denotes a Thompson group with the presentation (1.1) unless is specified
otherwise.

For x ∈ F \ {e}, let F(x) be the set of all normal forms in F whose initial seg-
ments coincide with x, that is, the set of all normal forms in F starting with x. Let
Px denote the orthogonal projection from l2(F) onto l2(F(x)). Let C∗(F, Px) be the
C∗-subalgebra of B(l2(F)) generated by the reduced group C∗-algebra C∗r (F) and
the projection Px and let W∗(F, Px) be the weak closure of C∗(F, Px) in B(l2(F)),
that is, the von Neumann algebra generated by the group von Neumann algebra
L(F) and Px.

THEOREM 2.1. Let F = 〈x0, x1, . . . | x−1
i xnxi = xn+1, 0 6 i < n〉 be a Thomp-

son group. Then we have

W∗(F, Px) ∼=
{
B(H) if the normal form of x contains some x−1

i ,
type II-factor otherwise.

Proof. In convention, we will denote Lg by g for each element g ∈ G if no
confusion. For any x ∈ F \ {e}, let Mx be the von Neumann algebra W∗(F, Px)
generated by L(F) and the projection Px in B(l2(F)). Hence Mx contains L(F), so
that M′

x ⊂ R(F) = L(F)′. It is not hard to see that Px /∈ L(F). Indeed, if Px ∈ L(F),
we have that

PxRh = RhPx for all h ∈ F.

In particular, we have that PxRx−1 = Rx−1 Px. However, x = PxRx−1(e) = Rx−1 Px(e)
= 0, which is absurd.

First we consider the case where the normal form of x does not contain x−1
i ,

i = 0, 1, . . .. We put x = xp1 · · · xpn , n > 1. Take any element ξ ∈ M′
x, so that

ξ∗ ∈ M′
x. Then we have that Pxξ∗(h) = ξ∗Px(h) for all h ∈ F. If h has the normal

form beginning with x, then

(2.1) Px(hξ) = Pxξ∗(h) = ξ∗Px(h) = ξ∗(h) = hξ.

Otherwise, that is, if h does not have a normal form beginning with x, then we
have that

(2.2) Px(hξ) = Pxξ∗(h) = ξ∗Px(h) = 0.

Note that ξ can be expressed as an l2 sequence since ξ ∈ M′
x ⊂ R(F). Con-

sider g ∈ suppξ. If g has the normal form whose initial segment coincides with
x, then by taking h = e, we obtain that Px(hξ) = Px(ξ) 6= 0. This contradicts (2.2).

If g has the normal form not beginning with x but containing x as some
segment, then we can write g as g1x · · · where g1 does not contain x as a segment
of the normal form. By taking h = g−1

1 , we have that Px(hξ) 6= 0, which also
contradicts to (2.2).
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If g has the normal form not containing x but containing x−1 as some seg-
ment, that is, g = g2x−1 · · · where g2 does not contain x−1, then by taking
h = xg−1

2 we have Px(hξ) 6= hξ, which contradicts to (2.1).
Suppose that g has the normal form not containing x and x−1 as a segment.

We put g = xi1 · · · xim x−1
jk
· · · x−1

j1
. If i1 < pn for some pn ∈ N, by taking h = x,

we get Px(hξ) 6= hξ, which contradicts to (1.1). Thus we have that i1 > pn, and
by considering suppξ∗, we also see that j1 > pn. If i1 = pn for some pn ∈ N,
take h = xp1 · · · xpn−1 where p1 6 · · · 6 pn. Then we have that Px(hξ) 6= 0,
which contradicts to (2.2). Similarly, we also get a contradiction if j1 = pn. From
above argument, we can see that M′

x = RFpn+1 , where Fpn+1 is the subgroup in F
generated by xpn+1, xpn+2, . . .. Therefore, Mx is of type II.

Now we consider the case where the normal form of x contains x−1
i for some

i ∈ N ∪ {0}. That is, suppose that x can be expressed as following:

x = xp1 · · · xpt x
−1
qs · · · x−1

q1
or x−1

qs · · · x−1
q1

, s > 1.

Let g ∈ F be in suppξ. If g has the normal form containing x as a segment, then
we get a contradiction because of the same reason as the above. Suppose that
g has the normal form not containing x. If g has a positive part, that is, g =
xi1 · · · xim x−1

jk
· · · x−1

j1
, m > 1, then by taking h = x, we obtain that Px(hξ) 6= hξ,

which contradicts to (2.1). By considering suppξ∗, we can see that g can not have
a negative part. Hence M′

x = C · I, so that Mx ∼= B(H) is of type I.

3. INVARIANT SUBSPACE AND TRANSITIVE ALGEBRA QUESTION

DEFINITION 3.1. We call a subset (or a subalgebra) X of a II1-factor M tran-
sitive with respect toM ifX has no non-trivial invariant projections inM. Simply,
we say that X is transitive in M.

This definition is similar to the original definition of transitivity (in the fac-
tor of type I∞). Similar definitions can be carried over to factors of type II∞ or III.
In a factor of type II1, there are many non-trivial strong-operator closed transitive
subalgebras. Furthermore, the transitive algebra question could also be consid-
ered for algebras generated by special kinds of operators. If A is a transitive al-
gebra generated by self-adjoint operators, then A is a von Neumann algebra and
must be equal to B(H). What is the situation if A is generated by isometries or
normal operators? In spite of a great deal of interest in this question, no transitive
algebras other than B(H) are yet known.

In this section we are concerned if a transitive subset in a type II1-factor M
together with its commutant M′ (we always assume that H = L2(M, τ) even
though most of our results and definitions do not depend on the choices of repre-
sentations of M) generates a non-trivial strong-operator closed transitive algebra
in B(H).
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THEOREM 3.2. Let x0 and x1 be generators of the Thompson group F. Then the
(non-selfadjoint) algebra generated by {Lx0 , Lx1} together with the commutant L(F)′ is
strong-operator dense in B(H) where H is a Hilbert space l2(F).

Proof. If P ∈ L(F) is a projection invariant under Lxj for j = 0, 1, that is,
PLxj P = Lxj P, then P commutes with Lxj since

‖Lxj P− PLxj‖2
2 = τ((Lxj P− PLxj )

∗(Lxj P− PLxj ))

= τ(P− L∗xj
PLxj P− PL∗xj

PLxj + L∗xj
PLxj )

= 0

where the third equality follows from the property of the trace τ and the equation
PLxj P = Lxj P. Since Lx0 and Lx1 generate L(F) as a von Neumann algebra, Lx0

and Lx1 have no common non-trivial invariant projection in L(F). Hence the set
{Lx0 , Lx1} is transitive in L(F). For each n ∈ N, we define Tn by

Tn =
1
n

n

∑
j=1

L
xj

0xj
1
R

xj
0xj

1
.

Note that a strong-operator closed transitive algebra containing one dimen-
sional projection must be B(H) (see [8]). To prove that the set {Lx0 , Lx1} together
with L(F)′ generates B(H), we only have to show that Tn strongly tends to the
one dimensional projection onto the unit vector χe as n goes to infinity. Since each
L

xj
0xj

1
R

xj
0xj

1
is a unitary operator and Tn is the convex combination of n unitary op-

erators, each Tn is uniformly bounded. It is easy to see that Tnχe = χe.
Now we will show that Tn(χg) tends to zero when n tends to infinity for

every g ∈ F \ {e}. In this case, we have that for g 6= e

Tnχg =
1
n

n

∑
j=1

L
xj

0xj
1
R

xj
0xj

1
χg =

1
n

n

∑
j=1

χ
xj

0xj
1gx−j

1 x−j
0

.

Assume that the following relation holds:

xj
0xj

1gx−j
1 x−j

0 = xk
0xk

1gx−k
1 x−k

0 for j < k,

where 1 6 j, k 6 n. Then we obtain that g = x−j
1 xk−j

0 xk
1gx−k

1 xj−k
0 xj

1, that is, g

commutes with x−j
1 xk−j

0 xk
1. Since x−j

1 xk−j
0 xk

1 = xk−j
0 xk

1x−j
2k−j+1, g commutes with

xk−j
0 xk

1x−j
2k−j+1, j < k.

Expressing g = xi1 · · · xim x−1
jl
· · · x−1

j1
as a normal form, we have that

(xk−j
0 xk

1x−j
2k−j+1)(xi1 · · · xim x−1

jl
· · · x−1

j1
) = (xi1 · · · xim x−1

jl
· · · x−1

j1
)(xk−j

0 xk
1x−j

2k−j+1).

By comparing both sides after changing into a normal form, the above equality
holds only if g is of the form (xk−j

0 xk
1x−j

2k−j+1)
d for some integer d. If xs

0xs
1gx−s

1 x−s
0 =
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xt
0xt

1gx−t
1 x−t

0 for some 1 6 s, t 6 n, we obtain that k = t and j = s. Indeed, if t > s
and if

(xt−s
0 xt

1x−s
2t−s+1)(xk−j

0 xk
1x−j

2k−j+1)
d = (xk−j

0 xk
1x−j

2k−j+1)
d(xt−s

0 xt
1x−s

2t−s+1),

then we get that k = t and j = s by comparing normal forms of both sides.
Therefore, we have that

‖Tnχg‖2 =
∥∥∥ 1

n

n

∑
j=1

χ
xj

0xj
1gx−j

1 x−j
0

∥∥∥
2

6 (n− 2)
1
n2 +

( 2
n

)2
=

n + 2
n2 ,

so that the strong-operator limit of Tn is one dimensional projection onto the sub-
space generated by the unit vector χe. This completes the proof.

PROPOSITION 3.3. Let x0 be one of generators in F. We see that Lx−1
0

is in the
strong operator closure of the algebra generated by Lx0 and the commutant L(F)′.

Proof. To show this, we have only to show that for g1, . . . , gk ∈ F and any
ε > 0, there is an operator T in the algebra algebraically generated by Lx0 and
R(F) such that

‖Tχgp − Lx−1
0

χgp‖ < ε, p = 1, . . . , k.

Choosing sufficiently large m ∈ N such that (k + 20)/ε2 < m, we define an oper-
ator T by

T =
1
m

m

∑
j=1

L
xj

0
(R

g−1
1 xj+1

0 g1
+ · · ·+ R

g−1
k xj+1

0 gk
).

Then T satisfies the above property. Indeed, we have that for each 1 6 p 6 k

‖Tgp − Lx−1
i

gp‖2 =
∥∥∥ 1

m

m

∑
j=1

∑
q 6=l

xj
0gpg−1

q x−(j+1)
i gq

∥∥∥
2

=
〈 1

m

m

∑
j=1

∑
q 6=l

xj
0gpg−1

q x−(j+1)
0 gq,

1
m

m

∑
j′=1

∑
q′ 6=l

xj′
0 gpg−1

q′ x−(j′+1)
0 gq′

〉
.

Assume that

(3.1) xj
0gpg−1

q x−(j+1)
0 gq = xj′

0 gpg−1
q′ x−(j′+1)

0 gq′

for some j, q, j′, q′. If j = j′, then the equation (3.1) becomes g−1
q x−(j+1)

0 gq =

g−1
q′ x−(j+1)

0 gq′ . Thus we get gq′g−1
q x−(j+1)

0 (gq′g−1
q )−1 = x−(j+1)

0 , so that x−(j+1)
0

commutes with gq′g−1
q . By considering the normal form of gq′g−1

q , we see that
gq′g−1

q is of the form xn
0 for some integer n. If q = q′, then

xj
0gpg−1

q x−(j+1)
0 = xj′

0 gpg−1
q x−(j′+1)

0 .

It is easy to see that xj−j′
0 gpg−1

q x−j+j′
0 = gpg−1

q . That is, gpg−1
q commutes with

xj−j′
0 , so that gpg−1

q must be of the form xn
0 for some integer n. Assume that j 6= j′
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and q 6= q′. Then we have xj
0gpg−1

q x−(j+1)
0 gq = xj′

0 gpg−1
q′ x−(j′+1)

0 gq′ , so that

(3.2) xj−j′
0 gpg−1

q x−(j+1)
0 gq = gpg−1

q′ x−(j′+1)
0 gq′ .

By comparing the order of x0 and x−1
0 in the normal forms, we see that the equal-

ity (3.2) cannot hold.
It follows from the argument in preceding paragraph that

‖Tgp − Lx−1
i

gp‖2 =
∥∥∥ 1

m

m

∑
j=1

∑
q 6=l

xj
0gpg−1

q x−(j+1)
i gq

∥∥∥
2

6 1
m2 ((k− 5)m + 16m) < ε2,

which completes the proof.

REMARK 3.4. In [6], we proved that if x is a generator of a non-abelian free
group Fn, n = 2, 3, . . . , ∞, then Lx−1 is in the strong operator closure of the (non-
selfadjoint) algebra generated by Lx and the commutant L(Fn)′. We also got a
similar result for the hyperfinite II1-factor R ([7]). Hence we can ask if, for any
unitary element U in a type II1-factor M, U∗ is always in the strong operator closure of
the (non-selfadjoint) algebra generated by U and the commutant M′.

By Haagerup’s result ([5]), Lx0 + Lx1 has a non-trivial invariant projection in
L(F). Indeed, the Fuglede-Kadison determinant of Lx0 + Lx1 is 1 since

log4(Lx0 + Lx1) = log4(I + Lx1x−1
0

) =
1

2π

2π∫

0

log(1 + eiθ)dθ = 0.

Hence Lx0 + Lx1 has a non-trivial invariant subspace in L(F).
Furthermore, it is known that L(F) is a McDuff factor of type II1, so that

L(F) is singly generated. We suspect if Lx0 + Lx1 is a single generator of L(F), so
that we investigate what is the relative commutant of Lx0 + Lx1 in L(F). Suppose
that T is a self-adjoint element in L(F) such that T(Lx0 + Lx1) = (Lx0 + Lx1)T. We
have TLx0 − Lx1 T = Lx0 T − TLx1 , so that from taking adjoints we get

Lx−1
0

T − TLx−1
1

= TLx−1
0
− Lx−1

1
T.

Hence
TLx0 − Lx1 T = Lx0 T − TLx1 = Lx0(TLx−1

1
− Lx−1

0
T)Lx1

= −Lx0(TLx−1
0
− Lx−1

1
T)Lx1 = −Lx0 Lx−1

1
(Lx1 T − TLx0)Lx−1

0
Lx1

= Lx0 Lx−1
1

(TLx0 − Lx1 T)Lx−1
0

Lx1 ,

so that
Lx−1

1
TLx0 − T = Lx−1

1
Lx0 Lx−1

1
(TLx0 − Lx1 T)Lx−1

0
Lx1

= Lx−1
1

Lx0(Lx−1
1

TLx0 − T)Lx−1
0

Lx1 .
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Therefore, Lx−1
1

TLx0 − T commutes with Lx−1
0

Lx1 and

Lx−1
0

Lx1(Lx−1
1

TLx0 − T) = Lx−1
0

TLx0 − Lx−1
0

Lx1 T

also commutes with Lx−1
0

Lx1 . Moreover, we have

Lx−1
0

TLx0 − Lx−1
0

Lx1 T − (Lx−1
0

TLx0 − Lx−1
0

Lx1 T)∗ = TLx−1
1

Lx0 − Lx−1
0

Lx1 T

commutes with Lx−1
0

Lx1 . Thus T − Lx−1
0

Lx1 TLx−1
0

Lx1 commutes with Lx−1
0

Lx1 , so
that so does

(Lx−1
0

Lx1)
k(T − Lx−1

0
Lx1 TLx−1

0
Lx1)(Lx−1

0
Lx1)

k.

From the above argument, we obtain that
n

∑
k=0

(Lx−1
0

Lx1)
k(T − Lx−1

0
Lx1 TLx−1

0
Lx1)(Lx−1

0
Lx1)

k

= T − (Lx−1
0

Lx1)
n+1Lx−1

0
Lx1 TLx−1

0
Lx1(Lx−1

0
Lx1)

n+1

commutes with Lx−1
0

Lx1 . Since the weak operator limit of

T − (Lx−1
0

Lx1)
n+1Lx−1

0
Lx1 TLx−1

0
Lx1(Lx−1

0
Lx1)

n+1

is T, T commutes with Lx−1
0

Lx1 . Hence T(Lx0 + Lx1) = (Lx0 + Lx1)T = Lx0(I +
Lx−1

0
Lx1)T = Lx0 TLx−1

0
(Lx0 + Lx1). Note that if A(Lx0 + Lx1) = 0 for some A ∈

L(F), then A = 0. We get T = Lx0 TLx−1
0

, which implies that T commutes with
Lx0 . So T also commutes with Lx1 . Therefore, T is a multiple of scalar. Thus
we suspect that Lx0 + Lx1 is a single generator of L(F), that is, Lx0 + Lx1 and
Lx−1

0
+ Lx−1

1
generate L(F) as a von Neumann algebra.

4. ORDER TWO AUTOMORPHISM ON THE THOMPSON GROUP

Let M be a factor of type II1. We denote by Aut(M) (respectively, Inn(M))
the automorphism (respectively, the inner automorphism) group of M with the
topology of strong pointwise convergence in M. Let Inn(M) be the closure of
Inn(M) with respect to the strong pointwise convergence topology, which is
called the approximately inner automorphism group. The following theorem is
the fundamental theorem proved by Connes.

THEOREM 4.1. ([4]) Let M be a II1-factor.
(i)M is hyperfinite if and only if the symmetry α : M⊗M→M⊗M, x⊗ y 7→

y⊗ x, is in Inn(M⊗M).
(ii) A discrete i.c.c. group G is amenable if and only if L(G) is hyperfinite.

We consider an automorphism of the Thompson group factor L(F). In par-
ticular, we will consider an order two automorphism α : L(F) → L(F) since a
symmetry is an automorphism of order two. In order to see if F is amenable or
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non-amenable, we investigate if α is approximately inner. This is motivated by
Connes’ remarkable fundamental theorem.

To get such an automorphism, we first consider the geometric realization
of the Thompson group F. Take an order two automorphism α : F → F which
rotates each element in F by 180◦ with a center (1/2, 1/2). Then α is the automor-
phism of F given by α(x)(t) = 1− x(1− t). We still denote by the same notation
α the automorphism on L(F) induced by α. Then we can see that

α(x0) = x−1
0 and α(x1) = x0x1x−2

0 .

Inductively, we can find that α(xn) = xn
0 x1x−n−1

0 for n > 1. Then such α extends
to an automorphism of L(F)

We claim that α is an outer automorphism of L(F). Indeed, if α ∈ Inn(L(F)),
then there is a unitary u ∈ L(F) such that α(x) = u∗xu for all x ∈ L(F). We can
write u as the sum of normal forms, that is,

u = ∑ λi1···im jk ···j1 xi1 · · · xim x−1
jk
· · · x−1

j1

where ∑ |λi1···im jk ···j1 |2 = 1. Since α(xn
0 ) = u∗xn

0 u, we have ux−n
0 = xn

0 u for all
integer n. Since we have this equality ∑ |λi1···im jk ···j1 |2 = 1, for any ε > 0 we
can take a finite set C of coefficients such that ∑

C
|λi1···im jk ···j1 |2 > 1 − ε. Take a

sufficiently large integer N such that

N > 2 max{|x| : x is a summand of u and the coefficient of x is in C}.

Then we have α(xN
0 ) = u∗xN

0 u, so that xN
0 u = ux−N

0 . This implies that the length
of each summand of u is larger than N/2, which contradicts the choice of the set
C. Therefore, we have that α /∈ Inn(L(F)).

However, we do not know whether or not α is approximately inner. Since
the Thompson group is expected to be non-amenable by many people, we can
ask a question “is α approximately inner or not?" in order to see if the Thompson
group factor F is non-amenable. If we could prove that α is not approximately
inner, then it follows from Theorem 4.1 that the Thompson group factor L(F) will
be not hyperfinite, so that F will be not amenable.
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[9] W. SZYMAŃSKI, S. ZHANG, Type II∞ factors generated by purely infinite simple C∗-
algebras associated with free groups, Proc. Amer. Math. Soc. 128(2000), 813–818.

JAESEONG HEO, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL

UNIVERSITY, TAEJON 305-764, KOREA

E-mail address: hjs@math.cnu.ac.kr

Received February 17, 2003.


