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ABSTRACT. It is known that if AB − BA is quasinilpotent for every A and
B in a multiplicative semigroup S of compact operators on a complex Ba-
nach space, then S is triangularizable. Possible extensions of this result are
examined when AB − BA is replaced with a general noncommutative poly-
nomial in A and B. Easily checkable conditions on polynomials are found
which enable us to reduce the problem to the case of finite groups acting on
finite-dimensional spaces. In particular, all homogeneous noncommutative
polynomials f in two variables with the following property are determined: if
f (A, B) is quasinilpotent for all A and B in S , then S has a chain of invariant
subspaces such that every induced semigroup on a “gap” of the chain is a ma-
trix group that is finite modulo its centre. A triangularizability theorem which
is a direct generalization of the known result on AB − BA mentioned above,
is obtained by replacing the polynomial xy− yx with suitable polynomials of
the form f (xy, yx).
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0. INTRODUCTION

Let f (x, y) be a noncommutative polynomial in two variables with complex
coefficients. Let S be a (multiplicative) semigroup of bounded linear operators on
a Banach space. We say that f is zero on S if f (A, B) = 0 for all pairs A and B in S .
More generally, we say that f is quasinilpotent on S if f (A, B) is quasinilpotent for
all such pairs. (If the Banach space is finite-dimensional, we just say “nilpotent”.)
We are interested in connections between these conditions and reducibility of
semigroups, i.e., existence of common invariant subspaces for all members of the
semigroup.

The simplest and most familiar example is f (x, y) = xy − yx. If this poly-
nomial is zero on a semigroup S of compact operators (in particular, operators
acting on a finite-dimensional space), then S is (simultaneously) triangularizable
(i.e., its lattice of invariant subspaces contains a maximal subspace chain), by a
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consequence of Lomonosov’s results ([5]). A more recent result ([9]) asserts that
it is sufficient to assume merely that xy− yx is quasinilpotent. The proof of this
theorem makes use of Turovskii’s globalization ([14]) of Lomonosov’s result; its
finite-dimensional antecedent was proved much earlier by Guralnick ([3]). The
more general case in which the polynomial f is of degree one in one of the vari-
ables was treated in [7].

We shall consider polynomials that are homogeneous in each of two vari-
ables. Note that if such a polynomial f is quasinilpotent on a semigroup S of
compact operators, then f is quasinilpotent on

CS = {cS : c ∈ C, S ∈ S}
and also on its norm closureCS by continuity of spectrum on compact operators.
One could of course consider polynomials in more than two variables, but in all
instances of interest in this paper this question reduces to the case of two vari-
ables. It is well known (see, for example, pp. 156–158 in [8]) that if the coefficients
of such a polynomial add up to zero, then it is necessarily quasinilpotent on any
triangularizable semigroup of compact operators.

If algebras of operators are considered as opposed to semigroups, then sat-
isfactory answers to some reducibility questions on compact operators are readily
obtainable from the classical theory of polynomial-identity rings. The celebrated
Amitsur-Levitzki Theorem ([1]), for example, states that the algebra Mn(C) of
n× n matrices satisfies

s2n(A1, A2, . . . , A2n) = 0

for all choices of Ai, where sm denotes the so-called standard polynomial of de-
gree m in m noncommutative variables,

sm(x1, . . . , xm) = Σ(sign τ)xτ(1)xτ(2) · · · xτ(m),

with τ ranging over all permutations in m symbols. Replacing xi by xi−1y for
all i one obtains a nontrivial polynomial in two variables that is zero on Mn(C).
There are in fact polynomials f (x, y) of degree n in y to serve the purpose. One
such polynomial is

fn(x, y) = sn+1(y, xy, x2y, . . . , xny)y−1,

and it is known that no polynomial of degree less than n in either variable would
do for Mn. On the other hand, fn−1(x, y) can be shown not to be nilpotent on
Mn, but ( fn−1(x, y))2 is certainly zero on a subalgebra A of Mn if A has a non-
trivial invariant subspace. This gives a criterion for reducibility of an algebra A

of operators on an n-dimensional space. For these and many related results see
the brief and elegant monograph by Formanek ([2]). A standard reference is [12].

The preceding paragraph yields an easy consequence for algebras A of com-
pact operators on an infinite-dimensional space. Recall that if such an A has no
nontrivial invariant subspaces, then its uniform closure A contains all finite-rank
operators. (This is a corollary of Lomonosov’s Lemma; see, e.g. [8]). In particular,
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it has copies of Mn in it for all n; thus no polynomial can be zero, or quasinilpo-
tent, on it. Observe that if a polynomial f is zero on an algebra A, then it is also
zero on its norm closure A. It follows that if f is a polynomial of degree n in x
(or in y) and if A is an algebra of compact operators on which f is quasinilpo-
tent, then A has invariant subspaces. In fact, A has a block triangularization with
“diagonal blocks” of size at most n, i.e., its lattice of invariant subspaces contains
a chain with the property that if M and N are in the chain with M ⊂ N and
no other member between M and N , then M has codimension at most n in N .
These and other related results are discussed in [4].

Returning now to our main theme of polynomials on semigroups, we ob-
serve that it is of course much easier for a polynomial f to be zero on an irre-
ducible semigroup — as opposed to an irreducible algebra. The following exam-
ple is typical, as we shall see later in our discussions of operator groups.

EXAMPLE 0.1. Let p and q be primes, not necessarily distinct. Let A be a
nonscalar diagonal p × p matrix satisfying Aq = I and let B be the cyclic p × p
matrix 



0 0 . . . 0 1
1 0 . . . 0 0
...

...
...

...
0 0 · · · 0 1


 .

It is easy to see that the group G(p, q, A) generated by A and B is irreducible.
Furthermore, for every member T of the group, Tp is diagonal and Tpq is scalar.
This gives rise to many polynomials that are zero on G(p, q, A). Two examples

are xpyp − ypxp and
k
∑

j=0
ajyjxpqyk−j with

k
∑

j=0
aj = 0 for any k.

Abstract groups or semigroups satisfying “semigroup identities” have been
studied extensively. These correspond to the special case of binomials f (x, y) =
w1(x, y) − w2(x, y), where w1 and w2 are words in x and y. By definition, a free
semigroup satisfies no such identity; neither does any faithful representation of
it. But every (faithful representation of a) group on Cn satisfies all the identities
of Mn(C), including fn(x, y), as seen above. For a recent treatment of topics in
semigroup identities see Chapter 5 of [6].

Our main results will be on compact operators (including those acting on
finite-dimensional spaces). Imposing simple conditions on the coefficients of f ,
we shall prove that any irreducible semigroup of compact operators on which f
is quasinilpotent is necessarily a finite group modulo scalars. This will yield re-
ducibility results, e.g., for those semigroups on infinite-dimensional spaces which
contain a nonzero compact operator.

It should be noted here that for reducibility questions, the only homoge-
neous polynomials f of interest are those whose coefficients add up to zero. Oth-
erwise, f (S, S) = cSn for some fixed n, where c 6= 0; thus the condition that f
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is quasinilpotent on S implies that every member of S is quasinilpotent. This
entails triangularizabilty if S consists of compact operators ([14]).

We should also mention that without some compactness assumptions one
cannot go far. For Hilbert spaces, for example, it is not known whether the sim-
plest polynomial xy − yx can be zero on an irreducible semigroup of operators
(even if the semigroup is singly generated: the invariant subspace problem).
For `1, on the other hand, there is a singly generated, irreducible semigroup of
quasinilpotent operators ([10]).

1. A PRELIMINARY LEMMA AND ITS CONSEQUENCES

Let S be an irreducible semigroup of compact operators that either acts on
an infinite-dimensional space or has a nonzero member of rank less than n and
acts on Cn. If a homogeneous polynomial f is quasinilpotent (in particular, if
f is zero) on S , then it turns out to be quasinilpotent (respectively zero) on an
irreducible semigroup of singular 2× 2 matrices. To prove this we need the fol-
lowing lemma, which is convenient to state and prove for finite dimensions first.
It is easy to find all minimal irreducible semigroups of rank 6 1 on C2; the point
of the lemma is that such a “small” semigroup is embedded naturally and spa-
tially in the semigroups under consideration.

In what follows, R+ denotes the set of positive numbers and R+S is the
norm closure of the set {αS : α ∈ R+, S ∈ S}. A family of operators on X is called
irreducible if its members do not share a closed invariant subspace other than {0}
and X . We treat Cn as an inner-product space when convenient.

LEMMA 1.1. Let S be an irreducible semigroup in Mn(C) with S = R+S and
n > 2. Assume that S contains a nonzero operator of rank less than n. Then S contains
a subsemigroup S0 with the following property: S0 has invariant subspaces M1 and M2
with M1 a subspace of codimension two in M2 such that the semigroup induced by S0
on M2/M1 is, up to simultaneous similarity, generated by one of the three pairs (A, B)
below:

(i) A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
;

(ii) A =
(

0 1
0 0

)
, B =

(
1 0
1 0

)
;

(iii) A =
(

1 0
0 0

)
, B =

(
t t

1− t 1− t

)
for some t satisfying t(1− t) 6= 0.

REMARK 1.2. (i) If S contains operators of rank one, this lemma can be
proved very easily; the general case requires more work. We note here that the
pairs in all the three cases above can be put together in one form, e.g.,

A′ =
(

0 1
0 β

)
and B′ =

(
γ 0
1 0

)
,
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from which we obtain the case (a) if β = γ = 0, (b) if β = 0, γ = 1, and a form
simultaneously similar to (c) if 0 6= βγ 6= 1. The forms given above are preferred
not just because they represent structurally different semigroups, but in order to
simplify the calculations that are needed later to test a given polynomial.

(ii) Note that (a) and (b) yield 5-element semigroups, but the semigroup
in (c) is finite if and only if t is a root of unity (in which case the number of its
elements is 4m, where m is the order of t).

(iii) Zassenhaus ([15]) presents analogous forms for minimal nontriangular
semigroups over finite fields, but they are not directly applicable to our questions.

Proof of Lemma 1.1. Let r be the minimal positive rank present in S , so that
1 6 r 6 n − 1. The ideal J of S consisting of all members of rank r or 0 is
irreducible. (See, e.g., Lemma 2.1.10 of [8], p. 29]). Thus we can assume with no
loss of generality that S = J .

(i) Assume first that S contains nonzero idempotents P and Q with PQ =
QP = 0. Letting R1 and R2 denote the ranges of P and Q respectively, we ex-
press the matrices in S relative to the decomposition R1 ⊕ R2 ⊕ R3 (with R3 a
complement of R1 +R2 in Cn). Thus

P =




I 0 0
0 0 0
0 0 0


 , Q =




0 0 0
0 I 0
0 0 0


 .

Since PSQ 6= {0} by irreducibility, there is a nonzero member

N1 =




0 M 0
0 0 0
0 0 0




of PSQ, so that M is invertible by the minimality of r. By passing to TST−1,
where T = I ⊕ M ⊕ I, we can assume M = I. Again, QSP 6= {0}, so we pick a
member N2 of QSP whose rank is r. Since N1N2 is a nonzero member of PSP, its
restriction to R1 is an invertible matrix X, and X−1 ∈ PSP|R1, since PSP|R1 \
{0} is a group. (For a proof, see Lemma 3.1.6 in [8], p. 48.) So S contains the two
matrices

N2 =




0 0 0
X 0 0
0 0 0


 and N3 =




0 0 0
X 0 0
0 0 0







X−1 0 0
0 0 0
0 0 0


 =




0 0 0
I 0 0
0 0 0


 .

Thus the restriction to R1 ⊕R2 of the two matrices N1 and N3 are
(

0 I
0 0

)
and

(
0 0
I 0

)
.

Pick one-dimensional subspaces V1 and V2 of R1 and R2 respectively and con-
sider the restrictions of these two operators to V1 ⊕ V2. It follows that the semi-
group S0 generated by N1 and N3 has a two-dimensional invariant subspace on
which it restricts to the semigroup of basic matrices together with the zero matrix.
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Hence the lemma is proved in this case (with M1 = {0} and M2 = V1 ⊕ V2) and
the generators of the restriction are

A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
.

(ii) Now assume that

(a) for no idempotents P 6= 0 and Q 6= 0 in S , the equations PQ = QP = 0
hold; but

(b) there is a nonzero nilpotent N in S .

We can assume, by taking powers of N, that N2 = 0. Now NS cannot consist
entirely of nilpotents, because otherwise, tr(NS) = 0 for all S ∈ S implies that S
is reducible. (See, e.g., Corollary 2.1.6 of [8], p. 28].) Thus NS contains a nonzero
idempotent P, whose rank is necessarily r. (This can be proved, e.g., by applying
Lemma 3.4.2 of [8], p. 62, to the semigroup generated by a nonnilpotent member
of NS .) Similarly, SN has an idempotent member Q 6= 0. Note that QP = 0,
so that PQ 6= 0 by the assumption (a) above. Denoting the range and nullspace
of an operator T by RT and NT respectively, we observe that RP + RQ is 2r-
dimensional, because QP = 0, so that the subspace M = NP ∩ (RP +RQ) has
dimension r. Since M∩RP = 0, it follows that

RP ⊕M = RP +RQ.

Since V = NP ∩ NQ is a complement of RP + RQ, we have a decomposition
Cn = RP ⊕M⊕V relative to which

P =




I 0 0
0 0 0
0 0 0


 and Q =




0 M 0
0 I 0
0 0 0


 .

Since PQ 6= 0, it has rank r, and so does M. Thus M is invertible. As in the
paragraph (i) above, we can assume by a simultaneous similarity that M = I.
Thus we also get

N = PQ =




0 I 0
0 0 0
0 0 0


 ∈ S .

Now QSP 6= {0} by irreducibility. Hence there is a nonzero operator of the form



T 0 0
T 0 0
0 0 0




in S . Since PSP|RP \ {0} is a group (as in the proof of (i)) containing T, we have
T−1 ∈ PSP|RP. It follows that

R =




T 0 0
T 0 0
0 0 0







T−1 0 0
0 0 0
0 0 0


 =




I 0 0
I 0 0
0 0 0


 ∈ S .
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Next let S0 be the subsemigroup generated by N and R (which includes P =
NR, Q = RN, and 0). Now pick nonzero x in RP and let y = Rx − x. The two-
dimensional span of x and y is invariant under N and R, and the corresponding
restrictions are

A =
(

0 1
0 0

)
and B =

(
1 0
1 0

)
.

Thus the assertion of the lemma is proved with M1 = 0 and M2 the span of x
and y.

(iii) For the last case, we assume that S contains no nilpotents other than
zero. This implies that there are no pairs of nontrivial idempotents P and Q with
PQ = 0, because otherwise, QSP consists of nilpotents; this yields QSP = {0},
which contradicts irreducibility.

Pick an idempotent P in S and express the matrices of S relative to RP ⊕
NP. By irreducibility again, PS(1 − P) 6= {0}. Choose T in S with T = PT
and PT(1 − P) 6= 0. Now PT(1 − P)SP does not consist of nilpotents (because
trPT(1− P)S 6= 0 by irreducibility); so we can pick R with R = RP and PT(1−
P)RP 6= 0. Thus we have

P =
(

I 0
0 0

)
, T =

(
T0 T1
0 0

)
, and R =

(
R0 0
R1 0

)
,

where T1R1 is not nilpotent by construction. Now T0 and R0 are both nonzero, be-
cause S contains no nilpotents other than zero; since they both belong to PSP|RP,
they are invertible and their inverses are in the group PSP|RP, as in the preced-
ing proofs. Now
(

I T−1
0 T1

0 0

)
=

(
T−1

0 0
0 0

) (
T0 T1
0 0

)
and

(
I 0

R1R−1
0 0

)
=

(
R0 0
R1 0

) (
R−1

0 0
0 0

)

belong to S . Since T−1
0 T1R1R−1

0 6= 0, we can rename T1 and R1, so that the two
idempotents

T =
(

I T1
0 0

)
and R =

(
I 0

R1 0

)

are in S with T1R1 6= 0.
We claim that T and R are not simultaneously triangularizable. If they were,

then RT − TR and thus (RT − TR)2 would be nilpotent, but

(RT − TR)2 =
(−T1R1 T1

R1 R1T1

)2

=
(

T1R1(1 + T1R1) 0
0 R1T1(1 + R1T1)

)
,

which would imply that T1R1(1 + T1R1) is nilpotent. Now if this is the case,
then 1 + T1R1 is not invertible, because T1R1 is not nilpotent; since 1 + T1R1 is in
PSP|RP, and since PSP|RP \ {0} is a group, we conclude that 1 + T1R1 = 0. This
means that TR = 0, which was ruled out at the beginning of the proof of (iii).

To complete the proof, we use the well-known (and easily verified) fact that
any two idempotents on Cn can be simultaneously block-triangularized so that
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every diagonal block is either 1 × 1 or 2 × 2. This together with the preceding
paragraph shows that there is at least one irreducible 2× 2 diagonal block in this
block form of the pair (R, T). Thus the pair has invariant subspaces M1 and M2
with M2 ªM1 two-dimensional such that relative to the decomposition

M1 ⊕ (M2 ªM1)⊕ (Cn ªM2)

the matrices of T and R have the forms


T11 T12 T13
0 T22 T23
0 0 T33


 and




R11 R12 R13
0 R22 R23
0 0 R33


 ,

where (T22, R22) is an irreducible pair of 2× 2 idempotents. Letting A = T22 and
B = R22 and observing that both A and B have to have rank one by irreducibility,
we apply a similarity to assume, with no loss, that

A =
(

1 0
0 0

)
, B =

(
α β
γ δ

)
.

Now B2 = B implies α + δ = 1, βγ = α(1− α). Also, βγ 6= 0 by irreducibility. By
applying another simultaneous diagonal similarity, we can assume β = α, so that

B =
(

α α
1− α 1− α

)

with α(1− α) 6= 0.

The proof above yields a little more than the asserted claim. We record the
following obvious consequence of the proof for use in the last section of the paper.

LEMMA 1.3. Let S be as in the preceding lemma. Then the subsemigroup S0 of the
lemma has a restriction of

type (i) if S contains nonzero idempotents P and Q with PQ = QP = 0,
type (ii) if S contains no such pair of idempotents but has a nonzero nilpotent

member,
type (iii) otherwise.

COROLLARY 1.4. Let S = R+S be as in Lemma 1.1 and let r denote the minimal
positive rank in S . If S does not contain nonzero nilpotents (in particular, if 2r > n),
then S contains a subsemigroup that induces an S0 of type (iii).

Proof. The semigroup S0 of type (iii) was obtained assuming no nonzero
nilpotents. In particular, assume that 2r > n, and let N be a nilpotent member
of S . If N were nonzero, we could assume with no loss of generality that N2 =
0. But then the kernel of N, would have dimension at least r, contradicting the
inequality 2r > n.

It is now easy to prove the appropriate version of Lemma 1.1 for compact
operators.
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COROLLARY 1.5. Let S be an irreducible semigroup of compact operators on an
infinite-dimensional Banach space. Then R+S contains a subsemigroup S0 as described
in Lemma 1.1.

Proof. Assume with no loss of generality that S = R+S . Since S is irre-
ducible, Turovskii’s Theorem ([14], or see p. 198 in [8]) implies that S contains
nonquasinilpotent operators. Thus it also contains nonzero finite-rank operators.
(See, e.g., Lemma 7.4.5 of [8], p. 169.) Denoting by r the minimal nonzero rank
of operators in S we observe that operators of rank r or zero in S form an ideal,
which is irreducible. (See, e.g., p. 200 in [8].) The infinite-dimensionality of X
now allows us to pick a pair {A, B} in S of rank r whose ranges are not the same.

Let M be the span of ranges of A and B and note that AS ∪ BS is a sub-
semigroup (in fact a right ideal) of S that leaves M invariant. Furthermore, it is
easy to deduce from the irreducibility of S that the restriction S1 of AS ∪ BS to
M is also irreducible. (Just note that the restriction AS|M must contain a basis
for all linear transformations from M to the range of A; a similar assertion holds
for BS|M.) Now the dimension of M is greater than r, because AX 6= BX . Thus
Lemma 1.1 is applicable to the semigroup S1.

2. THE SIGNIFICANT CASE OF DIMENSION TWO

The results of Section 1 reduce the question of which homogeneous polyno-
mials f are zero on an irreducible semigroup with at least one nonzero, noninvert-
ible member to the special case of semigroups acting on C2. To see this, just note
that f (R, S) = 0 for a pair of operators R, S implies f (R0, S0) = 0 whenever M1
and M2 are simultaneous invariant subspaces for the pair (R, S) with M1 ⊆ M2
and where (R0, S0) is the induced pair of operators on M2/M1. Further econ-
omy can be achieved in determining which polynomials f are quasinilpotent on
such an S : we shall need only check whether the square of f is zero for one of the
three types of 2× 2 matrix semigroups in Lemma 1.1.

For a first reading, the present section can be omitted by taking the view
that it is elementary to verify whether a given polynomial (or its square) vanishes
on some irreducible semigroup of singular 2× 2 matrices. Then one can proceed
to Section 3 and rephrase Definition 3.1 accordingly.

The first lemma of this section gives necessary and sufficient conditions for
f to be zero on each of the three possible cases when S ⊆ M2(C). They are, of
necessity, longer to state than apply to a given polynomial. They become much
shorter in the second lemma, where f is checked for nilpotence (the criterion that
is of greater use to us).

All but one of the conditions to be checked that are given in the following
lemma amount to the assertion that certain coefficients of f sum to zero. The
exception occurs in checking for type (iii) semigroups, and it asserts that a certain
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system of polynomial equations in one variable (obtained from f ) has a suitable
solution.

To shorten the statements of the lemmas somewhat we adopt some simple
notation.

NOTATION 2.1. Let f be any noncommutative polynomial in two variables
x and y.

(i) fij will denote the four unique summands of f in the expression

f = f11 + f12 + f21 + f22,

where f11 is the sum of all monomial terms in f starting with x and ending with
x; f12 the sum of those starting with x and ending with y, and so on.

(ii) f (1,1) denotes the polynomial obtained from f when xk is replaced with
x and yk with y for all k > 2 (i.e., f is reduced by x2 = x and y2 = y). If xk and
yk are replaced with x and 0 for all k > 2, the resulting polynomial is denoted
by f (1,0) (reducing f by x2 = x and y2 = 0). Similarly, we define f (0,1) and f (0,0)

reducing f by {x2 = 0, y2 = y} and {x2 = 0, y2 = 0} respectively.
Observe that

( fij)
(u,v) = ( f (u,v))ij

for all u and v in {0, 1} and all i and j in {1, 2}, so we shall omit these parentheses.

LEMMA 2.2. Let f be a noncommutative polynomial of homogeneous degree r in x
and homogeneous degree s in y, with r > 1 and s > 1.

(i) f is zero on the semigroup generated by

A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)

if and only if:
(a) f (0,0)

i,j (1, 1) = 0 for i, j = 1, 2 (or, equivalently: the coefficients of the two
monomials xyxy · · · and yxyx · · · are zero); and

(b) f (1, 1) = 0; furthermore the coefficients of xrys and ysxr are zero if min(r, s)
= 1.

(ii) f is zero on the semigroup generated by

A =
(

0 1
0 0

)
and B =

(
1 0
1 0

)

if and only if:
(a) f (0,1)

ij (1, 1) = 0 for i, j = 1, 2, and f (1,0)
ij (1, 1) = 0 for i, j = 1, 2; and

(b) the coefficients of xrys and ysxr are zero, and f1i(1, 1) + f2i(1, 1) = 0 for
i = 1, 2, and fi1(1, 1) + fi2(1, 1) = 0 for i = 1, 2.

(iii) f is zero on the semigroup generated by
(

1 0
0 0

)
and B =

(
t t

1− t 1− t

)
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for some t with t 6= t2 if and only if:
(a) the system of eight equations

f (1,1)
ij (ξ, 1) = 0, f (1,1)

ij

(1
ξ

, 1
)

= 0

is satisfied for some ξ = t 6= t2; and
(b) f1i(1, 1) + f2i(1, 1) = 0 for i = 1, 2, and fi1(1, 1) + f (i2(1, 1) = 0 for

i = 1, 2.

Proof. (i) If f is zero on S , then f (A, B) = 0 implies, together with A2 =
B2 = 0 and the fact that AB and BA are linearly independent, that the coefficients
of the two monomials ABAB · · · and BABA · · · are zero, which is the same as (a).
Clearly, f (1, 1) = 0 yields f (A, A) = 0. Now if min(r, s) > 2, then (b) is vacuously
satisfied. Assume r = 1. The equation f (A, AB) = 0, together with A2 = 0 and
(AB)2 = AB, implies that the coefficient of ysx is zero. Similarly, f (A, BA) = 0
implies, since A2 = 0 and (BA)2 = BA, that the coefficient of xys is zero.

If s = 1, we interchange x and y in the argument just given to verify that the
coefficients of yxr and xry are zero, proving (b).

For the converse, assume (a) and (b) hold. The equation f (1, 1) = 0 implies
f (S, S) = 0 for every S in the semigroup

S = {A, B, AB = AB = (AB)2, BA = (BA)2, 0}
generated by A and B. We must show that f (S, T) = 0 for every nonzero and
distinct S and T in S . If S and T are both nilpotent, then (a) implies the desired
equation, because every monomial in f contains either xm or ym with m > 2. If S
and T are both idempotents, then ST = TS = 0 implies f (S, T) = 0. It remains
to verify the case of one nilpotent and one idempotent. By interchanging x and y
we can assume S2 = 0. By a simultaneous similarity, we can also assume S = A,
reducing the required checking to f (A, AB) and f (A, BA). In these instances,
either ST = 0 or TS = 0. But (b) quarantees that every monomial in f with
nonzero coefficient contains both subwords xy and yx, yielding f (S, T) = 0.

(ii) If f is zero on S , then the equations in (a) are easily verified by consid-
ering f (A, B) = 0 and f (B, A) = 0 together with the linear independence of the
nonzero members A, B, AB and BA of S . Applying f to the idempotents

AB =
(

1 0
0 0

)
and BA =

(
0 1
0 1

)

in S , and observing that (BA)(AB) = 0, we conclude that the coefficient of xrys

is zero. Similarly, f (BA, AB) = 0 implies that the coefficient of ysxr is zero.
Applying f to (B, AB) and observing that B(AB) = B and (AB)B = AB,

together with the independence of B and AB, yields

f11(1, 1) + f12(1, 1) = 0 and f21(1, 1) + f22(1, 1) = 0.
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Similarly, the two idempotents B and BA satisfy B(BA) = BA and (BA)B = B,
yielding

f11(1, 1) + f21(1, 1) = 0 and f12(1, 1) + f22(1, 1) = 0.

Thus (b) is satisfied.
To prove the converse, assume (a) and (b). We must prove that f (R, S) = 0

for all pairs from the set. Now as seen above, f (A, B) = f (B, A) = 0 by (a). The
preceding calculations also show that f (R, S) = 0 whenever (R, S) satisfies any
one of the following conditions:

(1) RS = 0;
(2) SR = 0;
(3) R2 = R, S2 = S, RS = S; and
(4) R2 = R, S2 = S, RS = R.

It is easy to see that this exhausts all the remaining pairs (R, S) with R 6= S.
But the equation f (S, S) = 0 for all S in S follows from f (1, 1) = 0, which is a
direct consequence of (b).

(iii) Before the proof in this case, we make a few observations on the semi-
group S0 generated by the two given idempotents A and B. The semigroup CS0
contains the idempotents C = AB/t and D = BA/t. It is easy to see that the
only irreducible ordered pairs of idempotents in CS0 are (A, B), (B, A), (C, D)
and (D, C). Of these, the first two are (simultaneously) similar: just note that
the invertible matrix

T =
(

t t
1− t −t

)

satisfies AT = TB and BT = TA. The second two pairs are also similar with the
same T. But (C, D) is similar to (A, B′), where B′ is obtained from B by replacing
t with 1/t with

R =
(

1 1
0 −1

)

we obtain AR = RC and

B′R =
( 1

t
1
t

1− 1
t 1− 1

t

) (
1 1
0 −1

)
=

(
1 1
0 −1

) (
1 0

1−t
t 0

)
= RD.

Thus unless t = −1, there are two distinct irreducible ordered pairs of idempo-
tents up to similarity, one corresponding to t and another to 1/t. In particular, f
is zero on the semigroup generated by (A, B) if and only if it is zero on the semi-
group generated by (A, B′). (We have of course used the fact that a homogeneous
polynomial is zero on S if and only if it is zero on CS .)

Now assume f is zero on S . It follows from f (A, B) = 0 and the linear
independence of A, B, AB, and BA that f (1,1)

ij (A, B) = 0 for i, j = 1, 2. Note that

ABA = tA. Considering f (1,1)
11 first, we observe that for some scalars αi (which
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are sums of coefficients from the original polynomial f ),

f (1,1)
11 (A, B) = α1 ABA + α2 ABABA + · · · = (α1t + α2t2 + · · · )A

=
(α1t2 + α2t3 + · · · )A

t
=

f 1,1
11 (t, 1)A

t
= 0.

Thus f (1,1)
11 (t, 1) = 0. It follows from the preceding paragraph, using (A, B′) in-

stead of (A, B), that f (1,1)
11 (1/t, 1) = 0 as well. Next we use (AB)2 = tAB to get,

for some βi,

f (1,1)
12 (A, B)= β1 AB + β2 ABABA + · · ·= (β1t + β2t2 · · · )AB

t
=

f (1,1)
12 (t, 1)AB

t
= 0,

which yields f (1,1)
12 (t, 1) = 0. Similarly, we obtain f (1,1)

12 (1/t, 1) = 0.
The proofs for the remaining equations are similar. Thus (a) is proved. To

show (b), note that f (A, C) = 0. Now A and C are idempotents with AC = C and
CA = A. As we saw in the proof of (ii) above, this by itself yields

f11(1, 1) + f21(1, 1) = 0 and f12(1, 1) + f22(1, 1) = 0.

Similarly, applying f to the idempotents A and D = BA/t (which satisfy the
relations AD = A and DA = D) we obtain the other equations in (b).

To verify the converse, assume (a) and (b). The semigroup S is contained
in scalar multiples of the four matrices A, B, C = AB/t, and D = BA/t. Now if
R and S are (not necessarily distinct) idempotents in {A, B, C, D}, then it is easily
seen that every pair (R, S) other than

(A, B), (B, A), (C, D), and (D, C),

satisfies either {RS = S, SR = R} or {RS = R, SR = S}. In all these cases (b)
implies f (R, S) = 0 as in the proof of (ii) above. Letting B′ be as defined above,
we deduce from (a) that f (A, B) = f (A, B′) = 0. But we have shown that each of
the remaining (irreducible) pairs is similar either to (A, B) or to (A, B′).

Note that the condition (a) in (i) automatically holds whenever |r− s| > 2.
The reason for splitting the conditions in each of the three cases into (a) and

(b) in the statement of the preceding lemma is that we only need (a) in determin-
ing which polynomials f with f (1, 1) = 0 are nilpotent on a semigroup, as in the
next lemma.

LEMMA 2.3. Let g be a noncommutative polynomial of homogeneous degrees r
and s in x and y respectively, with g(1, 1) = 0, and let f (x, y) = (g(x, y))2. Let S be
the semigroup generated by one of the pairs in (i), (ii), or (iii) of Lemma 2.2. Then g is
nilpotent on S if and only if the corresponding condition (a) of that lemma holds for f in
each case.

Proof. If g is nilpotent on S , then f is obviously zero on S , because S ⊆
M2(C); this implies (a) for f in each case. (It also implies (b).)
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For the converse, assume (a). It follows, as in the proof of the preceding
lemma that

f (A, B) = f (B, A) = 0

in each case. In case (iii), it also follows that f (AB, BA) = f (BA, AB) = 0 as
in that lemma. Now it is easy to see that all the remaining pairs (R, S) from
{A, B, AB, BA} in all the three cases are reducible, i.e., triangularizable. Since
g(1, 1) = 0, this means that the diagonal entries of g(R, S) in the triangularization
are zero for all these pairs, and hence (g(R, S))2 = 0.

COROLLARY 2.4. Let f be a polynomial homogeneous in x and in y, whose square
does not satisfy (a) in any of the conditions (i), (ii), or (iii) of Lemma 2.2. If f is nilpotent
on a semigroup S of 2× 2 matrices of rank 6 1, then S is reducible.

Proof. This is just Lemma 2.3 together with the observation that if S is ir-
reducible, then Lemma 1.1 is applicable to R+S and the semigroup S0 of that
lemma coincides with one of the minimal doubly generated, semigroups satisfy-
ing (i), (ii), or (iii). Note that the case in which the coefficients of f (and thus those
of f 2) do not add up to zero is trivial as mentioned in the introduction: in that
case every member of S is nilpotent, implying that S is reducible without appeal
to the remaining hypotheses.

3. THE GENERAL CASE OF COMPACT OPERATORS

In view of reductions carried out above, it is convenient to introduce an
adjective for polynomials that are never nilpotent on an irreducible semigroup of
singular 2× 2 matrices.

DEFINITION 3.1. Let f be homogeneous in each of its two variables. We say
that f is rigid if its square does not satisfy the condition (a) in any of the parts (i),
(ii) and (iii) of Lemma 2.2.

It is not hard to check polynomials for rigidity. For example, (xy)m − (yx)m

is rigid for every positive integer m; so is (xy)m + yg(x, y)x for any polynomial g
that is homogeneous of degree m − 1 in each variable. None of the polynomials
fn(x, y) obtained from standard polynomials in Section 0 is rigid for n > 2. A
sufficient condition for rigidity of f is that its coefficients do not add up to zero;
for if they do, then f can only be nilpotent on a semigroup when every member
of the semigroup is nilpotent. A necessary condition for rigidity is that f be of
the same degree in x as in y. (Otherwise f 2 satisfies (a) in part (i) of Lemma 2.2.
We shall come back to this later.)

We start with a simple and immediate consequence of the results above. Re-
call that a family of operators is called triangularizable if the lattice of its invariant
subspaces contains a maximal subspace chain. (If the chain has members M and
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N with M ⊆ N and no member between the two, then M has codimension at
most one in N .)

PROPOSITION 3.2. Let S be a semigroup of operators of rank at most one on a
Banach space. If a rigid polynomial is nilpotent (equivalently quasinilpotent) on S , then
S is triangularizable.

Proof. If M and N are invariant subspaces of S with M ⊆ N , then the
quotient semigroup induced on N/M consists of operators of rank at most one,
and any polynomial that is nilpotent on S is also nilpotent on this quotient. Thus
we need only show that S is reducible. (See the Triangularization Lemma in [8], p.
155.) But this follows from Corollary 1.5 together with the rigidity hypothesis.

It is easy to see that for any given nonrigid polynomial f there is an irre-
ducible semigroup of rank-one operators, acting on any given Banach space, on
which f is nilpotent. In the extreme cases of nonrigidity, a polynomial can be
nilpotent on every pair of operators of rank one on a Banach space:

EXAMPLE 3.3. Let f be any polynomial with f (1, 1) = 0 and let f 2 satisfy all
the three conditions (a) in parts (i), (ii), and (iii) of Lemma 2.2. (The polynomials
xmynx − ynxm+1 for positive integers m and n are easily checked samples.) Then
f is nilpotent on the entire semigroup of operators of rank at most one. The
polynomials xm+1ynx− xynxm+1 are identically zero on this semigroup.

Proof. Let S and T be any operators of rank one. Since f (1, 1) = 0, we
see that f (S, T) is nilpotent if S and T are simultaneously triangularizable. If
they are not, then let M be the two-dimensional span of their ranges and M′ a
complement of M in the underlying Banach space X . Observe that relative to
this decomposition, S and T have matrices of the form

(
S0 ∗
0 0

)
and

(
T0 ∗
0 0

)

and that the pair (S0, T0) is irreducible. Then it is easily verified that, after multi-
plication by scalars, S0 and T0 have the forms

(
0 1
0 β

)
and

(
γ 0
1 0

)
,

which makes (S0, T0) simultaneously similar to the generators (A, B) in one of
the case (i), (ii), or (iii) of Lemma 1.1. (See the remarks preceding the proof of that
lemma.) Hence f (S0, T0) is nilpotent by hypothesis, and so is

f (S, T) =
(

f (S0, T0) ∗
0 0

)
.

In the general case (i.e., when the minimal positive rank present in a semi-
group is greater than one, the hypothesis of rigidity does not necessarily yield



212 HEYDAR RADJAVI

triangularizability, but an appropriate generalization. Recall that if C is a maxi-
mal chain of invariant subspaces for a family F of operators, then C gives rise to
a block triangularization of F whose diagonal blocks are irreducible; these are quo-
tients of F induced on N/M, where M and N are in C with M ⊂ N and no
member of C is properly between M and N . (If there are no such adjacent mem-
bers in C, i.e, if C is a continuous chain, then there are no diagonal blocks, of
course.)

THEOREM 3.4. Let S be a semigroup of compact operators on a Banach space. If
a rigid polynomial is quasinilpotent on S , then S has a block triangularization in which
every diagonal block is contained in some CG, where G is a finite group acting on a
finite-dimensional space.

Proof. By Corollary 1.4, together with the rigidity assumption, S is reducible
if the underlying Banach space is infinite-dimensional. Apply Zorn’s Lemma to
obtain a maximal chain C of invariant subspaces for S . Since quotient algebras
induced on N/M satisfy the hypothesis for all M and N in C with M ⊂ N ,
it follows that if C does not contain a member between M and N , then N/M
is finite-dimensional. For the rest of the proof, we can assume with no loss of
generality that S acts on N/M.

We now have a rigid polynomial f that is nilpotent on an irreducible S ⊆
Mn(C). Not only is g = f n zero on CS , but it turns out to be zero on a larger
semigroup if S is not essentially finite, as we now proceed to show.

Let Φ be a ring automorphism of matrices induced by a (not necessarily
continuous) field automorphism φ of C, i.e., Φ(M) is obtained from M by ap-
plying φ to M entrywise. Since the coefficients of the polynomial g may change
under φ, we cannot conclude that g is zero on Φ(S), but it is certainly zero on the
semigroup Φ−1(CΦ(S)), which contains S . It then follows from the Finiteness
Lemma in [8], p. 75, that S is contained in a semigroup Ŝ ⊆ Mn(C) on which g
is zero, and there is a nonzero idempotent in Ŝ such that the restriction of EŜE
to the range of E is, up to simultaneous similarity, of the form CG with G a finite
unitary group.

All we have to do now is to show that E is the identity matrix. But otherwise,
Lemma 1.1 would be applicable to Ŝ implying that g is zero on an irreducible
semigroup of 2× 2 matrices of rank at most one, which contradicts the rigidity
of f .

Note that the finite group G in the theorem depends on the diagonal block.
A specialization to finite dimensions follows.

COROLLARY 3.5. Let S be a semigroup of operators on a finite-dimensional space,
and assume that a rigid polynomial is nilpotent on S . Then either S has an invariant
subspace or S ⊆ CG, where G is similar to a finite unitary group.

The following result is just a rephrasing of Theorem 3.4.
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COROLLARY 3.6. If an abstract semigroup Σ has a faithful, irreducible represen-
tation as compact operators on which a rigid polynomial is quasinilpotent, then there is a
group G that is finite modulo its centre such that Σ ⊂ G (if Σ does not have a zero) or
Σ ⊆ G ∪ {0} (if it does).

Before giving a further reduction of the finite-group case, we give two more
corollaries of Theorem 3.4.

COROLLARY 3.7. Let S be a semigroup of (not necessarily compact) operators on
a Hilbert space on which a rigid polynomial is quasinilpotent. Assume that S contains a
cyclic, diagonalizable, compact operator K whose eigenvalues either:

(a) have distinct moduli; or
(b) form an algebraically independent set (over Q).

Then S is triangularizable. In particular, S is commutative if it is self-adjoint.

Proof. Let S0 be the ideal of S consisting of compact operators. We first
show that S0 is triangularizable. Since S0 has a block triangularization by Theo-
rem 3.4, we must verify that every diagonal block S1 given by that theorem acts
on a one-dimensional space. Observe that S1 contains a quotient K1 of the com-
pact operator K, and that K1 also satisfies the hypotheses listed for K. Hence
CG cannot contain K1 if G is a finite group, unless its underlying space is one-
dimensional. Since S0 is an ideal of S , we have shown that S is reducible, but
since every quotient of S contains an operator of type K, the triangularizability
of S follows (e.g., by the Triangularization Lemma in [8], p. 155).

If S = S∗, then SK − KS and (SK − KS)∗ are compact and triangularizable
together with all of S . Note that the diagonal blocks of SK and KS (acting on
one-dimensional spaces) are the same; so are those of S∗K∗ and K∗S∗. Thus the
diagonal blocks of (SK − KS)(SK − KS)∗ are all zero, implying that this operator
is quasinilpotent by Ringrose’s theorem ([11] or [8], p. 156). But it is also Her-
mitian. Hence SK = KS for all S ∈ S . Since K is cyclic, this shows that S is
commutative (and is contained in the commutant of K).

The following result generalizes Theorem 3.2 in finite dimensions. It has an
obvious adaptation to the infinite-dimensional case.

COROLLARY 3.8. Let S be a semigroup of operators on an n-dimensional space X
on which a rigid polynomial is nilpotent. If k is the maximal rank of members of S , then
S has a chain

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mm = X
of distinct invariant subspaces, where m > n/k.

Proof. If C is a maximal chain of invariant subspaces for S , each irreducible
quotient semigroup induced by S relative to C that acts on Cj with j > 2 contains
invertible operators by Theorem 3.4 and thus acts on a space of dimension at most
k.
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4. FURTHER REDUCTION OF THE GROUP CASE WITH APPLICATIONS

The main theorem of Section 3 has reduced our general triangularizability
question to this: given a homogeneous polynomial, can we determine whether
or not it is zero (or nilpotent) on some finite irreducible group of n × n matrices
(with n > 2)? The following result shows that we need only check this for very
special finite groups.

LEMMA 4.1. A homogeneous polynomial is zero (resp. nilpotent) on some finite
irreducible unitary group F ⊆ Mn(C) with n > 2 if and only if it is zero (respectively
nilpotent) on a group of the form G(p, q, A) as described in Example 0.1.

Proof. Let G be a minimal nonabelian subgroup of F . Then it follows from
O.J. Schmidt’s theorem ([13]) that G is a solvable group, and thus it contains a
normal (and abelian) subgroup of some prime index p. It is easy to verify that G
has an invariant subspace M such that G|M is generated by a diagonal operator
and a cyclic operator, i.e., αA and βB, where A and B are as in Example 0.1, and
α and β are scalars. (A proof of this is given in [8], p. 85.) We conclude that f m is
zero on F if and only if it is zero on some G(p, q, A).

Unlike the criteria for rigidity of a polynomial, the above condition is not
very easy to check for a general polynomial (in terms of its coefficients, say). For
one thing, the relation between p and q enters the picture: If p = q, for example,
it is not hard to see that G(p, q, A) contains G(p, p, A′), where A′ has the pleasant
feature of a geometric progression, i.e., A′ = diag (1, ω, . . . , ωp−1) with ω a prim-
itive root of 1; checking a polynomial against this smaller group is then not too
complicated. If p divides q− 1, so that the finite field with q elements has a non-
trivial p-th root λ of unity, again a reduction in checking is possible to a subgroup
G(p, q, A′), where

A′ = diag (w, wλ, wλ2
, . . . , wλp−1

).

In the case of an arbitrary pair (p, q), criteria for a general polynomial are quite
cumbersome to state. However, sufficient conditions are possible to obtain in spe-
cial cases, resulting in reducibility and triangularizability theorems. The case of
degree one, where the only rigid polynomials are those of the form axy + byx (and
where xy− yx is the only interesting subcase) is known to give a triangularizabil-
ity theorem ([3],[9]) as mentioned above. We now present a direct generalization
of this result. For an easily applicable special case see Corollary 4.4 below.

THEOREM 4.2. Let f be a rigid polynomial of the form f (x, y) = g(xy, yx) and
assume that g(t, 1) is not divisible by tp − 1 for any prime p. If f is quasinilpotent on a
semigroup of compact operators, then S is triangularizable.

Proof. We must only show that f cannot be nilpotent on any of the finite
groups G(p, q, A). Note, incidentally, that we shall not need the rigidity hypoth-
esis for this part of the proof. Suppose f is nilpotent on some such group and
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let A and B be the generators as in Example 0.1. Observe that for any diagonal
member T of the group, the matrix

f (B−1T, B) = g(B−1TB, T)

is nilpotent. Since B−1TB and T are commuting diagonal matrices, this implies
that g(B−1TB, T) = 0. Now by taking T = B−m ABm for an appropriate integer
m, and multiplying by a scalar, we can assume that the (1, 1) and (2, 2) entries
of the matrix T are 1 and θ respectively, where θ is a primitive q-th root of unity.
The (1, 1) entry of g(B−1TB, T) is then g(θ, 1). We have shown that g(θ, 1) = 0.
Replacing T by Tk, we also deduce that g(B−1TkB, T) = 0, which implies

g(θk, 1) = 0 for all integers k.

This means that the (commutative) polynomial g(x, 1) is divisible by xq− 1, which
contradicts the hypothesis.

The next example concerns a quadratic case of the polynomials discussed
above.

EXAMPLE 4.3. Let f (x, y) = (xy)2 + axy2x + byx2y with a and b in C. If f is
quasinilpotent on a semigroup of compact operators, then S is triangularizable.

Proof. As before, we need only consider the case 1 + a + b = 0. Now let
g(x, y) = x2 + axy + byx, so that f (x, y) = g(xy, yx). Since g(x, 1) = x2 − x is not
divisible by xp − 1 for any prime p, we shall be done if we prove that f is rigid.

Let h = f 2. Since the coefficient of (xy)4 in h is one, h does not satisfy (a) of
(i) in Lemma 2.2. Also, an easy calculation shows that

h(0,1)
11 (1, 1) = a and h(1,0)

22 (1, 1) = b.

Since a and b are not both zero, h fails to satisfy (a) of (ii) in Lemma 2.2. Another
calculation yields

h(1,1)
12 (ξ, 1) = ξ3(ξ + ab− 1) and h(1,1)

21 (ξ, 1) = abξ3.

Now if ab 6= 0, then h(1,1)
21 (ξ, 1) = 0 implies ξ = 0. If ab is zero, then h(1,1)

12 (ξ, 1) = 0
yields ξ(ξ − 1) = 0. Thus in either case, the system of equations in Lemma 2.2
(iii) has no solution other than 0 and 1. We have shown that f is rigid.

The next special case of Theorem 4.2 concerns a family of polynomials that
are automatically rigid. Note that if g(ξ, η) is homogeneous (not necessarily sep-
arately in ξ and η) then g(xy, yx) is homogeneous of the same degree r in each of
the variables x and y.

COROLLARY 4.4. Let g(ξ, η) =
k
∑

j=0
ajξ

jηk−j with a0ak 6= 0, and assume that

g(ξ, 1) is not divisible by ξ p − 1 for any prime p. If g(xy, yx) is quasinilpotent on a
semigroup S of compact operators, then S is triangularizable.
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Proof. We must only verify that f (x, y) = g(xy, yx) is rigid. But if h = f 2, it
is easily seen that h does not satisfy (i)(a) of Lemma 2.2, because the coefficient of
(xy)2k is nonzero. Also, since

h22(x, y) = a0ak(yx)k(xy)k,

we see that h(1,0)
22 (1, 1) = a0ak 6= 0, so (ii)(a) of Lemma 2.2 is not satisfied. Fi-

nally, f (1,1)
22 (t, 1) = a0akt2k−1, which shows that the system in (iii)(a) of the lemma

cannot have a nonzero solution.

The nondivisibility hypothesis above is necessary.

EXAMPLE 4.5. Let g(ξ, η) =
k
∑

j=0
ajξ

jηk−j and assume ξ p − 1 divides g(ξ, 1)

for a prime p. Then g(xy, yx) is zero on G(p, p, A) with

A = diag (1, ω, . . . , ωp−1)

and ω a primitive root of unity.

Proof. A straightforward calculation shows that for any pair S and T in this
group, there exists some power θ = ωm of w such that ST = θTS. Thus

g(ST, TS) = Σaj(ST)j(TS)k−j = Σajθ
j(TS)k = g(θ, 1)(TS)k = 0

by hypothesis.

We conclude this section with another immediate consequence of Theo-
rem 4.2.

COROLLARY 4.6. No semigroup has a nontrivial irreducible representation in
Mn(C) satisfying the identity

(g(xy, yx))n = 0

if g(xy, yx) is a rigid polynomial in x and y and g(t, 1) is not divisible by tp − 1 for any
prime p.

5. ON THE CASE OF NONRIGID POLYNOMIALS

There are nonrigid polynomials (e.g., those of the form g(xy, yx) discussed
in the proof of Theorem 4.2) that cannot be nilpotent on any of the minimal finite
groups G(p, q, A). For the results in this section the full force of rigidity is not
needed.

PROPOSITION 5.1. Let f be any polynomial, homogeneous (of possibly different
degrees) in x and in y. Assume that f is not nilpotent on any group G(p, q, A). If S is
a maximal irreducible semigroup of compact operators on which f is quasinilpotent, then
S contains matrices of rank one.
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Proof. Suppose S did not contain an operator of rank one. By [14], S does
not consist entirely of quasinilpotent operators. Since S = CS by maximality,
it contains nonzero idempotents. Let E be a minimal nonzero idempotent in S .
Then ESE, when restricted to the range of E, is of the form CG, where G is a finite
group. (This can be proved by an argument similar to the one given in the proof
of Theorem 3.4, making use of the Finiteness Lemma ([8], p. 75); note that rigidity
is not needed for this application.) Now since E has rank greater than one, and
since f is nilpotent on G, we obtain a contradiction by applying Lemma 4.1.

COROLLARY 5.2. Let f (x, y) be a homogeneous polynomial of the form g(xy, yx)
such that g(t, 1) is not divisible by tp − 1 for any prime p. Then any maximal irreducible
semigroup of compact operators on which f is quasinilpotent contains rank-one matrices.

Proof. Such a polynomial cannot be nilpotent on any G(p, q, A) by the argu-
ment given in the proof of Theorem 4.2, which did not use the rigidity hypothe-
sis.

The rigidity conditions can be substantially relaxed when we apply the re-
sults above to groups. We need the following lemma. Its proof uses the same
ideas as in that of the Finiteness Lemma ([8], p. 75), but since we require a dis-
tinct conclusion, not obtainable directly from that lemma, we include a proof.
Note, also, that the group in the following result is not required to be irreducible.

LEMMA 5.3. Let G be any group in Mk(C) with k > 2 on which a homogeneous
polynomial f is nilpotent. If G is not contained in CF for some finite group F , then G
can be extended to a semigroup S on which f is nilpotent such that S contains either
a nonzero nilpotent or two nonzero idempotents P and Q with PQ = QP = 0. In
particular, the latter occurs if G is a unitary group.

Proof. By hypothesis, the group

G0 = {A ∈ CG : det A = 1}
is not finite. We can assume, with no loss of generality that G = G0 = G0.

(a) First assume that G is not bounded. Choose Sn ∈ G with ‖Sn‖ → ∞. Pass
to a subsequence to assume Sn/‖Sn‖ is convergent to T, and note that ‖T‖ = 1
and det T = 0. If T is nilpotent, we are done since T ∈ CG. Otherwise, for large
enough n, the matrix A = Sn is, after a similarity, of the form

(
B 0
0 C

)

with ρ(B) > ρ(C), where ρ denotes the spectral radius. Thus the matrices A1 =
A/ρ(B) and A2 = A−1/ρ(C−1) in CG both have spectral radius 1. Since we can
assume with no loss of generality that CG does not contain nonzero nilpotents, it
follows that {An

1} and {An
2} have subsequences converging to nonzero idempo-

tents P and Q respectively. (See, e.g., Lemma 3.4.2 of [8], p. 62.) Since (C/ρ(B))n

and (B−1/ρ(C−1))n both converge to zero, we get PQ = QP = 0.
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(b) To complete the proof of the lemma we now assume that G is compact,
and thus, without loss of generality, a unitary group. Since G is not finite, it does
not have a finite exponent. In particular, the set

Ω =
{

λ

µ
: λ ∈ σ(A), µ ∈ σ(A), A ∈ G

}

is infinite. Thus the set {ωk : ω ∈ Ω} is dense in {z : |z| = 1}. It follows that G
has a member S with eigenvalues λ and µ such that λ/µ is transcendental. The
operator A = S/µ then has 1 and α = λ/µ in its spectrum.

Fix a transcendental number β with |β| < 1. There exists a field automor-
phism φ of C such that φ(α) = β and φ(β) = α. The induced ring automorphism
Φ on Mn(C) then takes CG to G1 ∪ {0}, where G1 is a group. If the minimal and
characteristic polynomials of T ∈ CG are f1 = Σajxj and f2 = Σbjxj respectively,
then those of Φ(T) are φ( f1) = Σφ(aj)xj and φ( f2) = Σφ(bj)xj. In particular,
Φ(T) is diagonalizable for all T in CG. Now B = Φ(A) has eigenvalues φ(1) = 1
and φ(α) = β. Thus powers of B/ρ(B) and B−1/ρ(B−1) have subsequences ap-
proaching idempotents P and Q in the closure of Φ(CG) with PQ = QP = 0. We
deduce, finally, that the semigroup

S = Φ−1(Φ(CG))

which is an extension of G, contains nonzero idempotents E = Φ−1(P) and F =
Φ−1(Q) with EF = FE = 0. Since f is nilpotent on CG, φ( f ) is nilpotent on
Φ(CG) and thus on its closure. Hence φ−1(φ( f )) is nilpotent on S .

COROLLARY 5.4. If in Lemma 5.3, G is also assumed irreducible, then the exten-
sion S contains a nonzero nilpotent.

Proof. We need only observe that if P and Q are idempotents obtained in
the lemma, then the set PSQ consists of nilpotents and is different from {0} by
irreducibility.

In the following result f is only assumed to satisfy the two easily verifiable
conditions of rigidity.

COROLLARY 5.5. Let f be a homogeneous polynomial of the form g(xy, yx) with
g(t, 1) not divisible by tp − 1 for any prime p, and assume that f 2 does not satisfy con-
ditions (i)(a) or (ii)(a) of Lemma 2.2. If G is a group in Mn(C) on which f is nilpotent,
then G is triangularizable.

Proof. Since quotients induced by G on a chain of invariant subspaces are
also groups satisfying the hypothesis, we need only show that G is reducible if
n > 2. Assume not. By Lemma 4.1 and the proof of Theorem 4.2, CG is not of
the form CF with F a finite group. Hence it is not contained in such a CF either.
Then by the preceding corollary, G can be extended to a semigroup S containing
a nonzero nilpotent and with f nilpotent on S .
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It follows from Lemma 1.3 that CS gives rise to one of the types (i) and (ii)
on which f is nilpotent, which is a contradiction.

For compact groups, only a vestige of rigidity conditions needs to be checked
as the next result indicates. If g(ξ, η) is any (jointly) homogeneous polynomial of
degree r in noncommutative variables ξ and η, then g has two “leading coeffi-
cients” g(1, 0) and g(0, 1), i.e., the coefficients of the terms ξr and ηr. Now it is
easily seen that the “one-third” of rigidity corresponding to type (i) in Lemma 2.3,
i.e., the condition that f (x, y) = g(xy, yx) is not nilpotent on that type, is equiva-
lent to the requirement that g(1, 0) and g(0, 1) are not both zero.

COROLLARY 5.6. Let g be any jointly homogeneous polynomial in two variables
such that:

(i) g(1, 0) and g(0, 1) are not both zero; and
(ii) g(t, 1) is not divisible by tp − 1 for any prime p.

If a compact group G has a faithful representation in Cn on which g(xy, yx) is nilpotent,
then G is abelian.

Proof. Assume with no loss that G is a group of unitaries contained in
Mn(C). To prove that G is (simultaneously) diagonalizable, it suffices to show
triangularizability. Since the hypotheses are satisfied by quotients as before, we
need only show that G is reducible if n > 2. But assuming otherwise, we de-
duce from Lemma 5.3 that cG has an extension semigroup containing nonzero
idempotents P and Q with PQ = QP = 0. This leads, via Lemma 1.3, to the con-
clusion that g is nilpotent on a semigroup of type (i) in Lemma 1.1. This in turn
contradicts the hypothesis that g(1, 0) and g(0, 1) are not both zero.
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