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ABSTRACT. We characterize weakly compact operators from H∞ or from A(D)
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INTRODUCTION

The starting point of this paper was to investigate the weak compactness
of composition operators on the space H∞ of bounded analytic functions on the
open unit disk D of the complex plane, and on the disk algebra A(D). The com-
position operators were investigated so far in many ways. The composition op-
erators are very often investigated on Hp spaces (1 < p < ∞), where weak com-
pactness is a trivial problem (because of reflexivity). A very good survey of the
properties of such operators (mainly, on the Hilbert space H2) is contained in the
monograph [8].

In the following, the spaces L1/H1
0 and H∞ are in duality via the bracket

〈h, f 〉 = h ∗ f (0), where h ∈ L1/H1
0 and f ∈ H∞.

The technique that we use to solve the problem for H∞ is based on a char-
acterization of relatively weakly compact subsets of L1/H1 due to J. Chaumat
[2] (see also [3]). Actually the situation is rather general and motivated the first
section, where we characterize dual weakly compact operators in terms of abso-
lutely continuous operator. We easily obtain a similar characterization for weakly
compact operators on the disk algebra (even if we shall not use this in the sequel).
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As a corollary, we obtain both for H∞ and the disk algebra that the mem-
bership of the classical operator ideals is equivalent for composition operators.

Actually, after this work was completed, F. Bayart and D. Li told us that
the results concerning the composition operators were not new: this is due to
R. Aron, P. Galindo and M. Lindström [1] (see also Ülger [9]) for H∞, and to
P. Galindo and M. Lindström [5] for the disk algebra. Nevertheless, our approach
is different and seems to be far more elementary: for instance, we do not use
Carleson’s corona theorem. Moreover, we obtain these results as consequences of
some new (as far as we know) general results on weakly compact operators on
H∞ and on the disk algebra. Note that the works of Aron, Galindo, Lindström
and Ülger concern homomorphisms between algebras of analytic functions.

Now, we precise some definitions of classical classes of operators ideals. We
refer to [4] for general studies of these classes.

DEFINITION 0.1. A bounded operator T from a Banach space X to a Banach
space Y is p-summing if there is a constant C > 0 such that, for any finite family
of vectors (xn) in X,

(
∑
n
‖T(xn)‖p

)1/p
6 C sup

χ∈X∗
‖χ‖=1

(
∑
n
|χ(xn)|p

)1/p
.

We denote πp(T) the smallest constant C satisfying the previous property.

DEFINITION 0.2. A bounded operator T from a Banach space X to a Banach
space Y is γ-summing if there is a constant C > 0 such that, for any finite family
of vectors (xn) in X,

E
∥∥∥ ∑

n
gnT(xn)

∥∥∥ 6 C sup
χ∈X∗
‖χ‖=1

(
∑
n
|χ(xn)|2

)1/2
.

We denote πγ(T) the smallest constant C satisfying the previous property.
We obtain an equivalent notion (as-summing operator) if we replace the fam-

ily of (normalized) Gaussian independent variables (gn)n by a family of Bernoulli
independent variables.

DEFINITION 0.3. A bounded operator T from a Banach space X to a Banach
space Y is nuclear if there exist some vectors yj ∈ Y and some functionals χj ∈ X∗
such that ∑

j
‖χj‖ · ‖yj‖ < ∞ and for every x ∈ X,

T(x) = ∑
j

χj(x)yj.

DEFINITION 0.4. A bounded operator T from a Banach space X to a Banach
space Y is absolutely continuous if one can find p ∈ [1, ∞[, a Banach space Z and a
p-summing operator T̃ from X to Z such that for every ε > 0, there exists Cε > 0
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verifying for every x ∈ X

‖T(x)‖ 6 Cε‖T̃(x)‖+ ε‖x‖.

On p. 311 of [4] this class of operators is introduced as class H(X, Y).

1. ABSOLUTELY CONTINUOUS OPERATORS

The purpose of this section is the study of general weakly compact operators
both on H∞ and the disk algebra. Actually, it turns out that a part of the charac-
terization is not proper to the Hardy spaces. We recall that weak-star–weak conti-
nuity means continuity from a dual space equipped with the weak-star topology,
to a space equipped with the weak topology.

THEOREM 1.1. Let X be a separable Banach space, Y be a Banach space and T :
X∗ → Y be a bounded operator. We suppose that there exists an operator j from X∗ to
some space Z, which is weak-star–weak continuous with the following property: for every
ε > 0, there exists Cε > 0 such that, for every f ∈ X∗,

‖T( f )‖Y 6 Cε‖j( f )‖Z + ε‖ f ‖X∗ .

Then T is a weak-star–weak continuous (in particular T is a weakly compact oper-
ator).

Proof. It is sufficient to prove that for every ξ in the unit ball of Y∗, the
restriction to the unit ball of X of the functional ξ ◦ T is weak-star continuous at
0. The weak-star topology on this unit ball of X∗ is metrizable (by separability
of X). Now, let ( fk)k∈N be a sequence in the unit ball of X∗ weak-star convergent
to 0.

Now, we suppose that for some ξ in the unit ball of Y∗, the sequence ξ ◦
T( fk) does not tend to 0. Then, there is a δ0 > 0, a subsequence ( f jk )k∈N and
a sequence of modulus one complex scalars (αk)k∈N such that for every k, ξ ◦
T(αk f jk ) > δ0. Of course, αk f jk is still star-weakly null in X∗. Hence j(αk f jk ) is
weakly null in Z. By the classical Mazur theorem, this implies that some convex
combination of the αk j( f jk ) converges in norm to 0. By hypothesis, we deduce that
the corresponding convex combination of the T(αk f jk ) converges in norm to 0.
More precisely, there exist sequences pn and qn of integers, with pn 6 qn, and pos-

itive coefficients cn,k, with ∑
pn6k6qn

cn,k = 1, such that lim
n→+∞

∥∥∥ ∑
pn6k6qn

cn,kαk j( f jk )
∥∥∥

Z

= 0.
Now fix ε = δ0/4. There exists a corresponding Cε by hypothesis. For N0

large enough and every n > N0:
∥∥∥ ∑

pn6k6qn

cn,kαk j( f jk )
∥∥∥

Z
6 εC−1

ε . We then have



232 P. LEFÈVRE

∥∥∥
qn

∑
k=pn

cn,kαkT( f jk )
∥∥∥

Y
6 Cε

∥∥∥
qn

∑
k=pn

cn,kαk j( f jk )
∥∥∥

Z
+ ε

∥∥∥
qn

∑
k=pn

cn,kαk f jk

∥∥∥
X

6 ε + ε
qn

∑
k=pn

cn,k‖ f jk‖X 6 2ε.

So that,

δ0 6
qn

∑
k=pn

cn,kαkξ ◦ T( f jk ) 6
∥∥∥

qn

∑
k=pn

cn,kαkT( f jk )
∥∥∥

Y
6 δ0

2
.

This gives a contradiction.

THEOREM 1.2. Let Y be a Banach space and T : H∞ → Y∗ be a bounded operator.
The following assertions are equivalent:

(i) T is weakly compact and weak-star continuous.
(ii) For every ε > 0, there exists δ > 0 such that, for every f ∈ H∞ with ‖ f ‖∞ 6 1

and ‖ f ‖1 6 δ, we have ‖T( f )‖ 6 ε.
(iii) For every p > 1, for every ε > 0, there exists Cε > 0 such that, for every f ∈ H∞,

‖T( f )‖ 6 Cε‖ f ‖p + ε‖ f ‖∞.
(iv) There exists some p > 1 such that: for every ε > 0, there exists Cε > 0 such that,

for every f ∈ H∞, ‖T( f )‖ 6 Cε‖ f ‖p + ε‖ f ‖∞.

Proof. (ii)⇔(iii)⇔(iv). These implications are easy.
(iv)⇒(i). This is given by the previous theorem: let us precise that L1/H1

0 is
separable and here the operator j is nothing but the formal identity from H∞ to
Hp. It is weak-star–weak continuous because Hp′ ⊂ H1, where p′ is the conjugate
exponent of p.

(i)⇒(ii). Note that T = S∗, where S : Y → L1/H1
0. Moreover, by the Gant-

macher theorem S is also weakly compact. Hence the range K of the unit ball of
Y by S is a relatively weakly compact subset of L1/H1

0. Now, we use the charac-
terization of relatively weakly compact subsets of L1/H1, due to J. Chaumat [2]
(the same obviously holds for L1/H1

0 via the conjugate): for every ε > 0, there
exists δ > 0 such that for every f in the unit ball of H∞, with ‖ f ‖1 6 δ, we have
sup
h∈K

|〈h, f 〉| 6 ε. Replacing K by its definition, we compute

sup
h∈K

|〈h, f 〉| = sup
χ∈BY

|〈S(χ), f 〉| = sup
χ∈BY

|〈χ, T( f )〉| = ‖T( f )‖∞.

The conclusion follows.

Our proof relies on the theorem of Chaumat. Actually, this is equivalent:
indeed, if we suppose that every (bounded) operator T : H∞ → Y∗, weakly
compact and weak-star continuous, verifies the conclusion (ii) of the previous
theorem, then we have the result of Chaumat. The key point is to consider the



SOME CHARACTERIZATIONS OF WEAKLY COMPACT OPERATORS 233

operator T from H∞ to `∞ given by T(h) = (h ∗ f j(0))j∈N, where f j is weakly

convergent in L1/H1
0.

Now, we give a similar characterization of weakly compact operators on the
disk algebra. Actually, this is an easy consequence of the proof of a similar result
for C(K) spaces due to Niculescu (see the proof of Theorem 15.2, p. 309 in [4],
which is due to H. Jarchow and A. Pełczyński; see also [6] for generalization to
C∗-algebras) and on the result of J. Chaumat on lifting of weakly compact subsets
of L1/H1

0 . First, we give the following general result.

PROPOSITION 1.3. Let X be subspace of C(K) such that every weakly compact
subset of X∗ = M(K)/X⊥ is the range by the canonical surjection of a weakly compact
subset of M(K). Then every weakly compact operator T from X to some Banach space Y
has the following property: there exists some probability measure µ subject to the property
that for every ε > 0 there exists Cε > 0 such that for every x ∈ X,

‖T(x)‖ 6 Cε‖x‖L1(µ) + ε‖x‖∞.

Proof. We mimic the proof of Theorem 15.2, p. 309 in [4]. Nevertheless, for
sake of completeness, we give the details: W = T∗(BY∗) is a weakly compact
subset of M(K)/X⊥. Hence, by hypothesis, there exists a weakly compact subset
W̃ of M(K) such that π(W̃) = W, where π is the canonical surjection from M(K)
onto M(K)/X⊥. By Theorem 15.1, p. 309 in [4], there exists a positive measure
µ in M(K) such that every ν ∈ W̃ is absolutely continuous with respect to µ and
such that the set of all the corresponding densities is a relatively weakly compact
subset of L1(K, µ).

Now, let us suppose that T does not verify the conclusion of the proposition.
We then have a sequence ( fn) of norm one functions of X and an ε > 0 such that,
for every n,

‖T( fn)‖ > n‖ fn‖L1(K,µ) + ε.

We obviously have that ‖ fn‖L1(K,µ) tends to 0, since ‖T( fn)‖ 6 ‖T‖.
As ‖T( fn)‖ > ε, there exists y∗n in the unit ball of Y∗ such that y∗n(T( fn)) > ε.

Now, we consider T∗(y∗n) ∈ W = π(W̃). We may write T∗(y∗n) = π(gn) for some
gn ∈ L1(K, µ) (identifying an absolutely continuous measure and the density
lying in L1(K, µ)). Moreover, the set of the gn is a relatively weakly subset of
L1(K, µ) and ‖gn‖L1(K,µ) 6 M for some M > 0. We compute

∫

K

fngndµ = 〈 fn, gn〉C(K),M(K) = 〈 fn, π(gn)〉X,X∗

= 〈 fn, T∗(y∗n)〉X,X∗ = 〈T( fn), y∗n〉Y,Y∗ > ε.

Now, since the set of gn is uniformly integrable (as seen by weak com-
pactness in L1(K, µ)), we have lim

µ(B)→0
sup

n

∫
B
|gn|dµ = 0. We fix δ > 0 verifying

δ < ε/4M and the condition: µ(B) 6 δ ⇒ ∫
B
|gm|dµ 6 ε/4, for every m.
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We fix n such that ‖ fn‖L1(K,µ) 6 δ2. Let Bn = {x ∈ K : | fn(x)| > δ}, we then
have µ(Bn) 6 δ. We obtain

ε <
∫

K

fngndµ 6
∫

Bn

|gn|dµ + δ
∫

Bc
n

|gn|dµ 6 ε

4
+ δM 6 ε

2
.

This gives a contradiction.

We deduce

PROPOSITION 1.4. Let T : A(D) → Y be a bounded operator. Then T is weakly
compact if and only if there exists some probability measure µ on the torus, and for every
ε > 0, some Cε > 0 such that for every x ∈ X,

‖T(x)‖ 6 Cε‖x‖L1(µ) + ε‖x‖∞.

Proof. It is sufficient to prove that the disk algebra shares the lifting property
of the previous proposition. Actually, this comes from the Chaumat’s theorem
and the decomposition

A(D)∗ = L1/H1 ⊕1 Msing(T)

where Msing(T) is the space of singular measure, with respect to the Haar mea-
sures on the torus.

2. WEAKLY COMPACT COMPOSITION OPERATORS

DEFINITION 2.1. Let ϕ be a map from D to D. We denote by Hϕ the com-
position operator defined on H∞ by Hϕ( f ) = f ◦ ϕ, for every f ∈ H∞. It is clear
that Hϕ maps H∞ to H∞ if and only if ϕ ∈ H∞.

The following lemma belongs to the folklore. Nevertheless, we prove it for
the sake of completeness.

LEMMA 2.2. On the unit ball of H∞, the weak-star topology σ(H∞, L1/H1
0) is

the topology of uniform convergence on every compact subset of D.

Proof. First we notice that the topologies are metrizable. Indeed L1/H1
0 is

separable, so that the weak star topology is metrizable on the unit ball of the
dual. The fact that the topology of convergence on every compact subset of an
Ω ⊂ C is metrizable, is standard. Now, it is sufficient to prove that the convergent
sequences in both topologies are the same.

Let ( fk)k∈N in the unit ball of H∞, weak-star convergent to f ∈ H∞. Let us
fix a compact subset K of D, we may suppose that K is the closed ball, with center
0 and radius r < 1. First, testing the weak-star convergence with the characters,
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we have that for every n ∈ N, f̂k(n) tends to f̂ (n). We have

sup
|z|6r

| fk(z)− f (z)| = sup
|z|=r

| fk(z)− f (z)| 6 ∑
n∈N

rn| f̂k(n)− f̂ (n)|.

The last term obviously tends to zero when k tends to the infinity. The result
follows.

Now, let ( fk)k∈N in the unit ball of H∞, converging to f ∈ H∞ on every
compact subset of D. We fix h ∈ L1 (so that its class belongs to L1/H1

0) and ε > 0.
There exists some r < 1 such that ‖Pr ∗ h − h‖1 6 ε/4, where Pr is the Poisson
kernel with parameter r. Then

|h ∗ ( fk − f )(0)| 6 ε

4
‖ fk − f ‖∞ + |Pr ∗ h ∗ ( fk − f )(0)|

6 ε

2
+ ‖h‖1 · sup

|z|=r
| fk(z)− f (z)|.

Now, by uniform convergence on the closed ball, with center 0 and radius
r, there exists kε such that for every integer k greater than kε we have

‖h‖1 · sup
|z|=r

| fk(z)− f (z)| 6 ε

2
.

LEMMA 2.3. Let ϕ : D → D, an analytic map. Then Hϕ is the dual operator of

some operator hϕ : L1/H1
0 → L1/H1

0.

Proof. It is sufficient to notice that Hϕ is continuous from H∞, with the
weak-star topology, to H∞, with the weak-star topology. This point is trivial with
the previous lemma.

Now, we characterize the weakly compact composition operators on the
space of bounded analytic functions on D.

THEOREM 2.4. If Hϕ is weakly compact then ‖ϕ‖∞ < 1.

Proof. By the previous lemma Hϕ is weak-star continuous and we can use
Theorem 1.2.

Now we suppose that ‖ϕ‖∞ = 1, so that there exists a sequence zn ∈ D
such that |ϕ(zn)| converges to 1. Extracting a subsequence if necessary, we may
suppose that ϕ(zn) converges to some a, on the torus. Now, we fix ε0 ∈ (0, 1), this
gives δ by the property in Theorem 1.2. We consider f in the disk algebra such
that ‖ f ‖∞ 6 1, ‖ f ‖1 6 δ and f (a) = 1 (a “peak function": for instance, take, with
N sufficiently large, f (z) = 2−N(az + 1)N). Clearly, we have by continuity of f :

‖ f ◦ ϕ‖∞ > lim
n→∞

| f ◦ ϕ(zn)| = | f (a)| = 1.

This contradicts ‖ f ◦ ϕ‖∞ 6 ε0.

REMARK 2.5. As the compactness is well known (and is easy), one could
try to use the Dunford-Pettis property of H∞ to conclude. More precisely, if Hϕ
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is weakly compact then its square is compact by the Dunford-Pettis property for
H∞. We obtain that ‖ϕ ◦ ϕ‖∞ < 1, but this does not imply that ‖ϕ‖∞ < 1 in
general.

Indeed a simple example is given by ϕ(z) = −(1/2)(z + 1).

We have the following consequence.

THEOREM 2.6. Let ϕ : D → D, an analytic map. The following assertions are
equivalent:

(i) ‖ϕ‖∞ < 1.
(ii) Hϕ factorizes through the identity map from H∞ to H1.

(iii) Hϕ is 1-summing.
(iv) Hϕ is p-summing for some finite p > 1.
(v) Hϕ is γ-summing.

(vi) Hϕ is nuclear.
(vii) Hϕ is compact.

(viii) Hϕ is weakly compact.

Proof. The implications (ii)⇒(iii)⇒(iv)⇒(v)⇒(viii), (vi)⇒(iii) and (vi)⇒(vii)
⇒(viii) are obvious or consequences of the general theory of operator ideals.
(viii)⇒(i) is proved by the previous theorem.

(i)⇒(vi). We may suppose that the range of ϕ is included in some ball, with
center 0 and radius r < 1. Let χn ∈ (H∞)∗ be defined by χn(h) = ĥ(n) (for
n ∈ N). Then, we have the nuclear decomposition

Hϕ = ∑
n∈N

χn ϕn, where ∑
n∈N

‖χn‖(H∞)∗ ‖ϕn‖∞ 6 ∑
n∈N

rn < ∞.

(i)⇒(ii). We may suppose that the range of ϕ is included in some ball, with
center 0 and radius r < 1. By the Cauchy formula, for every f ∈ H∞, we have
‖ f ◦ ϕ‖∞ 6 (1− r)−1‖ f ‖1. By density of H∞ in H1, we have the conclusion.

Now, we treat the case of the disk algebra. The results are similar.

DEFINITION 2.7. Let ϕ be a map from D to D. We denote by Aϕ the compo-
sition operator defined on A(D) by Aϕ( f ) = f ◦ ϕ, for every f ∈ A(D). It is clear
that Aϕ maps A(D) to A(D) if and only if ϕ ∈ A(D).

Note that we could have defined Aϕ for any ϕ ∈ A(D) such that ‖ϕ‖∞ 6 1.
Nevertheless, the only case that we “forgot" is when |ϕ(z)| = 1 for some z ∈ D.
In such a case, ϕ is constant by the maximum modulus principle and Aϕ is trivial.

THEOREM 2.8. Let ϕ ∈ A(D), with ϕ(D) ⊂ D. The following assertions are
equivalent:

(i) ‖ϕ‖∞ < 1.
(ii) Aϕ factorizes through the formal identity from H∞ to H1.

(iii) Aϕ is 1-summing.
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(iv) Aϕ is p-summing for some finite p > 1.
(v) Aϕ is γ-summing.

(vi) Aϕ is nuclear.
(vii) Aϕ is compact.

(viii) Aϕ is weakly compact.

Proof. This is the same proof as for H∞, except for the implication (viii)⇒(i).
We suppose that some a ∈ T belongs to ϕ(T). We consider ( fk)k∈N∗ the sequence
in the unit sphere of the disk algebra defined by

fk(z) =
1

k− (k− 1)az
·

As Aϕ is weakly compact, there exists f ∈ A(D) and a subsequence ( fnj)j∈N
such that ( fnj ◦ ϕ)j∈N weakly converges to f : for every z ∈ T, fnj(ϕ(z)) tends to
f (z). Introducing the set E = {z ∈ T : ϕ(z) = a}, we have: for every z ∈ E,
f (z) = 1 and for every z /∈ E, f (z) = 0. As the torus is connected and E is
non empty by hypothesis, we obtain that E = T. Hence ϕ = a. This contradicts
ϕ(D) ⊂ D. We conclude that ϕ(T) ⊂ D.
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