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ABSTRACT. We provide a reasonable sufficient condition for a countable fam-
ily of operators to have a common hypercyclic subspace. We also extend a
result of the third author and A. Montes [22], thereby obtaining a common
hypercyclic subspace for certain countable families of compact perturbations
of operators of norm no larger than one.
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1. INTRODUCTION

It is known that for any separable infinite dimensional Banach space X,
there is a continuous linear operator T : X — X which is hypercyclic; that is,
there is a vector x such that the set {x, Tx,...,T"x,...} is norm dense in X [3],
[5]. Moreover, a simple Baire category argument shows that the set HC(T) of
such so-called hypercyclic vectors x is a dense Gy in X [21], and its linear structure
is well understood: While HC(T) must always contain a dense subspace [9], [20],
it not always contains a closed infinite dimensional one; see [16] for a complete
characterization of when this occurs. (Throughout, when we say that HC(T)
contains a vector space V we mean of course that every x € V except x = 0 is
hypercyclic for T.) Thus, for example it was shown that for the simplest example
of a hypercyclic operator on a Banach space, namely the Rolewicz operator

Bz : 52 — 62, Bz(X1,X2,...) = 2(9(72,)(3,.. .),

HC(B;,) contains an infinite dimensional vector space but that this vector space
cannot be closed ([25], Theorem 3.4).
In recent years, an increasing amount of attention has been paid to the set

N HC(T) of common hypercyclic vectors of a given family F of hypercyclic op-
TeF
erators acting on the same Banach space X. Again, by a Baire category argument

(| HC(T) is a dense subset of X whenever F is countable. Moreover, L. Bernal
TeF
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and C. Moreno [6] showed this set contains a dense vector space if we ask in ad-
dition that the members be hereditarily hypercyclic. Finally S. Grivaux proved
that this additional hypothesis can be suppressed ([17], Proposition 4.3).

Other important recent work is by E. Abakumov and J. Gordon [1], who
showed that

(1 HC(By) #9,

{AeC:|A|>1}

where B, is the Rolewicz operator with 2 replaced by A. In fact it is simple to de-
rive from this that the above intersection contains a dense subspace of ¢,. On the
other hand, in [4], F. Bayart showed that under the assumption of a strong form
of the hypercyclicity condition, uncountable collections of hypercyclic operators
can indeed contain an infinite dimensional closed subspace of common hyper-
cyclic vectors. Similar results were obtained by G. Costakis and M. Sambarino
[13], who also provided a criterion for the existence of common hypercyclic vec-
tors.
Our interest here will be in the following problem:

PROBLEM 1. Let F be a countable family of operators acting on a Banach

space X. When does (| HC(T) contain a closed infinite dimensional subspace?
TeF

In Section 2 we show that a family of operators acting on a common Banach
space may fail to support a common hypercyclic subspace, even if each operator
in the family has a hypercyclic subspace (Example 2.1). Moreover, if the family
is uncountable it may even fail to have single common hypercyclic vector (Ex-
ample 2.2). In Section 3 we extend a result of A. Montes ([25], Theorem 2.1) by
providing a reasonable sufficient condition on a countable family of hypercyclic
operators acting on a Banach space to have a common infinite dimensional hy-
percyclic subspace (Corollary 3.5). We then apply this to extend a result of the
third author and A. Montes [22], thereby obtaining a common hypercyclic sub-
space for certain countable families of operators of the form T = U + K where
|U]| <1and K is compact.

2. TWO EXAMPLES

Example 2.1 was provided to us by an anonymous referee. An operator T
is said to be hereditarily hypercyclic with respect to a given increasing sequence of
positive integers (1) provided { T" }cy is hereditarily universal (cf. Section 3).

EXAMPLE 2.1. Consider the operators Tj := (I + By) @ By and T, := B, &
(I + By) acting on ¢, & ¢, where B, and I are the Rolewicz” and the identity



OPERATORS WITH COMMON HYPERCYCLIC SUBSPACES 253

operator on /, respectively, and B,y is the compact shift on ¢, defined by

l .
te,_q ifn>2,
2.1 Bwen =< " "
@ W” {o ifn=1.

We show next that
(i) Each of Ty, T, has a hypercyclic subspace, and
(ii) T; and T, do not support a common hypercyclic subspace.

To see (i), notice that B; is hereditarily hypercyclic with respect to the en-
tire sequence (n), and I + By is hereditarily hypercyclic with respect to some
sequence (ny) ([22], Lemma 4.5). Hence T; and T, are hereditarily hypercyclic
with respect to some sequence (1) and by Theorem 2.1 of [23] it suffices to verify
that the essential spectrum of T; intersects the closed unit disk (i = 1,2). Now, the
sequence (e, & 0) is orthonormal in ¢, & £5. Also, (Ty —I)(ex ®0) = le, 1 ®0
converges to zero in norm as 1 tends to infinity. This means (cf. XI 2.3 in [12])
that 1 belongs to the essential spectrum of T;. Similarly, 1 belongs to the essential
spectrum of T,. So each of Ty, T, has a hypercyclic subspace.

To show (ii) assume, to the contrary, that there exists a closed, infinite di-
mensional subspace Z of ¢, @ ¢, such that every non-zero vector (x,y) € Z is
hypercyclic for (I + By) @ B, and B, & (I + By ). In particular, both x and y must
be hypercyclic for Bs.

Now, a simple Hilbert space argument shows that (at least) one of the co-
ordinate projections P;(Z) and P,(Z) must contain a closed infinite dimensional
subspace. Indeed, given an orthonormal sequence in Z one can find a subse-
quence such that its sequence (x,) of i-th coordinate projections (i = 1or2) is
linearly independent, bounded, and bounded away from zero. Next one can
find a subsequence (x,,) of (x) that is equivalent as a basic sequence to an or-
thonormal sequence, what gives that P;(Z) contains the closed linear span of the
sequence (X, ).

But this implies that By has a hypercyclic subspace, which is not the case
([25], Theorem 3.4). So T; and T, have no common hypercyclic subspace.

EXAMPLE 2.2. Let X = H be a separable, infinite-dimensional Hilbert space,
and let Sy be the unit sphere of H. Let (w;,) be a sequence of positive scalars sat-
isfying

n 1/;/[ n
lim irklf (H wk+]-) <1 and limsup [ [wj= ce.
j=1 =1

n—oo
]

For each h in Sy, let {e(h), : n > 1} be a basis of H with e(h); = h, and let
Ty, : H — H be the corresponding unilateral weighted backward shift defined by

0 ifn=1,
wpe(h),—q  ifn > 2.

(22) Tye(h)n = {
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So T}, has a hypercyclic subspace ([23], Corollary 2.3). Also, notice that F =
{T}, : h € Sy} satisfies that for all 0 # y in H,

[

That is, F is a family of operators, each one having a hypercyclic subspace, but
such that there is no hypercyclic vector common to all members of F.

Let us also observe that in [1] the authors mention that there is no common
hypercyclic vector for the family of hypercyclic operators {AB @ dB : |A], || > 1}.
It is easy to see that no operator in this family admits a hypercyclic subspace.

3. A SUFFICIENT CONDITION FOR A COMMON HYPERCYCLIC SUBSPACE

We prove the main result in the more general setting of universality. Given
a sequence F = {T;};cy of bounded operators acting on a Banach space X, we
say that a vector x € X is universal for F if {Tx : T € F} is dense in X; the set
of such universal vectors is denoted HC(F).The sequence F is said to be univer-
sal (respectively, densely universal ) provided HC(F) is non-empty (respectively,
dense in X). F is called hereditarily universal (respectively, hereditarily densely uni-
versal) provided {T, }xen is universal (respectively, densely universal) for each
increasing sequence (1) of positive integers. For more on the notion of univer-
sality, see [15] and [19]. A result similar to the following theorem is proved in [10]
for a (single) sequence of universal operators in the context of Fréchet spaces.

THEOREM 3.1. Let T, ; (n,j € N) be bounded operators on a Banach space X,
and let Y be a closed subspace of X of infinite dimension. Suppose that for each n € N
({ Ty, }jen is hereditarily densely universal, and
(ii)]'IL% | Ty jx|| = O for each x in'Y.

Then there exists a closed, infinite dimensional subspace X1 of X such that {T,, jx}cn is
dense in X for each non-zero x € Xy and n € N. That is, X is a universal subspace of
{Tu,}jen for eachn € N.

LEMMA 3.2. Let Ty ; (n,j € N) be bounded operators on a Banach space X such
that for each fixed integer n the family {T,;};>1 is densely universal. Then the set

[e0]
N HC({Ty,j}j>1) of common universal vectors to every sequence {T,;};cn is dense
n=1
in X.
()
Proof. (| HC({T,,;};>1) is a countable intersection of dense G; subsets of
=1

n=
the Baire space X ([18], Satz 1.2.2). 1

Proof of Theorem 3.1. Reducing the subspace Y if necessary, we may assume
it has a normalized Schauder basis (e;);. Let (e;f) be its associated sequence in Y*
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of coordinate functionals, that is, such that e]’f (e;) = (51-,]- fori,j € N. Let A(Y, X)
denote the norm closure (in L(X, Y)) of the subspace

n
{ije;-‘(J neN,x,...,xy € X}
=1

For each T in B(X), define Lt : A(Y,X) — A(Y,X) by LTV := TV. We make
use of the following lemma, whose proof follows that of Theorem 3.1. Analogous
versions of this lemma are proved in [10] for several operator ideals (nuclear,
compact, approximable), in a more general context, by using tensor product tech-
niques developed in [24].

LEMMA 3.3. Suppose {Tj}jen is a sequence of bounded operators on X that is
hereditarily densely universal. Then {Lt, };>1 is a hereditarily densely universal se-
]

quence of operators on A(Y, X), for some increasing sequence (r;) of positive integers.

Now, notice that by (i) and Lemma 3.3, for each fixed n € N there exists a se-
quence of positive integers (7, ;); such that the sequence of operators {Lt,, }jen
T

is hereditarily densely universal on the Banach space A(Y,X). By Lemma 3.2,
there exists V in A(Y, X) that is universal for every sequence {LTMM }jen, and

hence universal for every {Lr, }jen, too (n € N). Multiplying V by a non-

zero scalar if necessary, we may assume that ||V|| < 1. Consider now X; :

(i+V)(Y), wherei : Y — X is the inclusion. For each x € Y, ||(i + V)x|| >
x| = [[Vx|| = 3llx||. So i+ V is bounded below and X; is closed and of infinite
dimension. Notice that {T;, ;Vx};cn is dense in X for every 0 # x € Y and every
n € N. Indeed, given € > 0, let z € X be arbitrary, and let S be a finite rank
operator in A(Y, X) such that Sx = z. By Lemma 3.3, for each n there is some Tn,j
such that ||T,,;V — S| < HTGH In particular, ||T;, ;Vx — Sx|| = ||T,, ;Vx —z| <e.
The theorem now follows from condition (ii). &

Proof of Lemma 3.3. Since {T;}jcy is hereditarily densely universal on X, it
follows from Theorem 2.2 of [7] that there exists a dense subspace X of X, an
increasing sequence of positive integers (r;) and (possibly discontinuous) linear
mappings S; : Xo — X (j € N) such that

3.1) T,,Sj, and (T, $;— 1) — 0

j—o0
pointwise on Xy. Now, consider
Ag:={V e A(Y,X): V(Y) C Xpand dim(V(Y)) < oo}.
Then Ay is dense in A(Y, X), and it follows from (3.1) that
LT,j./LS]vr and [LTrj sz —1] jjoo 0

pointwise on Ag. So {LTr]. }j>1 is hereditarily densely universal on A(Y,X), by
Theorem 2.2 of [7]. 1
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REMARK 3.4. An alternative constructive proof of Theorem 3.1 may be done
with the arguments from Theorem 2.2 in [25]. The proof here is much simpler, and
follows arguments from [10] and [11].

COROLLARY 3.5. Let Tj (I € N) be operators acting on a Banach space X. Sup-
pose there exists a closed, infinite dimensional subspace Y of X, increasing sequences
(111,4)q of positive integers, and scalars c; 5 such that for | € N

({cq Tln & }qen is hereditarily universal, and

s g .
(11)111513o l[c1,4T; " x|| = 0 for each x in Y.

Then there exists a closed, infinite dimensional subspace Xy of X such that {c; , Tln My} geN
is dense in X for each non-zero x € Xy and each | € N. That is, X is a supercyclic sub-
space for T for every | € N. Moreover X; is a hypercyclic subspace for T for every | € N
if the constants c; 4 are equal to one.

In virtue of Theorem 3.1 and Example 2.1 it is natural to ask:

PROBLEM 2. Let Ty, T, be two hereditarily hypercyclic operators acting on
a Banach space X, with a common hypercyclic subspace. Must there exist se-
quences (14)q (I = 1,2) and a closed infinite dimensional subspace Y of X such

that {Tlnl"7 }q is hereditarily universal and Tlnl'q o 0 pointwiseon Y (I = 1,2)?

4. AN APPLICATION TO COUNTABLE FAMILIES OF OPERATORS

We now apply Theorem 3.1 to show the following extension of Theorem 4.1
in [22] to countable families of operators.

THEOREM 4.1. Let F = {T; = U; + K| : | € N} be a family of operators acting
on a common Banach space X. Suppose that for each | € N
() U] €1, K; is compact, and
(i) {Tlnl’q}@l is hereditarily universal, for some increasing sequence (1] ,)g>1 of
positive integers.
Then the operators in F have a common hypercyclic subspace.

To show Theorem 4.1, we make use of the three lemmas below. Lemma 4.2
and Lemma 4.3 follow from slight modifications of a proof by Mazur ([14], p. 38—
39) and of a proof by Bernal-Gonzalez and Calderén-Moreno ([6], Theorem 3.1),
respectively. Lemma 4.4 is proved at the end of this section.

LEMMA 4.2. Let (X,,) be a sequence of closed, finite-codimensional subspaces of
X, with X, 2 X411 (n = 1). Then there exists a normalized basic sequence (e;) such
that e, belongs to X, foralln > 1.

LEMMA 4.3. Let Ty (I,j € N) be bounded operators on a Banach space X such
that for each | € N the family {T;;}; is hereditarily densely universal. Then there exists



OPERATORS WITH COMMON HYPERCYCLIC SUBSPACES 257

a dense manifold Xq of X and, for each | € N, an increasing sequence of positive integers
(71,4)q such that

qh—l;]go HTl,rl/qx” =0 (X S Xo)

Moreover, Xo may be chosen such that each non-zero vector of Xo is universal for {T; ;} j>1,
foreach ] € N.

LEMMA 4.4. Let X and Z be Banach spaces, and let K;,, : X — Z be compact
operators (I,n > 1). Given € > 0, there exist closed linear subspaces X, of finite
codimension in X (n > 1) such that:

(1) X 2 X1
(i) [|K; px|| < €]lx|| (x € Xy, 1 <1< n).

Proof of Theorem 4.1. Notice that for each I € N, {Tlnl’”}@l must be heredi-
tarily densely universal ([8], Lemma 2.5). Hence, by Theorem 3.1 it suffices to get
a closed, infinite dimensional subspace Y of X and subsequences (1) of (1114)4
such that

lim |T/"x| =0 (xe€Y,leN).
q—>00

For each pair of positive integers n and [, let K| ,, be the compact operators de-
fined by T/ = (U; + K;)" = U + K;,,. Apply Lemma 4.4 to get closed, finite
codimensional subspaces X, of X satisfying

(4 1) (a) Xﬂ 2 X?’l-‘rl/
(b)  [IKpux|| < [lx[| (x € Xy, 1 < T < ).

By Lemma 4.2, we can pick a normalized basic sequence (e,) in X such thate, €
Xy (n € N). Let K > 0 be the basis constant of (e,), and pick a decreasing
o
sequence of positive scalars, (€,), such that ¥ €, < 5%. By Lemma 4.3 (applied
n=1
to the operators T ; = Tln "1,j € N), there exist subsequences (1114)q of (n14)q and
a dense subspace Xy of X such that

4.2) Jim, IT x| =0 (x € Xo).
Pick a sequence (zy,) in X such that

(4.3) llen — za|| <

€n
max{||Ti|| : L,i <n}

Notice that |le, — z,|| < €, (n > 1) and, because (e,) is normalized, |ej;(x)| <
2K||x|| (n > 1) for all x in Yy = span{ey,ep,...}, where (e};) is the sequence
of functional coefficients associated with the Schauder basis (e;) of Y. Hence
o o
Y llegllllen —znll < 2K ¥ €, < 1, and so any subsequence (zy,) of (zy) is
n=1 n=1

egluivalent to the corresponding basic sequence (e, ) ([14], p. 46). We let Y :=
span{zy, : k > 1}, where (z,) C (z,) is defined as follows. Let ng := 1. For
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I € N, choose m; 1 in (7;,,) such that HTm“znOH < 90 Also, let nq := = my 1. Next,

for each | € N, since z;,, zy, € Xo, we may apply (4 2) to get m; 5 € (7 4), which
satisfies the following conditions:

{ mpp, > max{2,ny,mq}
IT,

|l < S i=0,1.
Also, let n; := max {ml »}. Continuing this process we get, for each | € N, an

integer m; ¢ in (nl,q)q such that

(4.4) () s > max{s,ns_1,ms_1},
(i) | T2 <% i=0,...,5—1,

where n, = = max {my,} for each r € N. It suffices to show that T, s -, 0
<I< s—

UST

pointwiseon Y (I € N). Let0 # z = Z ajzp; inY, 1 € Nbe fixed, and s > [ be

arbitrary. Then

s—1 00
(4.5) Tz = Y T, sy n + Ea S (2, — en;) + T/ ( szjenj).
.:1 .:S

Notice that [a;| < 2LHZH (1<), where L is the basis constant of (zy, ). By (4.4(ii)),

< Llz || S
1‘:
(4.6) 2| ]| 55 S 3ot 2Oy
]:1

Also, by (4.4(i)) and (4.3)
4.7) | a1 (2, — )| < 21112 Y e

j=s j=s
Finally, since X, C X, and [|U;[| < 1, by (4.1(b))

[ Lo | = ™ + Km0 (L)
J=s j=s

(4.8)

<2HZ¢’¢]‘% (s>1).
j=s

So by (4.5), (4.6), (47), and (4.8), lim | I
rem 4.1 by showing Lemma 4.4.

Proof of Lemma 44. Let n > 1 and € > 0 be fixed. Because each K} : Z* —
X* is compact, there exist x;, 1,..., X/, K in X* such that

z|| = 0. We finish the proof of Theo-

kln
4.9) K, (Bz+) U B(x],,,€)
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S n kl,n
For each positive integer s, let X5 := (| (N () Ker(x}, ;). So each X; is closed
n=1I1=1i=1 "
and of finite codimension in X, and X5 2 X511 (s = 1). Now, let x € X,,, and
let 1 < I < n be fixed. By the Hahn-Banach theorem, there is a functional z* of
norm one such that ||K; ,x|| = (K;,x,z*). By (4.9), we may choose 1 < j < k;,
such that || K}, z* — xl*nj|| < €. Hence, because x isin X, C Ker(xl*nj), 1K) x| =

(x,Kf,z" — x;‘,n,j> <elx].

The proof of Theorem 4.1 is now complete. &
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