OPERATORS WITH COMMON HYPERCYCLIC SUBSPACES

R. ARON, J. BÈS, F. LEÓN and A. PERIS

Communicated by Kenneth R. Davidson

ABSTRACT. We provide a reasonable sufficient condition for a countable family of operators to have a common hypercyclic subspace. We also extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of compact perturbations of operators of norm no larger than one.

KEYWORDS: Hypercyclic vectors, subspaces, and operators; universal families.

MSC (2000): 47A16.

1. INTRODUCTION

It is known that for any separable infinite dimensional Banach space X, there is a continuous linear operator $T : X \to X$ which is hypercyclic; that is, there is a vector x such that the set $\{x, Tx, \ldots, T^nx, \ldots\}$ is norm dense in X [3], [5]. Moreover, a simple Baire category argument shows that the set HC(T) of such so-called *hypercyclic vectors* x is a dense G_{δ} in X [21], and its linear structure is well understood: While HC(T) must always contain a dense subspace [9], [20], it not always contains a *closed* infinite dimensional one; see [16] for a complete characterization of when this occurs. (Throughout, when we say that HC(T) contains a vector space V we mean of course that every $x \in V$ except x = 0 is hypercyclic for T.) Thus, for example it was shown that for the simplest example of a hypercyclic operator on a Banach space, namely the Rolewicz operator

$$B_2: \ell_2 \to \ell_2, B_2(x_1, x_2, \ldots) = 2(x_2, x_3, \ldots),$$

 $HC(B_2)$ contains an infinite dimensional vector space but that this vector space cannot be closed ([25], Theorem 3.4).

In recent years, an increasing amount of attention has been paid to the set $\bigcap_{T \in \mathcal{F}} HC(T)$ of common hypercyclic vectors of a given family \mathcal{F} of hypercyclic operators acting on the same Banach space *X*. Again, by a Baire category argument $\bigcap_{T \in \mathcal{F}} HC(T)$ is a dense subset of *X* whenever \mathcal{F} is countable. Moreover, L. Bernal

and C. Moreno [6] showed this set contains a dense vector space if we ask in addition that the members be hereditarily hypercyclic. Finally S. Grivaux proved that this additional hypothesis can be suppressed ([17], Proposition 4.3).

Other important recent work is by E. Abakumov and J. Gordon [1], who showed that

$$\bigcap_{\{\lambda \in \mathbb{C}: |\lambda| > 1\}} HC(B_{\lambda}) \neq \emptyset,$$

where B_{λ} is the Rolewicz operator with 2 replaced by λ . In fact it is simple to derive from this that the above intersection contains a dense subspace of ℓ_2 . On the other hand, in [4], F. Bayart showed that under the assumption of a strong form of the hypercyclicity condition, uncountable collections of hypercyclic operators can indeed contain an infinite dimensional *closed* subspace of common hypercyclic vectors. Similar results were obtained by G. Costakis and M. Sambarino [13], who also provided a criterion for the existence of common hypercyclic vectors.

Our interest here will be in the following problem:

PROBLEM 1. Let \mathcal{F} be a countable family of operators acting on a Banach space *X*. When does $\bigcap_{T \in \mathcal{F}} HC(T)$ contain a closed infinite dimensional subspace?

In Section 2 we show that a family of operators acting on a common Banach space may fail to support a common hypercyclic subspace, even if each operator in the family has a hypercyclic subspace (Example 2.1). Moreover, if the family is uncountable it may even fail to have single common hypercyclic *vector* (Example 2.2). In Section 3 we extend a result of A. Montes ([25], Theorem 2.1) by providing a reasonable sufficient condition on a countable family of hypercyclic operators acting on a Banach space to have a common infinite dimensional hypercyclic subspace (Corollary 3.5). We then apply this to extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of operators of the form T = U + K where $||U|| \leq 1$ and *K* is compact.

2. TWO EXAMPLES

Example 2.1 was provided to us by an anonymous referee. An operator *T* is said to be *hereditarily hypercyclic* with respect to a given increasing sequence of positive integers (n_k) provided $\{T^{n_k}\}_{k \in \mathbb{N}}$ is hereditarily universal (cf. Section 3).

EXAMPLE 2.1. Consider the operators $T_1 := (I + B_w) \oplus B_2$ and $T_2 := B_2 \oplus (I + B_w)$ acting on $\ell_2 \oplus \ell_2$, where B_2 and I are the Rolewicz' and the identity

operator on ℓ_2 , respectively, and B_w is the compact shift on ℓ_2 defined by

(2.1)
$$B_{w}e_{n} := \begin{cases} \frac{1}{n}e_{n-1} & \text{if } n \ge 2, \\ 0 & \text{if } n = 1. \end{cases}$$

We show next that

(i) Each of T_1 , T_2 has a hypercyclic subspace, and

(ii) T_1 and T_2 do not support a common hypercyclic subspace.

To see (i), notice that B_2 is hereditarily hypercyclic with respect to the entire sequence (n), and $I + B_w$ is hereditarily hypercyclic with respect to some sequence (n_k) ([22], Lemma 4.5). Hence T_1 and T_2 are hereditarily hypercyclic with respect to some sequence (n_k) and by Theorem 2.1 of [23] it suffices to verify that the essential spectrum of T_i intersects the closed unit disk (i = 1, 2). Now, the sequence $(e_n \oplus 0)$ is orthonormal in $\ell_2 \oplus \ell_2$. Also, $(T_1 - I)(e_n \oplus 0) = \frac{1}{n}e_{n-1} \oplus 0$ converges to zero in norm as n tends to infinity. This means (cf. XI 2.3 in [12]) that 1 belongs to the essential spectrum of T_1 . Similarly, 1 belongs to the essential spectrum of T_2 . So each of T_1 , T_2 has a hypercyclic subspace.

To show (ii) assume, to the contrary, that there exists a closed, infinite dimensional subspace *Z* of $\ell_2 \oplus \ell_2$ such that every non-zero vector $(x, y) \in Z$ is hypercyclic for $(I + B_w) \oplus B_2$ and $B_2 \oplus (I + B_w)$. In particular, both *x* and *y* must be hypercyclic for B_2 .

Now, a simple Hilbert space argument shows that (at least) one of the coordinate projections $P_1(Z)$ and $P_2(Z)$ must contain a closed infinite dimensional subspace. Indeed, given an orthonormal sequence in Z one can find a subsequence such that its sequence (x_n) of *i*-th coordinate projections (i = 1 or 2) is linearly independent, bounded, and bounded away from zero. Next one can find a subsequence (x_{n_k}) of (x_n) that is equivalent as a basic sequence to an orthonormal sequence, what gives that $P_i(Z)$ contains the closed linear span of the sequence (x_{n_k}) .

But this implies that B_2 has a hypercyclic subspace, which is not the case ([25], Theorem 3.4). So T_1 and T_2 have no common hypercyclic subspace.

EXAMPLE 2.2. Let X = H be a separable, infinite-dimensional Hilbert space, and let S_H be the unit sphere of H. Let (w_n) be a sequence of positive scalars satisfying

$$\lim_{n\to\infty}\inf_k\Big(\prod_{j=1}^n w_{k+j}\Big)^{1/n}\leqslant 1\quad\text{and}\quad\limsup\prod_{j=1}^n w_j=\infty.$$

For each *h* in S_H , let $\{e(h)_n : n \ge 1\}$ be a basis of *H* with $e(h)_1 = h$, and let $T_h : H \to H$ be the corresponding unilateral weighted backward shift defined by

(2.2)
$$T_{h}e(h)_{n} = \begin{cases} 0 & \text{if } n = 1, \\ w_{n}e(h)_{n-1} & \text{if } n \ge 2. \end{cases}$$

So T_h has a hypercyclic subspace ([23], Corollary 2.3). Also, notice that $\mathcal{F} = \{T_h : h \in S_H\}$ satisfies that for all $0 \neq y$ in H,

$$T_{\frac{y}{\|y\|}}y = 0$$

That is, \mathcal{F} is a family of operators, each one having a hypercyclic subspace, but such that there is no hypercyclic vector common to all members of \mathcal{F} .

Let us also observe that in [1] the authors mention that there is no common hypercyclic vector for the family of hypercyclic operators { $\lambda B \oplus \delta B : |\lambda|, |\delta| > 1$ }. It is easy to see that no operator in this family admits a hypercyclic subspace.

3. A SUFFICIENT CONDITION FOR A COMMON HYPERCYCLIC SUBSPACE

We prove the main result in the more general setting of universality. Given a sequence $\mathcal{F} = \{T_j\}_{j \in \mathbb{N}}$ of bounded operators acting on a Banach space X, we say that a vector $x \in X$ is *universal* for \mathcal{F} if $\{Tx : T \in \mathcal{F}\}$ is dense in X; the set of such universal vectors is denoted $HC(\mathcal{F})$. The sequence \mathcal{F} is said to be *universal* (respectively, *densely universal*) provided $HC(\mathcal{F})$ is non-empty (respectively, dense in X). \mathcal{F} is called *hereditarily universal* (respectively, *hereditarily densely universal*) provided $\{T_{n_k}\}_{k \in \mathbb{N}}$ is universal (respectively, densely universal) for each increasing sequence (n_k) of positive integers. For more on the notion of universality, see [15] and [19]. A result similar to the following theorem is proved in [10] for a (single) sequence of universal operators in the context of Fréchet spaces.

THEOREM 3.1. Let $T_{n,j}$ $(n, j \in \mathbb{N})$ be bounded operators on a Banach space X, and let Y be a closed subspace of X of infinite dimension. Suppose that for each $n \in \mathbb{N}$

(i) $\{T_{n,j}\}_{j\in\mathbb{N}}$ is hereditarily densely universal, and

(ii) $\lim_{j\to\infty} ||T_{n,j}x|| = 0$ for each x in Y.

Then there exists a closed, infinite dimensional subspace X_1 of X such that $\{T_{n,j}x\}_{j\in\mathbb{N}}$ is dense in X for each non-zero $x \in X_1$ and $n \in \mathbb{N}$. That is, X_1 is a universal subspace of $\{T_{n,j}\}_{j\in\mathbb{N}}$ for each $n \in \mathbb{N}$.

LEMMA 3.2. Let $T_{n,j}$ $(n, j \in \mathbb{N})$ be bounded operators on a Banach space X such that for each fixed integer n the family $\{T_{n,j}\}_{j\geq 1}$ is densely universal. Then the set $\bigcap_{\substack{n=1\\n X}}^{\infty} HC(\{T_{n,j}\}_{j\geq 1})$ of common universal vectors to every sequence $\{T_{n,j}\}_{j\in\mathbb{N}}$ is dense

Proof. $\bigcap_{n=1}^{\infty} HC(\{T_{n,j}\}_{j \ge 1})$ is a countable intersection of dense *G*_δ subsets of the Baire space *X* ([18], Satz 1.2.2). ■

Proof of Theorem 3.1. Reducing the subspace *Y* if necessary, we may assume it has a normalized Schauder basis $(e_i)_i$. Let (e_i^*) be its associated sequence in *Y*^{*}

of coordinate functionals, that is, such that $e_j^*(e_i) = \delta_{i,j}$ for $i, j \in \mathbb{N}$. Let A(Y, X) denote the norm closure (in L(X, Y)) of the subspace

$$\Big\{\sum_{j=1}^n x_j e_j^*(\cdot): n \in \mathbb{N}, x_1, \ldots, x_n \in X\Big\}.$$

For each *T* in B(X), define $L_T : A(Y, X) \to A(Y, X)$ by $L_TV := TV$. We make use of the following lemma, whose proof follows that of Theorem 3.1. Analogous versions of this lemma are proved in [10] for several operator ideals (nuclear, compact, approximable), in a more general context, by using tensor product techniques developed in [24].

LEMMA 3.3. Suppose $\{T_j\}_{j\in\mathbb{N}}$ is a sequence of bounded operators on X that is hereditarily densely universal. Then $\{L_{T_{r_j}}\}_{j\geq 1}$ is a hereditarily densely universal sequence of operators on A(Y, X), for some increasing sequence (r_j) of positive integers.

Now, notice that by (i) and Lemma 3.3, for each fixed $n \in \mathbb{N}$ there exists a sequence of positive integers $(r_{n,j})_j$ such that the sequence of operators $\{L_{T_{n,r_{n,j}}}\}_{j\in\mathbb{N}}$ is hereditarily densely universal on the Banach space A(Y, X). By Lemma 3.2, there exists V in A(Y, X) that is universal for every sequence $\{L_{T_{n,r_{n,j}}}\}_{j\in\mathbb{N}}$, and hence universal for every $\{L_{T_{n,j}}\}_{j\in\mathbb{N}}$, too $(n \in \mathbb{N})$. Multiplying V by a non-zero scalar if necessary, we may assume that $\|V\| < \frac{1}{2}$. Consider now $X_1 := (i+V)(Y)$, where $i: Y \to X$ is the inclusion. For each $x \in Y$, $\|(i+V)x\| \ge \|x\| - \|Vx\| \ge \frac{1}{2}\|x\|$. So i+V is bounded below and X_1 is closed and of infinite dimension. Notice that $\{T_{n,j}Vx\}_{j\in\mathbb{N}}$ is dense in X for every $0 \ne x \in Y$ and every $n \in \mathbb{N}$. Indeed, given $\epsilon > 0$, let $z \in X$ be arbitrary, and let S be a finite rank operator in A(Y, X) such that Sx = z. By Lemma 3.3, for each n there is some $T_{n,j}$ such that $\|T_{n,j}V - S\| < \frac{\epsilon}{\|x\|}$. In particular, $\|T_{n,j}Vx - Sx\| = \|T_{n,j}Vx - z\| < \epsilon$. The theorem now follows from condition (ii).

Proof of Lemma 3.3. Since $\{T_j\}_{j \in \mathbb{N}}$ is hereditarily densely universal on *X*, it follows from Theorem 2.2 of [7] that there exists a dense subspace X_0 of *X*, an increasing sequence of positive integers (r_j) and (possibly discontinuous) linear mappings $S_j : X_0 \to X$ ($j \in \mathbb{N}$) such that

(3.1)
$$T_{r_j}, S_j, \text{ and } (T_{r_j}S_j - I) \xrightarrow[j \to \infty]{} 0$$

pointwise on X_0 . Now, consider

$$A_0 := \{ V \in A(Y, X) : V(Y) \subset X_0 \text{ and } \dim(V(Y)) < \infty \}.$$

Then A_0 is dense in A(Y, X), and it follows from (3.1) that

$$L_{T_{r_j}}, L_{S_j}, \text{ and } [L_{T_{r_j}}L_{S_j} - I] \xrightarrow[j \to \infty]{} 0$$

pointwise on A_0 . So $\{L_{T_{r_j}}\}_{j \ge 1}$ is hereditarily densely universal on A(Y, X), by Theorem 2.2 of [7].

REMARK 3.4. An alternative constructive proof of Theorem 3.1 may be done with the arguments from Theorem 2.2 in [25]. The proof here is much simpler, and follows arguments from [10] and [11].

COROLLARY 3.5. Let T_l $(l \in \mathbb{N})$ be operators acting on a Banach space X. Suppose there exists a closed, infinite dimensional subspace Y of X, increasing sequences $(n_{l,q})_q$ of positive integers, and scalars $c_{l,q}$ such that for $l \in \mathbb{N}$

(i) $\{c_{l,q}T_l^{n_{l,q}}\}_{q\in\mathbb{N}}$ is hereditarily universal, and

(ii) $\lim_{a \to \infty} ||c_{l,q}T_l^{n_{l,q}}x|| = 0 \text{ for each } x \text{ in } Y.$

Then there exists a closed, infinite dimensional subspace X_1 of X such that $\{c_{l,q}T_l^{n_{l,q}}x\}_{q\in\mathbb{N}}$ is dense in X for each non-zero $x \in X_1$ and each $l \in \mathbb{N}$. That is, X_1 is a supercyclic subspace for T_l for every $l \in \mathbb{N}$. Moreover X_1 is a hypercyclic subspace for T_l for every $l \in \mathbb{N}$ if the constants $c_{l,q}$ are equal to one.

In virtue of Theorem 3.1 and Example 2.1 it is natural to ask:

PROBLEM 2. Let T_1 , T_2 be two hereditarily hypercyclic operators acting on a Banach space X, with a common hypercyclic subspace. Must there exist sequences $(n_{l,q})_q$ (l = 1, 2) and a closed infinite dimensional subspace Y of X such that $\{T_l^{n_{l,q}}\}_q$ is hereditarily universal and $T_l^{n_{l,q}} \xrightarrow[q \to \infty]{} 0$ pointwise on Y (l = 1, 2)?

4. AN APPLICATION TO COUNTABLE FAMILIES OF OPERATORS

We now apply Theorem 3.1 to show the following extension of Theorem 4.1 in [22] to countable families of operators.

THEOREM 4.1. Let $\mathcal{F} = \{T_l = U_l + K_l : l \in \mathbb{N}\}$ be a family of operators acting on a common Banach space X. Suppose that for each $l \in \mathbb{N}$

(i) $||U_l|| \leq 1$, K_l is compact, and

(ii) $\{T_l^{n_{l,q}}\}_{q \ge 1}$ is hereditarily universal, for some increasing sequence $(n_{l,q})_{q \ge 1}$ of positive integers.

Then the operators in \mathcal{F} have a common hypercyclic subspace.

To show Theorem 4.1, we make use of the three lemmas below. Lemma 4.2 and Lemma 4.3 follow from slight modifications of a proof by Mazur ([14], p. 38–39) and of a proof by Bernal-González and Calderón-Moreno ([6], Theorem 3.1), respectively. Lemma 4.4 is proved at the end of this section.

LEMMA 4.2. Let (X_n) be a sequence of closed, finite-codimensional subspaces of X, with $X_n \supseteq X_{n+1}$ $(n \ge 1)$. Then there exists a normalized basic sequence (e_n) such that e_n belongs to X_n for all $n \ge 1$.

LEMMA 4.3. Let $T_{l,j}$ $(l, j \in \mathbb{N})$ be bounded operators on a Banach space X such that for each $l \in \mathbb{N}$ the family $\{T_{l,j}\}_j$ is hereditarily densely universal. Then there exists

a dense manifold X_0 of X and, for each $l \in \mathbb{N}$, an increasing sequence of positive integers $(r_{l,q})_q$ such that

$$\lim_{a\to\infty} \|T_{l,r_{l,q}}x\| = 0 \quad (x \in X_0).$$

Moreover, X_0 *may be chosen such that each non-zero vector of* X_0 *is universal for* $\{T_{l,j}\}_{j \ge 1}$, *for each* $l \in \mathbb{N}$.

LEMMA 4.4. Let X and Z be Banach spaces, and let $K_{l,n} : X \to Z$ be compact operators $(l, n \ge 1)$. Given $\epsilon > 0$, there exist closed linear subspaces X_n of finite codimension in X $(n \ge 1)$ such that:

(i)
$$X_n \supseteq X_{n+1}$$

(ii) $||K_{l,n}x|| \leq \epsilon ||x|| \ (x \in X_n, 1 \leq l \leq n).$

Proof of Theorem 4.1. Notice that for each $l \in \mathbb{N}$, $\{T_l^{n_{l,q}}\}_{q \ge 1}$ must be hereditarily densely universal ([8], Lemma 2.5). Hence, by Theorem 3.1 it suffices to get a closed, infinite dimensional subspace *Y* of *X* and subsequences $(m_{l,q})_q$ of $(n_{l,q})_q$ such that

$$\lim_{q \to \infty} \|T_l^{m_{l,q}} x\| = 0 \quad (x \in Y, l \in \mathbb{N})$$

For each pair of positive integers *n* and *l*, let $K_{l,n}$ be the compact operators defined by $T_l^n = (U_l + K_l)^n = U_l^n + K_{l,n}$. Apply Lemma 4.4 to get closed, finite codimensional subspaces X_n of X satisfying

(4.1)
$$\begin{cases} (a) \quad X_n \supseteq X_{n+1}, \\ (b) \quad \|K_{l,n}x\| \leqslant \|x\| \ (x \in X_n, 1 \leqslant l \leqslant n). \end{cases}$$

By Lemma 4.2, we can pick a normalized basic sequence (e_n) in X such that $e_n \in X_n$ $(n \in \mathbb{N})$. Let K > 0 be the basis constant of (e_n) , and pick a decreasing sequence of positive scalars, (ϵ_m) , such that $\sum_{n=1}^{\infty} \epsilon_n < \frac{1}{2K}$. By Lemma 4.3 (applied to the operators $T_{l,j} = T_l^{n_{l,j}} l, j \in \mathbb{N}$), there exist subsequences $(\tilde{n}_{l,q})_q$ of $(n_{l,q})_q$ and a dense subspace X_0 of X such that

(4.2)
$$\lim_{q\to\infty} \|T_l^{\widetilde{n}_{l,q}}x\| = 0 \quad (x\in X_0).$$

Pick a sequence (z_m) in X_0 such that

(4.3)
$$||e_n - z_n|| < \frac{e_n}{\max\{||T_l^i|| : l, i \leq n.\}}.$$

Notice that $||e_n - z_n|| < \epsilon_n$ $(n \ge 1)$ and, because (e_n) is normalized, $|e_n^*(x)| \le 2K||x||$ $(n \ge 1)$ for all x in $Y_0 = \overline{\operatorname{span}\{e_1, e_2, \ldots\}}$, where (e_n^*) is the sequence of functional coefficients associated with the Schauder basis (e_n) of Y_0 . Hence $\sum_{n=1}^{\infty} ||e_n^*|| ||e_n - z_n|| < 2K \sum_{n=1}^{\infty} \epsilon_n < 1$, and so any subsequence (z_{n_k}) of (z_m) is equivalent to the corresponding basic sequence (e_{n_k}) ([14], p. 46). We let $Y := \overline{\operatorname{span}\{z_{n_k}:k\ge 1\}}$, where $(z_{n_k}) \subseteq (z_n)$ is defined as follows. Let $n_0 := 1$. For

 $l \in \mathbb{N}$, choose $m_{l,1}$ in $(\tilde{n}_{l,q})$ such that $||T_l^{m_{l,1}}z_{n_0}|| < \frac{\epsilon_{n_0}}{2}$. Also, let $n_1 := m_{1,1}$. Next, for each $l \in \mathbb{N}$, since z_{n_0} , $z_{n_1} \in X_0$, we may apply (4.2) to get $m_{l,2} \in (\tilde{n}_{l,q})_q$ which satisfies the following conditions:

$$\begin{cases} m_{l,2} > \max\{2, n_1, m_{l,1}\} \\ \|T_l^{m_{l,2}} z_{n_i}\| < \frac{\epsilon_{n_i}}{2^2} \quad i = 0, 1. \end{cases}$$

Also, let $n_2 := \max_{1 \le l \le 2} \{m_{l,2}\}$. Continuing this process we get, for each $l \in \mathbb{N}$, an integer $m_{l,s}$ in $(\tilde{n}_{l,q})_q$ such that

(4.4)
$$\begin{cases} (i) m_{l,s} > \max\{s, n_{s-1}, m_{l,s-1}\}, \\ (ii) \|T_l^{m_{l,s}} z_{n_i}\| < \frac{\epsilon_{n_i}}{2^s} \quad i = 0, \dots, s-1, \end{cases}$$

where $n_r = \max_{1 \leq l \leq r} \{m_{l,r}\}$ for each $r \in \mathbb{N}$. It suffices to show that $T_l^{m_{l,s}} \xrightarrow[s \to \infty]{} 0$ pointwise on $Y \ (l \in \mathbb{N})$. Let $0 \neq z = \sum_{j=1}^{\infty} \alpha_j z_{n_j}$ in $Y, l \in \mathbb{N}$ be fixed, and $s \geq l$ be arbitrary. Then

(4.5)
$$T_l^{m_{l,s}} z = \sum_{j=1}^{s-1} \alpha_j T_l^{m_{l,s}} z_{n_j} + \sum_{j=s}^{\infty} \alpha_j T_l^{m_{l,s}} (z_{n_j} - e_{n_j}) + T_l^{m_{l,s}} \Big(\sum_{j=s}^{\infty} \alpha_j e_{n_j} \Big).$$

Notice that $|\alpha_j| \leq 2L ||z||$ (1 $\leq j$), where *L* is the basis constant of (*z*_{*n*_k}). By (4.4(ii)),

(4.6)
$$\left\|\sum_{j=1}^{s-1} \alpha_j T_l^{m_{l,s}} z_{n_j}\right\| < \sum_{j=1}^{s-1} |\alpha_j| \frac{\epsilon_{n_j}}{2^s} \leqslant \frac{L \|z\|}{2^{s-1}} \sum_{j=1}^{s-1} \epsilon_{n_j}$$

Also, by (4.4(i)) and (4.3)

(4.7)
$$\left\|\sum_{j=s}^{\infty} \alpha_j T_l^{m_{l,s}} (z_{n_j} - e_{n_j})\right\| \leq 2L \|z\| \sum_{j=s}^{\infty} \epsilon_{n_j}.$$

Finally, since $X_{n_s} \subseteq X_{m_{l,s}}$ and $||U_l|| \leq 1$, by (4.1(b))

(4.8)
$$\left\| T_l^{m_{l,s}} \sum_{j=s}^{\infty} \alpha_j e_{n_j} \right\| = \left\| (U_l^{m_{l,s}} + K_{l,m_{l,s}}) \left(\sum_{j=s}^{\infty} \alpha_j e_{n_j} \right) \right\|$$
$$\leqslant 2 \left\| \sum_{j=s}^{\infty} \alpha_j e_{n_j} \right\| \quad (s \ge l).$$

So by (4.5), (4.6), (4.7), and (4.8), $\lim_{s\to\infty} ||T_l^{m_{l,s}}z|| = 0$. We finish the proof of Theorem 4.1 by showing Lemma 4.4.

Proof of Lemma 4.4. Let $n \ge 1$ and $\epsilon > 0$ be fixed. Because each $K_{l,n}^* : Z^* \to X^*$ is compact, there exist $x_{l,n,1}^*, \ldots, x_{l,n,k_{l,n}}^*$ in X^* such that

(4.9)
$$K_{l,n}^*(B_{Z^*}) \subseteq \bigcup_{i=1}^{k_{l,n}} B(x_{l,n,i}^*,\epsilon).$$

For each positive integer *s*, let $X_s := \bigcap_{n=1}^{s} \bigcap_{l=1}^{n} \bigcap_{i=1}^{k_{l,n}} \operatorname{Ker}(x_{l,n,i}^*)$. So each X_s is closed and of finite codimension in X, and $X_s \supseteq X_{s+1}$ ($s \ge 1$). Now, let $x \in X_n$, and let $1 \le l \le n$ be fixed. By the Hahn-Banach theorem, there is a functional z^* of norm one such that $||K_{l,n}x|| = \langle K_{l,n}x, z^* \rangle$. By (4.9), we may choose $1 \le j \le k_{l,n}$ such that $||K_{l,n}^*z^* - x_{l,n,j}^*|| < \epsilon$. Hence, because x is in $X_n \subseteq \operatorname{Ker}(x_{l,n,j}^*)$, $||K_{l,n}x|| = \langle x, K_{l,n}^*z^* - x_{l,n,j}^* \rangle \le \epsilon ||x||$.

The proof of Theorem 4.1 is now complete.

Acknowledgements. We thank the referee for Example 2.1 and many valuable comments.

REFERENCES

- E. ABAKUMOV, J. GORDON, Common hypercyclic vectors for multiples of the backward shift, J. Funct. Anal. 200(2003), 494–504.
- [2] S.I. ANSARI, Hypercyclic and cyclic vectors, J. Funct. Anal. 128(1995), 374–383.
- [3] S.I. ANSARI, Existence of hypercyclic operators on topological vector spaces, *J. Funct. Anal.* **148**(1997), 384–390.
- [4] F. BAYART, Common hypercyclic subspaces, preprint.
- [5] L. BERNAL-GONZÁLEZ, On hypercyclic operators on Banach space, *Proc. Amer. Math. Soc.* 127(1999), 1003–1110.
- [6] L. BERNAL-GONZÁLEZ, M.C. CALDERÓN-MORENO, Dense linear manifolds of monsters, J. Approx. Theory 119(2002), 156–180.
- [7] L. BERNAL-GONZÁLEZ, K.-G. GROSSE ERDMANN, The Hypercyclicity Criterion for sequences of operators, *Studia Math.* 157(2003), 17–32.
- [8] J. BÈS, A. PERIS, Hereditarily hypercyclic operators, J. Funct. Anal. 167(1999), 94–112.
- [9] P. BOURDON, Invariant manifolds of hypercyclic vectors, *Proc. Amer. Math. Soc.* 118(1993), 845–847.
- [10] J. BONET, F. MARTÍNEZ-GIMÉNEZ, A. PERIS, Universal and chaotic multipliers on spaces of operators ideals, *J. Math. Anal. Appl.*, to appear.
- [11] K.C. CHAN, R.D. TAYLOR, Hypercyclic subspaces of a Banach space, Integral Equations Operator Theory 41(2001), 381–388.
- [12] J. CONWAY, A Course in Functional Analysis, 2nd edition, Springer-Verlag, New York 1990.
- [13] G. COSTAKIS, M. SAMBARINO, Genericity of wild holomorphic functions and common hypercyclic vectors, *Adv. Math.* 182(2004), 278–306.
- [14] J. DIESTEL, Sequences and Series in Banach Spaces, Springer-Verlag, New York 1984.
- [15] G. GODEFROY, J.H. SHAPIRO, Operators with dense, invariant cyclic vector manifolds, J. Funct. Anal. 98(1991), 229–269.

- [16] M. GONZÁLEZ, F. LEÓN-SAAVEDRA, A. MONTES-RODRÍGUEZ, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, *Proc. London Math. Soc.* 81(2000), 169–189.
- [17] S. GRIVAUX, Construction of operators with prescribed behaviour, Arch. Math. 81(2003), 291–299.
- [18] K.-G. GROSSE-ERDMANN, Holomorphe Monster und universelle funktionen, Mitt. Math. Sem. Giessen 176(1987).
- [19] K.-G. GROSSE-ERDMANN, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36(1999), 345–381.
- [20] D. HERRERO, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99(1991) 179–190.
- [21] C. KITAI, Invariant closed sets for linear operators, Ph.D. Dissertation, Univ. of Toronto, Toronto 1982.
- [22] F. LEÓN-SAAVEDRA, A. MONTES-RODRÍGUEZ, Linear structure of hypercyclic vectors, J. Funct. Anal. 148(1997), 524–545.
- [23] F. LEÓN-SAAVEDRA, A. MONTES-RODRÍGUEZ, Spectral theory and hypercyclic subspaces, *Trans. Amer. Math. Soc.* 353(2001), 247–267.
- [24] F. MARTÍNEZ-GIMÉNEZ, A. PERIS, Universality and chaos for tensor products of operators, J. Approx. Theory 124(2003), 7–24.
- [25] A. MONTES-RODRÍGUEZ, Banach spaces of hypercyclic vectors, *Michigan Math. J.* 43(1996), 419–436.

R. ARON, DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, KENT, OH 44242, USA

E-mail address: aron@mcs.kent.edu

J. BÈS, DEPARTMENT OF MATHEMATICS AND STATISTICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OH 43403, USA *E-mail address*: jbes@math.bgsu.edu

F. LEÓN, FACULTAD DE DERECHO, UNIVERSIDAD DE CADIZ, 11402 JEREZ DE LA FRONTERA, CADIZ, SPAIN

E-mail address: fernando.leon@uca.es

A. PERIS, E.T.S. ARQUITECTURA, D. MATEMÀTICA APLICADA, UNIVERSITAT PO-LITÈCNICA DE VALÈNCIA, E-46022 VALÈNCIA, SPAIN *E-mail address*: aperis@mat.upv.es

Received July 1, 2004; revised July 14, 2004.