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ABSTRACT. We provide a reasonable sufficient condition for a countable fam-
ily of operators to have a common hypercyclic subspace. We also extend a
result of the third author and A. Montes [22], thereby obtaining a common
hypercyclic subspace for certain countable families of compact perturbations
of operators of norm no larger than one.
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1. INTRODUCTION

It is known that for any separable infinite dimensional Banach space X,
there is a continuous linear operator T : X → X which is hypercyclic; that is,
there is a vector x such that the set {x, Tx, . . . , Tnx, . . .} is norm dense in X [3],
[5]. Moreover, a simple Baire category argument shows that the set HC(T) of
such so-called hypercyclic vectors x is a dense Gδ in X [21], and its linear structure
is well understood: While HC(T) must always contain a dense subspace [9], [20],
it not always contains a closed infinite dimensional one; see [16] for a complete
characterization of when this occurs. (Throughout, when we say that HC(T)
contains a vector space V we mean of course that every x ∈ V except x = 0 is
hypercyclic for T.) Thus, for example it was shown that for the simplest example
of a hypercyclic operator on a Banach space, namely the Rolewicz operator

B2 : `2 → `2, B2(x1, x2, . . .) = 2(x2, x3, . . .),

HC(B2) contains an infinite dimensional vector space but that this vector space
cannot be closed ([25], Theorem 3.4).

In recent years, an increasing amount of attention has been paid to the set⋂
T∈F

HC(T) of common hypercyclic vectors of a given family F of hypercyclic op-

erators acting on the same Banach space X. Again, by a Baire category argument⋂
T∈F

HC(T) is a dense subset of X whenever F is countable. Moreover, L. Bernal
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and C. Moreno [6] showed this set contains a dense vector space if we ask in ad-
dition that the members be hereditarily hypercyclic. Finally S. Grivaux proved
that this additional hypothesis can be suppressed ([17], Proposition 4.3).

Other important recent work is by E. Abakumov and J. Gordon [1], who
showed that

⋂

{λ∈C:|λ|>1}
HC(Bλ) 6= ∅,

where Bλ is the Rolewicz operator with 2 replaced by λ. In fact it is simple to de-
rive from this that the above intersection contains a dense subspace of `2. On the
other hand, in [4], F. Bayart showed that under the assumption of a strong form
of the hypercyclicity condition, uncountable collections of hypercyclic operators
can indeed contain an infinite dimensional closed subspace of common hyper-
cyclic vectors. Similar results were obtained by G. Costakis and M. Sambarino
[13], who also provided a criterion for the existence of common hypercyclic vec-
tors.

Our interest here will be in the following problem:

PROBLEM 1. Let F be a countable family of operators acting on a Banach
space X. When does

⋂
T∈F

HC(T) contain a closed infinite dimensional subspace?

In Section 2 we show that a family of operators acting on a common Banach
space may fail to support a common hypercyclic subspace, even if each operator
in the family has a hypercyclic subspace (Example 2.1). Moreover, if the family
is uncountable it may even fail to have single common hypercyclic vector (Ex-
ample 2.2). In Section 3 we extend a result of A. Montes ([25], Theorem 2.1) by
providing a reasonable sufficient condition on a countable family of hypercyclic
operators acting on a Banach space to have a common infinite dimensional hy-
percyclic subspace (Corollary 3.5). We then apply this to extend a result of the
third author and A. Montes [22], thereby obtaining a common hypercyclic sub-
space for certain countable families of operators of the form T = U + K where
‖U‖ 6 1 and K is compact.

2. TWO EXAMPLES

Example 2.1 was provided to us by an anonymous referee. An operator T
is said to be hereditarily hypercyclic with respect to a given increasing sequence of
positive integers (nk) provided {Tnk}k∈N is hereditarily universal (cf. Section 3).

EXAMPLE 2.1. Consider the operators T1 := (I + Bw)⊕ B2 and T2 := B2 ⊕
(I + Bw) acting on `2 ⊕ `2, where B2 and I are the Rolewicz’ and the identity
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operator on `2, respectively, and Bw is the compact shift on `2 defined by

(2.1) Bwen :=

{
1
n en−1 if n > 2,
0 if n = 1.

We show next that
(i) Each of T1, T2 has a hypercyclic subspace, and

(ii) T1 and T2 do not support a common hypercyclic subspace.
To see (i), notice that B2 is hereditarily hypercyclic with respect to the en-

tire sequence (n), and I + Bw is hereditarily hypercyclic with respect to some
sequence (nk) ([22], Lemma 4.5). Hence T1 and T2 are hereditarily hypercyclic
with respect to some sequence (nk) and by Theorem 2.1 of [23] it suffices to verify
that the essential spectrum of Ti intersects the closed unit disk (i = 1, 2). Now, the
sequence (en ⊕ 0) is orthonormal in `2 ⊕ `2. Also, (T1 − I)(en ⊕ 0) = 1

n en−1 ⊕ 0
converges to zero in norm as n tends to infinity. This means (cf. XI 2.3 in [12])
that 1 belongs to the essential spectrum of T1. Similarly, 1 belongs to the essential
spectrum of T2. So each of T1, T2 has a hypercyclic subspace.

To show (ii) assume, to the contrary, that there exists a closed, infinite di-
mensional subspace Z of `2 ⊕ `2 such that every non-zero vector (x, y) ∈ Z is
hypercyclic for (I + Bw)⊕ B2 and B2 ⊕ (I + Bw). In particular, both x and y must
be hypercyclic for B2.

Now, a simple Hilbert space argument shows that (at least) one of the co-
ordinate projections P1(Z) and P2(Z) must contain a closed infinite dimensional
subspace. Indeed, given an orthonormal sequence in Z one can find a subse-
quence such that its sequence (xn) of i-th coordinate projections (i = 1 or 2) is
linearly independent, bounded, and bounded away from zero. Next one can
find a subsequence (xnk ) of (xn) that is equivalent as a basic sequence to an or-
thonormal sequence, what gives that Pi(Z) contains the closed linear span of the
sequence (xnk ).

But this implies that B2 has a hypercyclic subspace, which is not the case
([25], Theorem 3.4). So T1 and T2 have no common hypercyclic subspace.

EXAMPLE 2.2. Let X = H be a separable, infinite-dimensional Hilbert space,
and let SH be the unit sphere of H. Let (wn) be a sequence of positive scalars sat-
isfying

lim
n→∞

inf
k

( n

∏
j=1

wk+j

)1/n
6 1 and lim sup

n

∏
j=1

wj = ∞.

For each h in SH , let {e(h)n : n > 1} be a basis of H with e(h)1 = h, and let
Th : H → H be the corresponding unilateral weighted backward shift defined by

(2.2) The(h)n =

{
0 if n = 1,
wne(h)n−1 if n > 2.
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So Th has a hypercyclic subspace ([23], Corollary 2.3). Also, notice that F =
{Th : h ∈ SH} satisfies that for all 0 6= y in H,

T y
‖y‖

y = 0.

That is, F is a family of operators, each one having a hypercyclic subspace, but
such that there is no hypercyclic vector common to all members of F .

Let us also observe that in [1] the authors mention that there is no common
hypercyclic vector for the family of hypercyclic operators {λB⊕ δB : |λ|, |δ| > 1}.
It is easy to see that no operator in this family admits a hypercyclic subspace.

3. A SUFFICIENT CONDITION FOR A COMMON HYPERCYCLIC SUBSPACE

We prove the main result in the more general setting of universality. Given
a sequence F = {Tj}j∈N of bounded operators acting on a Banach space X, we
say that a vector x ∈ X is universal for F if {Tx : T ∈ F} is dense in X; the set
of such universal vectors is denoted HC(F ).The sequence F is said to be univer-
sal (respectively, densely universal ) provided HC(F ) is non-empty (respectively,
dense in X). F is called hereditarily universal (respectively, hereditarily densely uni-
versal) provided {Tnk}k∈N is universal (respectively, densely universal) for each
increasing sequence (nk) of positive integers. For more on the notion of univer-
sality, see [15] and [19]. A result similar to the following theorem is proved in [10]
for a (single) sequence of universal operators in the context of Fréchet spaces.

THEOREM 3.1. Let Tn,j (n, j ∈ N) be bounded operators on a Banach space X,
and let Y be a closed subspace of X of infinite dimension. Suppose that for each n ∈ N

(i){Tn,j}j∈N is hereditarily densely universal, and
(ii) lim

j→∞
‖Tn,jx‖ = 0 for each x in Y.

Then there exists a closed, infinite dimensional subspace X1 of X such that {Tn,jx}j∈N is
dense in X for each non-zero x ∈ X1 and n ∈ N. That is, X1 is a universal subspace of
{Tn,j}j∈N for each n ∈ N.

LEMMA 3.2. Let Tn,j (n, j ∈ N) be bounded operators on a Banach space X such
that for each fixed integer n the family {Tn,j}j>1 is densely universal. Then the set

∞⋂
n=1

HC({Tn,j}j>1) of common universal vectors to every sequence {Tn,j}j∈N is dense

in X.

Proof.
∞⋂

n=1
HC({Tn,j}j>1) is a countable intersection of dense Gδ subsets of

the Baire space X ([18], Satz 1.2.2).

Proof of Theorem 3.1. Reducing the subspace Y if necessary, we may assume
it has a normalized Schauder basis (ej)j. Let (e∗j ) be its associated sequence in Y∗
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of coordinate functionals, that is, such that e∗j (ei) = δi,j for i, j ∈ N. Let A(Y, X)
denote the norm closure (in L(X, Y)) of the subspace

{ n

∑
j=1

xje∗j (·) : n ∈ N, x1, . . . , xn ∈ X
}

.

For each T in B(X), define LT : A(Y, X) → A(Y, X) by LTV := TV. We make
use of the following lemma, whose proof follows that of Theorem 3.1. Analogous
versions of this lemma are proved in [10] for several operator ideals (nuclear,
compact, approximable), in a more general context, by using tensor product tech-
niques developed in [24].

LEMMA 3.3. Suppose {Tj}j∈N is a sequence of bounded operators on X that is
hereditarily densely universal. Then {LTrj

}j>1 is a hereditarily densely universal se-

quence of operators on A(Y, X), for some increasing sequence (rj) of positive integers.

Now, notice that by (i) and Lemma 3.3, for each fixed n ∈ N there exists a se-
quence of positive integers (rn,j)j such that the sequence of operators {LTn,rn,j

}j∈N
is hereditarily densely universal on the Banach space A(Y, X). By Lemma 3.2,
there exists V in A(Y, X) that is universal for every sequence {LTn,rn,j

}j∈N, and

hence universal for every {LTn,j}j∈N, too (n ∈ N). Multiplying V by a non-

zero scalar if necessary, we may assume that ‖V‖ < 1
2 . Consider now X1 :=

(i + V)(Y), where i : Y → X is the inclusion. For each x ∈ Y, ‖(i + V)x‖ >
‖x‖ − ‖Vx‖ > 1

2‖x‖. So i + V is bounded below and X1 is closed and of infinite
dimension. Notice that {Tn,jVx}j∈N is dense in X for every 0 6= x ∈ Y and every
n ∈ N. Indeed, given ε > 0, let z ∈ X be arbitrary, and let S be a finite rank
operator in A(Y, X) such that Sx = z. By Lemma 3.3, for each n there is some Tn,j
such that ‖Tn,jV − S‖ < ε

‖x‖ . In particular, ‖Tn,jVx − Sx‖ = ‖Tn,jVx − z‖ < ε.
The theorem now follows from condition (ii).

Proof of Lemma 3.3. Since {Tj}j∈N is hereditarily densely universal on X, it
follows from Theorem 2.2 of [7] that there exists a dense subspace X0 of X, an
increasing sequence of positive integers (rj) and (possibly discontinuous) linear
mappings Sj : X0 → X (j ∈ N) such that

(3.1) Trj , Sj, and (Trj Sj − I) →
j→∞

0

pointwise on X0. Now, consider

A0 := {V ∈ A(Y, X) : V(Y) ⊂ X0 and dim(V(Y)) < ∞}.

Then A0 is dense in A(Y, X), and it follows from (3.1) that

LTrj
, LSj , and [LTrj

LSj − I] →
j→∞

0

pointwise on A0. So {LTrj
}j>1 is hereditarily densely universal on A(Y, X), by

Theorem 2.2 of [7].
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REMARK 3.4. An alternative constructive proof of Theorem 3.1 may be done
with the arguments from Theorem 2.2 in [25]. The proof here is much simpler, and
follows arguments from [10] and [11].

COROLLARY 3.5. Let Tl (l ∈ N) be operators acting on a Banach space X. Sup-
pose there exists a closed, infinite dimensional subspace Y of X, increasing sequences
(nl,q)q of positive integers, and scalars cl,q such that for l ∈ N

(i){cl,qT
nl,q
l }q∈N is hereditarily universal, and

(ii) lim
q→∞

‖cl,qT
nl,q
l x‖ = 0 for each x in Y.

Then there exists a closed, infinite dimensional subspace X1 of X such that {cl,qT
nl,q
l x}q∈N

is dense in X for each non-zero x ∈ X1 and each l ∈ N. That is, X1 is a supercyclic sub-
space for Tl for every l ∈ N. Moreover X1 is a hypercyclic subspace for Tl for every l ∈ N
if the constants cl,q are equal to one.

In virtue of Theorem 3.1 and Example 2.1 it is natural to ask:

PROBLEM 2. Let T1, T2 be two hereditarily hypercyclic operators acting on
a Banach space X, with a common hypercyclic subspace. Must there exist se-
quences (nl,q)q (l = 1, 2) and a closed infinite dimensional subspace Y of X such

that {T
nl,q
l }q is hereditarily universal and T

nl,q
l →

q→∞
0 pointwise on Y (l = 1, 2)?

4. AN APPLICATION TO COUNTABLE FAMILIES OF OPERATORS

We now apply Theorem 3.1 to show the following extension of Theorem 4.1
in [22] to countable families of operators.

THEOREM 4.1. Let F = {Tl = Ul + Kl : l ∈ N} be a family of operators acting
on a common Banach space X. Suppose that for each l ∈ N

(i) ‖Ul‖ 6 1, Kl is compact, and
(ii) {T

nl,q
l }q>1 is hereditarily universal, for some increasing sequence (nl,q)q>1 of

positive integers.
Then the operators in F have a common hypercyclic subspace.

To show Theorem 4.1, we make use of the three lemmas below. Lemma 4.2
and Lemma 4.3 follow from slight modifications of a proof by Mazur ([14], p. 38–
39) and of a proof by Bernal-González and Calderón-Moreno ([6], Theorem 3.1),
respectively. Lemma 4.4 is proved at the end of this section.

LEMMA 4.2. Let (Xn) be a sequence of closed, finite-codimensional subspaces of
X, with Xn ⊇ Xn+1 (n > 1). Then there exists a normalized basic sequence (en) such
that en belongs to Xn for all n > 1.

LEMMA 4.3. Let Tl,j (l, j ∈ N) be bounded operators on a Banach space X such
that for each l ∈ N the family {Tl,j}j is hereditarily densely universal. Then there exists
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a dense manifold X0 of X and, for each l ∈ N, an increasing sequence of positive integers
(rl,q)q such that

lim
q→∞

‖Tl,rl,q
x‖ = 0 (x ∈ X0).

Moreover, X0 may be chosen such that each non-zero vector of X0 is universal for {Tl,j}j>1,
for each l ∈ N.

LEMMA 4.4. Let X and Z be Banach spaces, and let Kl,n : X → Z be compact
operators (l, n > 1). Given ε > 0, there exist closed linear subspaces Xn of finite
codimension in X (n > 1) such that:

(i) Xn ⊇ Xn+1;
(ii) ‖Kl,nx‖ 6 ε‖x‖ (x ∈ Xn, 1 6 l 6 n).

Proof of Theorem 4.1. Notice that for each l ∈ N, {T
nl,q
l }q>1 must be heredi-

tarily densely universal ([8], Lemma 2.5). Hence, by Theorem 3.1 it suffices to get
a closed, infinite dimensional subspace Y of X and subsequences (ml,q)q of (nl,q)q
such that

lim
q→∞

‖T
ml,q
l x‖ = 0 (x ∈ Y, l ∈ N).

For each pair of positive integers n and l, let Kl,n be the compact operators de-
fined by Tn

l = (Ul + Kl)n = Un
l + Kl,n. Apply Lemma 4.4 to get closed, finite

codimensional subspaces Xn of X satisfying

(4.1)

{
(a) Xn ⊇ Xn+1,
(b) ‖Kl,nx‖ 6 ‖x‖ (x ∈ Xn, 1 6 l 6 n).

By Lemma 4.2, we can pick a normalized basic sequence (en) in X such that en ∈
Xn (n ∈ N). Let K > 0 be the basis constant of (en), and pick a decreasing

sequence of positive scalars, (εm), such that
∞
∑

n=1
εn < 1

2K . By Lemma 4.3 (applied

to the operators Tl,j = T
nl,j
l l, j ∈ N), there exist subsequences (ñl,q)q of (nl,q)q and

a dense subspace X0 of X such that

(4.2) lim
q→∞

‖T
ñl,q
l x‖ = 0 (x ∈ X0).

Pick a sequence (zm) in X0 such that

(4.3) ‖en − zn‖ <
εn

max{‖Ti
l ‖ : l, i 6 n.} .

Notice that ‖en − zn‖ < εn (n > 1) and, because (en) is normalized, |e∗n(x)| 6
2K‖x‖ (n > 1) for all x in Y0 = span{e1, e2, . . .}, where (e∗n) is the sequence
of functional coefficients associated with the Schauder basis (en) of Y0. Hence

∞
∑

n=1
‖e∗n‖‖en − zn‖ < 2K

∞
∑

n=1
εn < 1, and so any subsequence (znk ) of (zm) is

equivalent to the corresponding basic sequence (enk ) ([14], p. 46). We let Y :=
span{znk : k > 1}, where (znk ) ⊆ (zn) is defined as follows. Let n0 := 1. For
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l ∈ N, choose ml,1 in (ñl,q) such that ‖Tml,1
l zn0‖ <

εn0
2 . Also, let n1 := m1,1. Next,

for each l ∈ N, since zn0 , zn1 ∈ X0, we may apply (4.2) to get ml,2 ∈ (ñl,q)q which
satisfies the following conditions:

{
ml,2 > max{2, n1, ml,1}

‖Tml,2
l zni‖ <

εni
22 i = 0, 1.

Also, let n2 := max
16l62

{ml,2}. Continuing this process we get, for each l ∈ N, an

integer ml,s in (ñl,q)q such that

(4.4)

{
(i) ml,s > max{s, ns−1, ml,s−1},
(ii) ‖Tml,s

l zni‖ <
εni
2s i = 0, . . . , s− 1,

where nr = max
16l6r

{ml,r} for each r ∈ N. It suffices to show that Tml,s
l →

s→∞
0

pointwise on Y (l ∈ N). Let 0 6= z =
∞
∑

j=1
αjznj in Y, l ∈ N be fixed, and s > l be

arbitrary. Then

(4.5) Tml,s
l z =

s−1

∑
j=1

αjT
ml,s
l znj +

∞

∑
j=s

αjT
ml,s
l (znj − enj) + Tml,s

l

( ∞

∑
j=s

αjenj

)
.

Notice that |αj| 6 2L‖z‖ (1 6 j), where L is the basis constant of (znk ). By (4.4(ii)),

(4.6)
∥∥∥

s−1

∑
j=1

αjT
ml,s
l znj

∥∥∥ <
s−1

∑
j=1
|αj|

εnj

2s 6 L‖z‖
2s−1

s−1

∑
j=1

εnj .

Also, by (4.4(i)) and (4.3)

(4.7)
∥∥∥

∞

∑
j=s

αjT
ml,s
l (znj − enj)

∥∥∥ 6 2L‖z‖
∞

∑
j=s

εnj .

Finally, since Xns ⊆ Xml,s and ‖Ul‖ 6 1, by (4.1(b))

(4.8)

∥∥∥Tml,s
l

∞

∑
j=s

αjenj

∥∥∥ =
∥∥∥(Uml,s

l + Kl,ml,s
)
( ∞

∑
j=s

αjenj

)∥∥∥

6 2
∥∥∥

∞

∑
j=s

αjenj

∥∥∥ (s > l).

So by (4.5), (4.6), (4.7), and (4.8), lim
s→∞

‖Tml,s
l z‖ = 0. We finish the proof of Theo-

rem 4.1 by showing Lemma 4.4.

Proof of Lemma 4.4. Let n > 1 and ε > 0 be fixed. Because each K∗l,n : Z∗ →
X∗ is compact, there exist x∗l,n,1, . . . , x∗l,n,kl,n

in X∗ such that

(4.9) K∗l,n(BZ∗) ⊆
kl,n⋃

i=1

B(x∗l,n,i, ε).
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For each positive integer s, let Xs :=
s⋂

n=1

n⋂
l=1

kl,n⋂
i=1

Ker(x∗l,n,i). So each Xs is closed

and of finite codimension in X, and Xs ⊇ Xs+1 (s > 1). Now, let x ∈ Xn, and
let 1 6 l 6 n be fixed. By the Hahn-Banach theorem, there is a functional z∗ of
norm one such that ‖Kl,nx‖ = 〈Kl,nx, z∗〉. By (4.9), we may choose 1 6 j 6 kl,n
such that ‖K∗l,nz∗ − x∗l,n,j‖ < ε. Hence, because x is in Xn ⊆ Ker(x∗l,n,j), ‖Kl,nx‖ =
〈x, K∗l,nz∗ − x∗l,n,j〉 6 ε‖x‖.

The proof of Theorem 4.1 is now complete.

Acknowledgements. We thank the referee for Example 2.1 and many valuable com-
ments.
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