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ABSTRACT. Cowen’s theorem states that if ϕ ∈ L∞(T) then the Toeplitz oper-
ator Tϕ is hyponormal if and only if the following “Cowen” set

E(ϕ) = {k ∈ H∞(T) : ‖k‖∞ 6 1 and ϕ− kϕ ∈ H∞(T)}
is nonempty.

In this paper we give a complete description on the Cowen set E(ϕ) if the
selfcommutator [T∗ϕ, Tϕ] is of finite rank. In particular, it is shown that the
solution for the cases where ϕ is of bounded type has a connection with a H∞

optimization problem.
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1. INTRODUCTION

A bounded linear operator A on a Hilbert spaceH is said to be hyponormal
if its selfcommutator [A∗, A] = A∗A− AA∗ is positive semidefinite. Recall that
given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ is the operator Tϕ on the
Hardy space H2(T) of the unit circle T = ∂D in the complex plane C defined by

Tϕ f = P(ϕ · f ),

where f ∈ H2(T) and P denotes the orthogonal projection that maps L2(T) onto
H2(T). Relationships between hyponormal operators and Toeplitz-like operators
were discovered in papers [14] and [2]. More recently, the problem of determining
which symbols induce hyponormal Toeplitz operators was completely solved by
C. Cowen [3] in 1988. Here we shall employ an equivalent variant of Cowen’s
theorem that was proposed by T. Nakazi and K. Takahashi in [11].
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THEOREM 1.1 ([3], [11]). Suppose that ϕ ∈ L∞(T) is arbitrary and put

E(ϕ) := {k ∈ H∞(T) : ‖k‖∞ 6 1 and ϕ− kϕ ∈ H∞(T)} .

Then Tϕ is hyponormal if and only if the set E(ϕ) is nonempty.

Cowen’s method is to recast the operator-theoretic problem of hyponormal-
ity for Toeplitz operators into the problem of finding a solution of a certain func-
tional equation involving its symbol. This approach has been put to use in the
works [4], [5], [6], [8], [9], [10], [11], [15] to study Toeplitz operators on the Hardy
space of the unit circle.

Now the set E(ϕ) will be called the Cowen set for the function ϕ ∈ L∞(T).
The question about the Cowen set E(ϕ) is of great interest. Indeed, E(ϕ) has been
studied intensively in recent literature because when ϕ is of bounded type (i.e.,
quotient of two bounded analytic functions), it has a connection with the follow-
ing H∞ optimization problem which naturally arise in robust control theory (cf.
[7]):

H∞ OPTIMIZATION PROBLEM. Let k0 ∈ L∞(T) and θ a fixed inner function in
H∞(T). Find µ where

µ = dist (k0, θH∞) ≡ inf
h∈H∞

‖k0 − θh‖∞.

In this paper it is shown that via Nehari’s Theorem and Adamyan-Arov-
Krein Theorem, a solution of a H∞ optimization problem provides information
on E(ϕ) when ϕ is of bounded type and Tϕ has finite rank selfcommutator.

2. MAIN RESULTS

We begin with the connection between Hankel and Toeplitz operators. For
ϕ in L∞(T), the Hankel operator Hϕ : H2 → H2 is defined by

Hϕ f = J(I − P)(ϕ f ),

where J : (H2)⊥ → H2 is given by Jz−n = zn−1 for n > 1. For ζ ∈ L∞(T), we
define

ζ̃ = ζ(z).

The following is a basic connection between Hankel and Toeplitz operators:

Tϕψ − TϕTψ = H∗
ϕHψ (ϕ, ψ ∈ L∞) and HϕTh = Hϕh = T∗

h̃
Hϕ (h ∈ H∞).

From this we can see that if k ∈ E(ϕ) then

(2.1) [T∗ϕ, Tϕ] = H∗
ϕ Hϕ − H∗

ϕHϕ = H∗
ϕHϕ − H∗

k ϕHk ϕ = H∗
ϕ(1− T̃kT∗

k̃
)Hϕ.

For an inner function θ, we write

H(θ) ≡ H2 ª θH2.
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If ϕ ∈ L∞, write

ϕ+ ≡ P(ϕ) ∈ H2 and ϕ− ≡ (I − P)(ϕ) ∈ zH2.

Thus we can write ϕ = ϕ+ + ϕ−. Assume that ϕ is of bounded type, i.e., there
are functions ψ1, ψ2 in H∞(D) such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z ∈ T. Since TzHϕ = HϕTz it follows from Beurling’s theorem that
ker Hϕ− = θH2 and ker Hϕ+

= θ+H2 for some inner functions θ, θ+. If Tϕ is
hyponormal then, by (2.1), ‖Hϕ+

f ‖ > ‖Hϕ− f ‖ for all f ∈ H2, so that

θ+H2 = ker Hϕ+
⊆ ker Hϕ− = θH2,

which implies that θ divides θ+, i.e., θ+ = θ0θ for some inner function θ0. Thus
if ϕ = ϕ+ + ϕ− is of bounded type and Tϕ is hyponormal then we can write (cf.
[8])

ϕ+ = θ0θ ā and ϕ− = θb̄,

where a ∈ H(θ0θ) and b ∈ H(θ). If k0 ∈ H∞ is a solution of equation

(2.2) b− k0a = θh for some h ∈ H2

then E(ϕ) can be written as

E(ϕ) = {θ0(k0 + θ f ) : f ∈ H∞ and ‖k0 + θ f ‖∞ 6 1}.

By Nehari’s Theorem [12], we have

(2.3) dist (k0, θH∞) = inf
f∈H∞

‖θ̄k0 + f ‖∞ = ‖Hθ̄k0
‖.

Thus we have (see Theorem 8 of [8])

Tϕ is hyponormal ⇐⇒ ‖Hθ̄k0
‖ 6 1.

The following theorem is our main result, which gives a description on the
Cowen set E(ϕ) when the selfcommutator [T∗ϕ, Tϕ] is of finite rank. In fact we can
prove more:

THEOREM 2.1. If ϕ is of bounded type then we have that:
(i) If ker Hϕ * ker [T∗ϕ, Tϕ] then E(ϕ) is empty.

(ii) If ker Hϕ = ker [T∗ϕ, Tϕ] and rank [T∗ϕ, Tϕ] < ∞ then E(ϕ) contains infinitely
many inner functions.

(iii) If ker Hϕ ( ker [T∗ϕ, Tϕ] then E(ϕ) contains a unique function which is inner.
If instead ϕ is not of bounded type such that Tϕ is hyponormal then E(ϕ) contains

a unique function.

To prove Theorem 2.1 we need auxiliary lemmas.
The following lemma is another version of Cowen’s theorem.
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LEMMA 2.2 ([4], [5], Lemma 1). If ϕ ≡ ϕ+ + ϕ− ∈ L∞, then E(ϕ) 6= ∅ if and
only if the equation Hϕ+

k = zϕ̃− admits a solution k satisfying ‖k‖∞ 6 1.

T. Nakazi and K. Takahashi [11] noticed that if Tϕ is a hyponormal operator
such that its selfcommutator is of finite rank then E(ϕ) contains a finite Blaschke
product.

LEMMA 2.3 ([11], Nakazi-Takahashi Theorem). A Toeplitz operator Tϕ is hy-
ponormal and the rank of the selfcommutator [T∗ϕ, Tϕ] is finite if and only if there exists a
finite Blaschke product k in E(ϕ) of the form

k(z) = eiθ
n

∏
j=1

z− β j

1− β jz
(|β j| < 1 for j = 1, . . . , n).

such that deg (k) = rank [T∗ϕ, Tϕ], where deg (k) denotes the degree of k — meaning
the number of zeros of k in the open unit disk D.

The following lemma is a solution of an H∞ optimization problem.

LEMMA 2.4. If b and q are finite Blaschke products then

(2.4) deg(b) > deg(q) ⇐⇒ dist (b, qH∞) < 1.

Proof. In general, for a continuous function u on Twith |u| ≡ 1,

(2.5) dist (u, H∞) < 1 ⇐⇒ wind (u) > 0,

where wind(·) denotes the winding number with respect to the origin: indeed,
this follows from the fact that (see Appendix 4, Theorem 41 of [13])

(2.6) dist (u, H∞) < 1 ⇐⇒ Tu is left invertible ⇐⇒ wind (u) > 0,

where the second implication comes from the observation that Tu is Fredholm
and hence, by Coburn’s Theorem, Tu is left or right invertible and the Fredholm
index of Tu is equal to −wind (u). Applying (2.5) to u = b

q gives that

dist (b, q H∞) < 1 ⇐⇒ wind
( b

q

)
> 0 ⇐⇒ deg (b) > deg (q).

We are ready for:

Proof of Theorem 2.1. From (2.1) we can see that if Tϕ is hyponormal then

ker Hϕ ⊆ ker [T∗ϕ, Tϕ],

which proves statement (i).
Towards statement (ii), suppose ϕ is of bounded type. So we can write

ϕ = θ0θ ā + θ̄b for a ∈ H(θ0θ) and b ∈ H(θ). Now suppose ker Hϕ = ker [T∗ϕ, Tϕ]
and rank [T∗ϕ, Tϕ] < ∞. Since ker Hϕ = θ0θH2 it follows that

ran [T∗ϕ, Tϕ] = (ker [T∗ϕ, Tϕ])⊥ = (ker Hϕ)⊥ = H2 ª θ0θH2,

which implies that θ0θ is a finite Blaschke product since ran [T∗ϕ, Tϕ] is finite di-
mensional. Also, by Lemma 2.3 there exists a finite Blaschke product θ0k0 in
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E(ϕ) such that deg (θ0k0) = rank [T∗ϕ, Tϕ]. Thus k0 is a finite Blaschke product
such that deg(θ0k0) = rank Hϕ = deg(θ0θ), and hence deg(k0) = deg(θ). So by
Lemma 2.4, we have that dist (k0, θH∞) < 1, and hence by (2.3), ‖Hθ̄k0

‖ < 1.
Remembering Adamyan-Arov-Krein theorem which states that if f ∈ L∞ and
dist ( f , H∞) < 1 then f + H∞ contains a unimodular function, we can see that
if ‖Hθk0

‖ < 1, then k0 + θH∞ contains an inner function. Thus θ0k0 + θ0θH∞

contains an inner function, and in turn, E(ϕ) contains an inner function. Since

1 > dist (θ̄ k0, H∞) = dist (z̄θ̄k0, z̄H∞)

= dist (z̄θ̄k0 + z̄c, H∞) for a suitable c

= ‖Hz̄θ̄(k0+θc)‖,

we can choose different constants αn (n ∈ Z+) such that ‖Hz̄θ̄(k0+θαn)‖ < 1. Ap-
plying again Adamyan-Arov-Krein theorem to Hz̄θ̄(k0+θαn), there exists qn ∈ H∞

such that k0 + θαn + zθqn are inner functions. Evidently, θ0k0 + θ0θ(αn + zθqn) ∈
E(ϕ) and are different. This proves statement (ii).

Towards statement (iii), suppose ker Hϕ ( ker [T∗ϕ, Tϕ]. If E(ϕ) contains a
function k which is not inner then ker (1− T̃kT∗

k̃
) = {0}: indeed if g = T̃kT∗

k̃
g then

‖g‖2 = ‖T∗
k̃

g‖2, and hence
∫
|g|2dµ = ‖g‖2 = ‖T∗

k̃
g‖2 6 ‖k̃g‖2 =

∫
|k̃|2|g|2dµ,

which implies that g = 0 a.e. if k̃ is not inner. Thus by (2.1) we have that
ker [T∗ϕ, Tϕ]
⊆ ker Hϕ, which forces that ker Hϕ = ker [T∗ϕ, Tϕ], a contradiction. If instead
E(ϕ) contains two different inner functions then E(ϕ) has a function which is not
inner: for if k1 and k2 (k1 6= k2) are inner functions in E(ϕ) then we can easily see
that k1+k2

2 ∈ E(ϕ) and k1+k2
2 is not an inner function since every inner function

is an extreme point of the unit ball of H∞. Thus E(ϕ) contains a unique inner
function. This proves statement (iii).

For the second assertion write ϕ = ϕ+ + ϕ−. If ϕ is not of bounded type
then by an argument of Abrahamse ([1], Lemma 3), we have that kerHϕ+

=
ker Hϕ = {0}. Thus the solution k of the equation Hϕ+

k = zϕ̃− should be unique.
Thus the second assertion follows at once from Lemma 2.2.

We would like to remark that if Hθk0
attains its norm (e.g., it is of finite rank)

then dist (k0, θH∞) = 1 implies that E(ϕ) contains a unique inner function. To
see this, recall (cf. p. 202 in [13]) that if f ∈ L∞ and H f attains its norm then

f + H∞ contains a unique element of least norm which is of the form λ h
hν , where

λ ∈ C, h is an outer function and ν is an inner function. So if ‖Hθk0
‖ = 1 and Hθk0

attains its norm then by (2.3), θk0 + H∞ contains a unique unimodular function.
Thus E(ϕ) contains a unique inner function.
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We now turn our attention to the cases of Toeplitz operators with symbols
that are trigonometric polynomials. If ϕ is a trigonometric polynomial of the

form ϕ(z) =
N
∑

n=−m
anzn, where a−m and aN are nonzero, then the rank of the

selfcommutator [T∗ϕ, Tϕ] is finite. Thus if Tϕ is hyponormal then by Lemma 2.3,
E(ϕ) contains a finite Blaschke product.

We now have:

COROLLARY 2.5. Let ϕ(z) =
N
∑

n=−m
anzn be such that Tϕ is a hyponormal opera-

tor.
(i) If rank [T∗ϕ, Tϕ] < N then E(ϕ) contains a unique finite Blaschke product.

(ii) If rank [T∗ϕ, Tϕ] = N then E(ϕ) contains infinitely many inner functions. Fur-
thermore if b ∈ E(ϕ) is a finite Blaschke product then deg (b) > N.

Proof. Since ker Hϕ = zN H2, part (i) corresponds to the case where ker Hϕ (
ker [T∗ϕ, Tϕ] and part (ii) corresponds to the case where ker Hϕ = ker [T∗ϕ, Tϕ].
Thus the statement (i) and the first assertion of statement (ii) follow at once from
Theorem 2.1 together with Lemma 2.3.

For the second assertion of statement (ii), assume to the contrary that b ∈
E(ϕ) is a finite Blaschke product of degree less than N. By Lemma 2.3, there exists
a finite Blaschke product k ∈ E(ϕ) of degree N. Then we have

k̂(j) = b̂(j) for j = 1, . . . , N − 1,

where f̂ (j) means the j-th Fourier coefficients of f ∈ H∞. Thus by the uniqueness
argument of Lemma 1 in [10], we should have that b = k, a contradiction.

Corollary 2.5(i) is an extended result of Corollary 4 in [9].
The following is an immediate result from Corollary 2.5.

COROLLARY 2.6. Suppose that ϕ(z) =
N
∑

n=−m
anzn and that k is a finite Blaschke

product in E(ϕ).
(i) If deg (k) < N then rank [T∗ϕ, Tϕ] = deg (k).

(ii) If deg (k) > N then rank [T∗ϕ, Tϕ] = N.

Acknowledgements. The author is grateful to Professors Caixing Gu, Young-One Kim
and the referee for several helpful suggestions concerning the topics in this paper. This
work was supported by SNU foundation in 2003.

References

[1] M.B. ABRAHAMSE, Subnormal Toeplitz operators and functions of bounded type,
Duke Math. J. 43(1976), 597–604.



COWEN SETS FOR TOEPLITZ OPERATORS 267

[2] K.F. CLANCEY, Toeplitz models for operators with one-dimensional self-com-
mutators, in Dilation Theory, Toeplitz Operators, and other Topics (Timişoara/Herculane,
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