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ABSTRACT. Let A and B be standard operator algebras on an infinite dimen-
sional complex Banach space X, and let Φ be a map from A onto B. We in-
troduce thirteen parts of spectrum for elements in A and B and let 4A(T)
denote any one of these thirteen parts of the spectrum of T in A. We show
that if Φ satisfies that 4A(T + S) = 4B(Φ(T) + Φ(S)) and 4A(T + 2S) =
4B(Φ(T) + 2Φ(S)) for all T, S ∈ A, then Φ is either an isomorphism or an
anti-isomorphism.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

The study of linear maps on operator algebras that preserve certain prop-
erties of operators has attracted the attention of many mathematicians in recent
decades. In particular, surjective linear maps between Banach algebras which
preserve the spectrum are extensively studied in connection with a longstanding
open problem sometimes called Kaplansky’s problem on invertibility preserving
linear maps (for a recent survey, see [9]). Let X and Y be two complex Banach
spaces, and B(X, Y) (B(X) if X = Y) be the Banach space (Banach algebra) of
all bounded linear operators from X into Y (from X into itself). In [10], Jafar-
ian and Sourour proved that a spectrum-preserving linear map from B(X) onto
B(Y) is either an isomorphism or an anti-isomorphism. Aupetit and Mouton [2]
extended the result of Jafarian and Sourour to primitive Banach algebras with
minimal ideals. Later, Aupetit [1] proved that every spectrum-preserving linear
surjection between von Neumann algebras is a Jordan isomorphism. A character-
ization of spectrum preserving additive maps on B(X) was obtained by Omladič
and Šemrl in [15].
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Instead of linear maps preserving spectrum, one can discuss the linear (or
additive) maps which preserve various parts of the spectrum. In this direction,
[16] by Šemrl is the first one to deal with such linear maps. In [16] it was shown
that every linear surjection preserving point spectrum on B(X) is an automor-
phism and when X is a Hilbert space, every linear surjection preserving surjectiv-
ity spectrum is an automorphism. More generally, the additive surjective maps
on standard operator algebras preserving one of several parts of the spectrum
were characterized in [4], and the linear surjective maps on some operator alge-
bras compressing one of several parts of the spectrum were characterized in [5].

For an operator T ∈ B(X), the symbols σ(T), σl(T), σr(T), ∂σ(T), ησ(T),
σap(T), σp(T), σc(T), and σs(T), as usual, denote the spectrum, the left spectrum,
the right spectrum, the boundary of the spectrum, the full spectrum, the approx-
imate point spectrum, the point spectrum, the compression spectrum, and the
surjectivity spectrum of T, respectively. Recall that the full spectrum ησ(T) of
T is the polynomial convex hull of σ(T); the compression spectrum σc(T) of T
is the set {λ ∈ C : the range of T − λI is not dense in X}; and the surjectivity
spectrum σs(T) of T is the set {λ ∈ C : T − λI is not surjective}. Let 4 denote
any one of the symbols σ, σl, σr, σl ∩ σr, ∂σ, ησ, σp, σc, σap, σs, σap ∩ σs, σp ∩ σc,
and σp ∪ σc. Then 4(·) is a map from B(X) into 2C, which is called a spectral
function on B(X). A map Φ : B(X) → B(Y) is said to be 4(·) preserving if
4(Φ(T)) = 4(T) for every T ∈ B(X). Note that, for a finite rank operator, all
parts of the spectrum listed above are the same.

Similarly, we can introduce various spectral functions on the standard oper-
ator algebras. Recall that a standard operator algebra R on a Banach space X is a
Banach subalgebra of B(X) which contains the identity and the ideal of all finite
rank operators. Let R be a standard operator algebra on a complex Banach space
X. An element T ∈ R is called a left (respectively, right) zero divisor if there
exists a nonzero element S ∈ R such that TS = 0 (respectively, ST = 0). We call
T a left (respectively, right) topological divisor of zero if there exists a sequence
{Sn}∞

n=1 ⊂ R satisfying ‖Sn‖ = 1 such that TSn → 0 (respectively, SnT → 0).
For T ∈ R, let us define some spectral functions of T relative to R. As usual,
σRl (T), σRr (T), ∂σR(T) and ησR(T) stand for the left spectrum, the right spec-
trum, the boundary of the spectrum and the full spectrum (i.e., the polynomial
convex hull of σR(T)) of T relative to R, respectively. Let σRp (T) (respectively,
σRc (T)) be the set of all complex numbers λ such that λI− T is a left (respectively,
right) zero divisor of R, and let σRap(T) (respectively, σRs (T)) be the set of all com-
plex numbers λ such that λI − T is a left (respectively, right) topological divisor
of zero of R. Obviously, we have σRp (T) ⊆ σRap(T) ⊆ σRl (T) ⊆ σR(T) ⊆ ησR(T)
(σRc (T) ⊆ σRs (T) ⊆ σRr (T) ⊆ σR(T)) and ∂σR(T) ⊆ σRap(T) ∩ σRs (T) for every
T ∈ R. If R = B(X), we will simply write ∆B(X)(·) as ∆(·), where ∆ is any one
of the symbols σ, σl, σr, ∂σ, ησ, σp, σc, σap and σs. Then ∆(T) coincides with the
corresponding spectral function of T as an operator on X. It is also obvious that
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the following relations are true for every T ∈ R: σ(T) ⊆ σR(T), σl(T) ⊆ σRl (T),
σr(T) ⊆ σRr (T), ∂σR(T) ⊆ ∂σ(T), ησR(T) = ησ(T), and ∆R(T) = ∆(T) when-
ever ∆ takes any one of the symbols σp, σc, σap and σs, since F (X) ⊂ R, where
F (X) denotes the set of all finite rank operators which is an ideal (not closed) of
B(X).

Let 4R(·) denote any one of the spectral functions σR(·), σRl (·), σRr (·),
σRl (·)∩ σRr (·), ∂σR(·), ησR(·), σRap(·), σRs (·), σRap(·)∩ σRs (·), σRp (·), σRc (·), σRp (·)∩
σRc (·), and σRp (·) ∪ σRc (·), where 4R(T) denotes the spectral function of T rela-
tive to the algebra R.

It is clear that if Φ on R is an additive map preserving the spectral function
4R(·), then we have

(1.1) 4R(T + λS) = 4R(Φ(T) + λΦ(S))

holds for all T, S ∈ R and all λ ∈ Q (the field of rational numbers). The aim of
this paper is to show that, for a surjective map Φ (no linearity or even additivity
is assumed) on a standard operator algebra R, the spectral property (1.1) alone
is enough to determine the structures of the map Φ. In fact, (1.1) gives a char-
acterization of a map Φ to be an automorphism or an anti-automorphism on R.
Moreover, it is enough assuming that (1.1) holds only for two distinct nonzero
points in Q, that is, we have the following

MAIN THEOREM. Let A and B be two standard operator algebras on a com-
plex infinite dimensional Banach space X and let 4R(·) denote any one of the spec-
tral functions σR(·), σRl (·), σRr (·), σRl (·) ∩ σRr (·), ∂σR(·), ησR(·), σRap(·), σRs (·),
σRap(·) ∩ σRs (·), σRp (·), σRc (·), σRp (·) ∩ σRc (·) and σRp (·) ∪ σRc (·), where R = A or B.
If Φ : A → B is a surjective map satisfying 4A(T + S) = 4B(Φ(T) + Φ(S)) and
4A(T + 2S) = 4B(Φ(T) + 2Φ(S)) for all T, S ∈ A, then either

(i) there is an invertible operator A ∈ B(X) such that Φ(T) = ATA−1 for all
T ∈ A, or

(ii) there is an invertible operator A ∈ B(X′, X) such that Φ(T) = AT′A−1 for all
T ∈ A, where X′ is the dual space of X and T′ is the adjoint operator of T; in this case,
X is reflexive.

The proof of the main theorem is quite different from the additive case in
[4]. Our approach mainly depends on a result concerning the local combination
of operators in [7] (also see [8]). The key step is to show that, for Φ stated in
the main theorem and for each pair of rank-1 operators T and S, Φ(T + S) is a
local linear combination of Φ(T) and Φ(S) with uniformly bounded coefficients.
Thus a result in [7] ensures that Φ(T + S) is a linear combination of Φ(T) and
Φ(S). This fact enables us to prove that Φ preserves rank-1 idempotency and
orthogonality of rank-1 idempotent operators. Then a remarkable result of [12]
can be applied to arrive the desired conclusion.
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We mention here that the problem of characterizing the structures of maps
between operator algebras taking certain spectral properties as invariants was
firstly studied in [14] due to Mrčun, where the Lipschitz maps Φ satisfying Φ(0) =
0 and σ(Φ(T)−Φ(S)) = σ(T− S) for all T, S ∈ Mn(C) (complex matrix algebra)
were discussed. While in [3], the maps Φ satisfying r(Φ(T)−Φ(S)) = r(T − S)
for all T, S ∈ Mn(C) were characterized, where r(T) denotes the spectral radius
of T. For the infinite dimensional cases, there is no corresponding known result.
However, the surjective maps Φ on B(H) satisfying σ(Φ(T)Φ(S)) = σ(TS) for
all T, S ∈ B(H) were described in [13], where H is a complex Hilbert space.

We also remark that in some situations our main result in fact gives a char-
acterization of isomorphisms between standard operator algebras; for instance,
in the case that X is not reflexive, or in the case that 4R = σRp or σRc and the
algebra A is B(X) or has an element which is left invertible but not invertible. It
is obvious however, in many cases, both the form (i) and the form (ii) may occur.
In particular, for the Hilbert space case we have the following corollaries.

COROLLARY 1.1. Let H be a complex infinite dimensional Hilbert space and let
4(·) denote any one of the spectral functions σ(·), σl(·) ∩ σr(·), ∂σ(·), ησ(·), σap(·) ∩
σs(·), σp(·) ∩ σc(·) and σp(·) ∪ σc(·). Then a surjective map Φ : B(H) → B(H)
satisfies that 4(T + S) = 4(Φ(T) + Φ(S)) and 4(T + 2S) = 4(Φ(T) + 2Φ(S))
for all T, S ∈ B(H) if and only if there is an invertible operator A ∈ B(H) such that,
either

(i) Φ(T) = ATA−1 for all T ∈ B(H), or
(ii) Φ(T) = ATt A−1 for all T ∈ B(H), where Tt denotes the transpose operator of T

with respect to an arbitrarily fixed orthonormal basis of H.

COROLLARY 1.2. Let H be a complex infinite dimensional Hilbert space and let
4(·) denote any one of the spectral functions σl(·), σr(·), σap(·), σs(·), σp(·) and σc(·).
Then a surjective map Φ : B(H) → B(H) satisfies that4(T + S) = 4(Φ(T)+ Φ(S))
and 4(T + 2S) = 4(Φ(T) + 2Φ(S)) for all T, S ∈ B(H) if and only if there is an
invertible operator A ∈ B(H) such that Φ(T) = ATA−1 for all T ∈ B(H).

2. PROOF OF THE MAIN THEOREM

Before embarking on the proof, we introduce some more notations. Through-
out this section, X will denote a complex infinite dimensional Banach space and
X′ the dual space of X. B(X), F (X), F1(X) and F2(X) denote the algebra of all
bounded linear operators on X, the ideal of all finite rank operators, the set of
all operators with rank 6 1 and the set of all operators with rank 6 2 in B(X),
respectively. If x ∈ X and f ∈ X′, then x ⊗ f stands for the operator of rank at
most one defined by

(x⊗ f )y = f (y)x (y ∈ X).
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Clearly, every operator T ∈ F (X) is a finite sum of rank-1 operators. On F (X),
one can define a trace functional tr by

trT = ∑
n

fn(xn),

where T = ∑
n

xn⊗ fn. Then tr is a well-defined linear functional with the property

that tr(TS) = tr(ST) for every T ∈ F (X) and S ∈ B(X). In some places, we also
write f (x) as 〈x, f 〉 for x ∈ X and f ∈ X′.

Before the proof is given we need several lemmas which were proved in
[4] and [5]. In the following lemmas, let 4A(·) denote any one of the spec-
tral functions σA(·), σAl (·), σAr (·), σAl (·) ∩ σAr (·), ∂σA(·), ησA(·), σAap(·), σAs (·),
σAap(·) ∩ σAs (·), σAp (·), σAc (·), σAp (·) ∩ σAc (·), and σAp (·) ∪ σAc (·).

LEMMA 2.1 ([4], Lemma 2.2). LetA be a standard operator algebra on a complex
Banach space X. Then, for an operator R ∈ A, the following conditions are equivalent:

(i) R has rank one;
(ii) 4A(T + R) ∩4A(T + cR) ⊆ 4A(T) for every operator T ∈ A with σA(T)

being finite and every scalar c 6= 1;
(iii) 4A(T + R)∩4A(T + cR) ⊆ 4A(T) for every operator T ∈ F2(X) and every

scalar c 6= 1;
(iv) 4A(T + R) ∩4A(T + 2R) ⊆ 4A(T) for every operator T ∈ A with σA(T)

being finite;
(v) 4A(T + R) ∩4A(T + 2R) ⊆ 4A(T) for every operator T ∈ F2(X).

LEMMA 2.2 ([4], Lemma 2.3). LetA be a standard operator algebra on a complex
Banach space X and T, S ∈ A. If4A(T + R) = 4A(S + R) for every rank one operator
R ∈ B(X), then T = S.

The next lemma was obtained in [5], Lemma 4.2, for nine among these thir-
teen spectral functions. By checking the proof there we see that the lemma is also
valid for other four spectral functions.

LEMMA 2.3. Let A be a standard operator algebra on a complex Banach space
X. For T ∈ A and λ ∈ C with λ /∈ ησ(T), λ ∈ 4A(T + x ⊗ f ) if and only if
〈(λI − T)−1x, f 〉 = 1.

The following lemma is crucial for our purpose. It is taken from Theorem 2.2
of [7], where it is stated only for Hilbert space case. However, by checking the
proof there, it is easily seen that the result holds true also for Banach space case.

LEMMA 2.4. Let X and Y be complex Banach spaces, and A, B, C ∈ B(X, Y). If
for every x ∈ X there are complex numbers a(x) and b(x) such that Cx = a(x)Ax +
b(x)Bx and sup{|a(x)|, |b(x)| : x ∈ X} < ∞, then C is a linear combination of A
and B.
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To prove our main theorem, a result due to Molnă r [12] is also needed. For
reader’s convenience sake, we list it as a lemma.

LEMMA 2.5. Let X be an infinite dimensional complex Banach space and I1(X)
the set of all rank-1 idempotent operators in B(X). Let φ : I1(X) → I1(X) be a bijective
map with the property that PQ = 0 ⇔ φ(P)φ(Q) = 0 for all P, Q ∈ I1(X). Then there
exists an invertible bounded either linear or conjugate linear operator A : X → X such
that φ(P) = APA−1 for all P ∈ I1(X).

Now we are at a position to give the proof of our main result.

Proof of Main Theorem. We complete the proof by checking several claims.

Claim 1. Φ(0) = 0, Φ is injective, 4A(T) = 4B(Φ(T)) for every T ∈ A and
Φ preserves rank one operators in both directions.

By the assumption, 4A(T) = 4A(T + 0) = 4B(Φ(T) + Φ(0)) = 4A(T +
2 · 0) = 4B(Φ(T) + 2Φ(0)). From the surjectivity of Φ and Lemma 2.2, it follows
that Φ(0) = 2Φ(0) = 0.

Choosing S = 0, we have that 4A(T) = 4B(Φ(T)) for every T ∈ A.
Next we check that Φ is injective. Assume that Φ(T) = Φ(S) for some T,

S ∈ A. Then for arbitrary R ∈ F1(X), we have 4A(T + R) = 4B(Φ(T) +
Φ(R)) = 4B(Φ(S) + Φ(R)) = 4A(S + R). By Lemma 2.2, T = S.

Since 4A(T + S) = 4B(Φ(T) + Φ(S)) and 4A(T + 2S) = 4B(Φ(T) +
2Φ(S)) for all T, S ∈ A, from Lemma 2.1 and the bijectivity of Φ it follows that Φ
preserves rank one operators in both directions.

Claim 2. For every T, S ∈ F1(X), we have that tr(TS) = αTStr(Φ(T)Φ(S))
for a scalar αTS ∈ {1, 1

2 , 2, 7
8 , 8

7} depending on T and S. Consequently, TS = 0
implies either Φ(T)Φ(S) = 0 or Φ(S)Φ(T) = 0.

Note that 4A(T) = σ(T) has at most two points, with one being zero, if T
is a rank-1 operator. Thus we may write 4A(T) = {0, ξT} and 4A(S) = {0, ξS}
for some ξT and ξS ∈ C (ξT and ξS may be zero).

Since 4A(T + S) = 4B(Φ(T) + Φ(S)), by the spectral mapping theorem,
we have that 4A((T + S)2 − ξS(T + S)) = 4B((Φ(T) + Φ(S))2 − ξS(Φ(T) +
Φ(S))). It follows that 4A(ξTT − ξST + TS + ST) = 4B(ξTΦ(T) − ξSΦ(T) +
Φ(T)Φ(S) + Φ(S)Φ(T)). By Claim 1, both ξTT − ξST + TS + ST and ξTΦ(T)−
ξSΦ(T) + Φ(T)Φ(S) + Φ(S)Φ(T) are operators of rank not greater than 2. Thus
we have for some scalar α ∈ {1, 1

2 , 2} that tr(ξTT− ξST + TS + ST) = αtr(ξTΦ(T)
−ξSΦ(T) + Φ(T)Φ(S) + Φ(S)Φ(T)). It follows that

ξ2
T − ξTξS + 2tr(TS) = α(ξ2

T − ξTξS) + 2αtr(Φ(T)Φ(S))

and so

(2.1) 2tr(TS)− 2αtr(Φ(T)Φ(S)) = (α− 1)(ξ2
T − ξTξS).

If α = 1 or ξT = 0 or ξS = ξT , then we already have the desired relation between
tr(TS) and tr(Φ(T)Φ(S)). So in the sequel we assume that α 6= 1, ξS 6= ξT
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and ξT 6= 0. Similarly, 4A((T + S)2 − ξT(T + S)) = 4B((Φ(T) + Φ(S))2 −
ξT(Φ(T) + Φ(S))) yields that

(2.2) 2tr(TS)− 2βtr(Φ(T)Φ(S)) = (β− 1)(ξ2
S − ξTξS)

holds for some β ∈ {1, 1
2 , 2}.

By considering (T + 2S)2 − ξT(T + 2S) and (S + 2T)2 − (S + 2T), it follows
from 4A(T + 2S) = 4B(Φ(T) + 2Φ(S)) that there exist γ, δ ∈ {1, 1

2 , 2} such that

(2.3) 2tr(TS)− 2γtr(Φ(T)Φ(S)) = (γ− 1)(2ξ2
S − ξTξS)

and

(2.4) 2tr(TS)− 2δtr(Φ(T)Φ(S)) = (δ− 1)(2ξ2
T − ξTξS).

We may assume further that β, γ, δ ∈ { 1
2 , 2}, ξS 6= 0, 2ξS − ξT 6= 0 and 2ξT − ξS 6=

0; otherwise, we have already proved the claim. Solving the equations (2.1) and
(2.4) we get

ξ2
T =

( 2
δ− 1

− 2
α− 1

)
tr(TS)−

( 2δ

δ− 1
− 2α

α− 1

)
tr(Φ(T)Φ(S))

and

ξTξS =
( 2

δ− 1
− 4

α− 1

)
tr(TS)−

( 2δ

δ− 1
− 4α

α− 1

)
tr(Φ(T)Φ(S)),

while the equations (2.2) and (2.3) give that

ξ2
S =

( 2
γ− 1

− 2
β− 1

)
tr(TS)−

( 2γ

γ− 1
− 2β

β− 1

)
tr(Φ(T)Φ(S)).

Thus, by (2.2),

2
β− 1

tr(TS)− 2β

β− 1
tr(Φ(T)Φ(S))

= ξ2
S − ξTξS

=
( 2

γ− 1
− 2

β− 1

)
tr(TS)−

( 2γ

γ− 1
− 2β

β− 1

)
tr(Φ(T)Φ(S))

−
( 2

δ− 1
− 4

α− 1

)
tr(TS) +

( 2δ

δ− 1
− 4α

α− 1

)
tr(Φ(T)Φ(S)),

which gives
( 2

β− 1
− 2

α− 1
+

1
δ− 1

− 1
γ− 1

)
tr(TS)

=
( 2β

β− 1
− 2α

α− 1
+

δ

δ− 1
− γ

γ− 1

)
tr(Φ(T)Φ(S))

=
( 2

β− 1
− 2

α− 1
+

1
δ− 1

− 1
γ− 1

)
tr(Φ(T)Φ(S)).

If 2
β−1 − 2

α−1 + 1
δ−1 − 1

γ−1 6= 0, then tr(TS) = tr(Φ(T)Φ(S)) and the claim is true.

Note that α, β, γ, δ ∈ { 1
2 , 2} and there are sixteen possible choices of (α, β, γ, δ). It
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is easily checked that there are four choices for which we have 2
β−1 − 2

α−1 + 1
δ−1 −

1
γ−1 = 0, that is, (α, β, γ, δ) takes one of the following cases:

(1◦) ( 1
2 , 1

2 , 1
2 , 1

2 );
(2◦) (2, 2, 2, 2);
(3◦) ( 1

2 , 1
2 , 2, 2);

(4◦) (2, 2, 1
2 , 1

2 ).
It follows from the equations (2.2) and (2.3) that any one of (1◦) and (2◦)

leads to a contradiction, namely ξS = 0. So, cases (1◦) and (2◦) can not occur.
Assume (3◦). Equations (2.1) and (2.2) together imply that ξT = −ξS and

therefore, equation (2.2) and (2.3) become

2tr(TS)− tr(Φ(T)Φ(S)) = −ξ2
S

and
2tr(TS)− 4tr(Φ(T)Φ(S)) = 3ξ2

S,

respectively. Thus we have

tr(Φ(T)Φ(S)) = −4
3

ξ2
S, tr(TS) = −7

6
ξ2

S

and hence,

tr(TS) =
7
8

tr(Φ(T)Φ(S)).

Similarly, the case (4◦) implies that

tr(TS) =
8
7

tr(Φ(T)Φ(S)).

This completes the proof of Claim 2.
Claim 3. For T, S ∈ F1(X) with T + S ∈ F1(X), we have Φ(T + S) =

αΦ(T) + βΦ(S) for some nonzero α, β ∈ C depending on T and S. Moreover,
Φ(λS) = ξλΦ(S) for every λ ∈ C.

Choose nonzero R ∈ F1(X) arbitrarily. Write Φ(R) = x ⊗ f . Then, by
Claim 2, one gets

tr(TR) = αx f tr(Φ(T)Φ(R)),

tr(SR) = βx f tr(Φ(S)Φ(R))
and

tr((T + S)R) = γx f tr(Φ(T + S)Φ(R)),

where αx f , βx f , γx f ∈ {1, 1
2 , 2, 7

8 , 8
7}.

Suppose that T and S are linearly dependent; without loss of generality,
say T = λS for some scalar λ. Then tr(TR) = αx f tr(Φ(T)Φ(R)) = λtr(SR) =
λβx f tr(Φ(S)Φ(R)). That is 〈αx f Φ(T)x, f 〉 = 〈λβx f Φ(S)x, f 〉. Since R ∈ F1(X) is
arbitrary and Φ(F1(X)) = F1(X) by Claim 1, we see that Φ(T) ∈ CΦ(S). It is
also easily seen that, in this case, we can find nonzero scalars α and β such that
Φ(T + S) = αΦ(T) + βΦ(S).
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Assume that T and S are linearly independent; then

tr(γx f Φ(T + S)Φ(R)) = tr((T + S)R) = tr(TR + SR) = tr(TR) + tr(SR)

= αx f tr(Φ(T)Φ(R)) + βx f tr(Φ(S)Φ(R))

= tr((αx f Φ(T) + βx f Φ(S))Φ(R)).

Consequently,

(2.5) 〈(αx f Φ(T) + βx f Φ(S))x, f 〉 = 〈γx f Φ(T + S)x, f 〉
for every x ∈ X and f ∈ X′. In particular, for every f ∈ {Φ(T)x, Φ(S)x}⊥ and
x ∈ X, we have 〈γx f Φ(T + S)x, f 〉 = 0, which implies that Φ(T + S)x lies in the
linear span of Φ(T)x and Φ(S)x. Say Φ(T + S)x = ξxΦ(T)x + ηxΦ(S)x. Assume
that there exists a u ∈ X such that Φ(T)u and Φ(S)u are linearly dependent
with Φ(T)u 6= 0, Φ(S)u 6= 0 and Φ(T + S)u 6= 0. Then Φ(T) and Φ(S) may
be written as Φ(T) = y ⊗ g1, Φ(S) = y ⊗ g2. Choose f ∈ X′ with 〈y, f 〉 6= 0.
Since Φ(T + S)u = ξuΦ(T)u + ηuΦ(S)u, we have that Φ(T + S) = y ⊗ g3 for
some functional g3. It follows from equation (2.5) and a simple computation that
〈x, αx f g1 + βx f g2〉 = 〈x, γx f g3〉 holds for every x ∈ X. This implies that g3 lies in
the linear span of g1 and g2. Thus Φ(T + S) = αΦ(T) + βΦ(S) for some scalars
α and β. Now we assume that the above vector u does not exist. By Lemma
2.4, to show that Φ(T + S) = αΦ(T) + βΦ(S) for some scalar α and β, we only
need to check that {ξx : x ∈ X} and {ηx : x ∈ X} are bounded sets. If Φ(T)x
and Φ(S)x are linearly independent, then there is a linear functional f ∈ X′ such
that 〈Φ(T)x, f 〉 = 0 and 〈Φ(S)x, f 〉 6= 0. It follows from the equation (2.5) that

〈βx f Φ(S)x, f 〉 = 〈γx f ηxΦ(S)x, f 〉. Thus we have ηx =
βx f
γx f

. Note that βx f , γx f ∈
{1, 1

2 , 2, 7
8 , 8

7}, so |ηx| 6 4. Similarly, |ξx| 6 4, too. Assume that Φ(T)x and Φ(S)x
are linearly dependent. Then from the discussion above, at least one of Φ(T)x,
Φ(S)x and Φ(T + S)x is zero. In the case that Φ(T)x 6= 0 and Φ(S)x 6= 0, or
in the case that Φ(T)x = Φ(S)x = 0, we must have Φ(T + S)x = 0. Thus
we can choose ξx = ηx = 0. If Φ(S)x = 0 and Φ(T)x 6= 0, then, for every
f ∈ X′, 〈(αx f Φ(T)+ βx f Φ(S))x, f 〉 = 〈γx f Φ(T + S)x, f 〉 = 〈αx f Φ(T)x, f 〉. Hence

Φ(T + S)x =
αx f
γx f

Φ(T)x. Thus we can choose ηx = 0 and ξx =
αx f
γx f

, which are

bounded by 4. Similarly, if Φ(S)x 6= 0 and Φ(T)x = 0, we have Φ(T + S)x =
ηxΦ(S)x, where ηx is bounded by 4. Therefore, there exist α, β ∈ C such that
Φ(T + S) = αΦ(T) + βΦ(S). Finally, let us check that αβ 6= 0. If α = 0, then
Φ(T + S) = βΦ(S). Thus T + S lies in the linear span of S which contradicts to
the fact that T and S are linearly independent. Similarly, we can check that β 6= 0.

Claim 4. Let T ∈ F1(X). Then either Φ(T)Φ(S) = 0 for every S ∈ F1(X)
with TS = 0, or Φ(S)Φ(T) = 0 for every S ∈ F1(X) with TS = 0.

We need only to check that if there is an R ∈ F1(X) such that TR = 0,
Φ(T)Φ(R) = 0 and Φ(R)Φ(T) 6= 0, then the first assertion is true; and if there is
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an R ∈ F1(X) such that TR = 0, Φ(T)Φ(R) 6= 0 and Φ(R)Φ(T) = 0, then the
latter assertion is true.

Let T = x1⊗ f1, R = x2⊗ f2 and S = x3⊗ f3 and assume that TR = TS = 0,
Φ(T)Φ(R) = 0 and Φ(R)Φ(T) 6= 0. It is clear that 〈x2, f1〉 = 〈x3, f1〉 = 0. Let
us first check that Φ(T)Φ(x2 ⊗ f ) = 0 for every f ∈ X′. Suppose there exists
an f ∈ X′ such that Φ(T)Φ(x2 ⊗ f ) 6= 0. By Claim 2, Φ(x2 ⊗ f )Φ(T) = 0 and
either Φ(x2 ⊗ ( f + f2))Φ(T) = 0 or Φ(T)Φ(x2 ⊗ ( f + f2)) = 0. But on the other
hand, by Claim 3, we have Φ(x2 ⊗ ( f + f2))Φ(T) = (α1Φ(x2 ⊗ f ) + α2Φ(x2 ⊗
f2))Φ(T) 6= 0 and Φ(T)Φ(x2⊗ ( f + f2)) = Φ(T)(α1Φ(x2⊗ f ) + α2Φ(x2⊗ f2)) 6=
0, a contradiction.

Now we verify that Φ(T)Φ(S) = 0. Assume, on the contrary, that Φ(T)Φ(S)
= Φ(x1 ⊗ f1)Φ(x3 ⊗ f3) 6= 0; then Φ(S)Φ(T) = Φ(x3 ⊗ f3)Φ(x1 ⊗ f1) = 0. Just
like the argument as in the above paragraph, we can get Φ(x3 ⊗ f )Φ(T) = 0
for every f ∈ X′. Thus Φ(T)Φ(x2 ⊗ f3) = Φ(x3 ⊗ f2)Φ(T) = 0. Note that ei-
ther Φ(T)Φ((x2 + x3) ⊗ f2) = 0 or Φ((x2 + x3) ⊗ f2)Φ(T) = 0. So we have
Φ(T)Φ(x3 ⊗ f2) = 0 and Φ(x3 ⊗ f2)Φ(T) = 0. Similarly, Φ(T)Φ(x2 ⊗ f3) = 0
and Φ(x2 ⊗ f3)Φ(T) = 0. Because either Φ((x2 + x3) ⊗ ( f2 + f3))Φ(T) = 0 or
Φ(T)Φ((x2 + x3)⊗ ( f2 + f3)) = 0, one sees that either

Φ(T)α1Φ(x2 ⊗ f2) + Φ(T)α2Φ(x3 ⊗ f3)

+ Φ(T)α3Φ(x2 ⊗ f3) + Φ(T)α4Φ(x3 ⊗ f2) = 0

for some nonzero numbers αi ∈ C or

β1Φ(x2 ⊗ f2)Φ(T) + β2Φ(x3 ⊗ f3)Φ(T)

+ β3Φ(x2 ⊗ f3)Φ(T) + β4Φ(x3 ⊗ f2)Φ(T) = 0

for some nonzero numbers βi ∈ C, i = 1, . . . , 4. However, this leads to Φ(T)Φ(x3
⊗ f3) = Φ(T)Φ(S) = 0, a contradiction. Hence the first assertion of the claim is
true.

The second assertion can be checked similarly.

Claim 5. For x ∈ X and f ∈ X′, denote Lx = {x ⊗ h : h ∈ X′} and R f =
{u⊗ f : u ∈ X}. Then exactly one of the following is true:

(a) there exist maps x 7→ y(x) from X into X and f 7→ g( f ) from X′ into X′
such that Φ(Lx) ⊆ Ly(x) for every x ∈ X and Φ(R f ) ⊆ Rg( f ) for every f ∈ X′;

(b) there exist maps x 7→ g(x) from X into X′ and f 7→ y( f ) from X′ into X
such that Φ(Lx) ⊆ Rg(x) for every x ∈ X and Φ(R f ) ⊆ Ly( f ) for every f ∈ X′.

It follows from Claim 3 that both Φ(Lx) and Φ(R f ) are additive subgroups
consisting of rank-1 operators. So Φ(Lx) and Φ(R f ) are contained in Ly or Rg for
some y and g depending on x and f , respectively.

Now we show that either

(I) Φ(Lx) ⊆ Ly(x) for every x ∈ X, or
(II) Φ(Lx) ⊆ Rg(x) for every x ∈ X.
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Suppose that there exist vectors x1 and x2 satisfying

dim(spanΦ(Lx1)) > 2, dim(spanΦ(Lx2)) > 2

and
Φ(Lx1) ⊆ Ly1 , Φ(Lx2) ⊆ Rg2 .

Then there exist f1 and f2 in X′ such that Φ(x1 ⊗ f1) = y1 ⊗ g1 and Φ(x2 ⊗ f2) =
y2 ⊗ g2 such that y1 is linearly independent to y2 and g1 is linearly independent
to g2. Let Φ(x1 ⊗ f2) = y1 ⊗ g3 and Φ(x2 ⊗ f1) = y3 ⊗ g2. It follows from Claim 3
that

Φ(x1 ⊗ f2 + x2 ⊗ f2) = α1Φ(x1 ⊗ f2) + α2Φ(x2 ⊗ f2) = α1y1 ⊗ g3 + α2y2 ⊗ g2.

Because Φ preserves rank one operators in both directions, α1y1 ⊗ g3 + α2y2 ⊗ g2
is a rank one operator. Since y1 and y2 are linearly independent, we see that g2
and g3 must be linearly dependent, i.e., g3 = β1g2 for some scalar β1. Similarly,
since Φ(x2 ⊗ f1 + x1 ⊗ f1) and Φ((x1 + x2)⊗ ( f1 + f2)) are rank one operators,
we can get y3 = β2y1 for some scalar β2 and g1 = β3g2. Thus g1 is linearly
dependent to g2, arriving a contradiction.

In the same way, we can check that either

(I′) Φ(R f ) ⊆ Ly( f ) for every f ∈ X′, or
(II′) Φ(R f ) ⊆ Rg( f ) for every f ∈ X′.

Now we only need to show that (I) and (I′), (II) and (II′) do not occur si-
multaneously. Assume, on the contrary, that both (I) and (I′) hold true. Fix a
vector f0 ∈ X′; then, for every x ∈ X, we have x ⊗ f0 ∈ Lx ∩ R f0 . It follows
that Φ(x⊗ f0) ∈ Ly(x) ∩ Ly( f0), which implies that y(x) and y( f0) are linearly de-
pendent. Thus Φ(F1(X)) ⊆ Ly( f0), this contradicts the property that Φ preserves
rank-1 operators in both directions. Applying the same process, we can prove
that (II) and (II′) can not occur at the same time.

In Claim 6–Claim 8, we will assume that the case (a) holds true, and then
prove that Φ has the form (i) in the theorem, i.e., Φ is an isomorphism.

Claim 6. For any T, S ∈ F1(X), TS = 0 implies that Φ(T)Φ(S) = 0.

Pick a rank one operator T ∈ F1(X). By Claim 4, we already knew that
either Φ(T)Φ(S) = 0 for every S ∈ F1(X) with TS = 0; or Φ(S)Φ(T) = 0 for
every S ∈ F1(X) with TS = 0. Assume that the latter occurs, we shall induce a
contradiction. Write T = x0⊗ f0 and Φ(T) = y0⊗ g0. Note that, for every g ∈ X′,
there is a vector f ∈ X′ such that Φ(R f ) ⊆ Rg. Take x ∈ ker f0; then Tx⊗ f = 0
and Φ(x⊗ f )Φ(T) = Φ(x⊗ f )y0 ⊗ g0 = 0, which implies that 〈y0, g〉 = 0. Thus
we get y0 = 0; since g is arbitrary, this is impossible.

Claim 7. There exists an invertible operator A ∈ B(X) such that Φ(T) =
ATA−1 for every T ∈ F1(X).

Since Φ is bijective and Φ−1 has the same properties as Φ, we have TS =
0 ⇔ Φ(T)Φ(S) = 0 for any T, S ∈ F1(X). Using Lemma 2.5, we see that there
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exists an invertible bounded either linear or conjugate linear operator A : X → X
such that Φ(P) = APA−1 for every rank-1 idempotent P ∈ B(X).

By Claim 4 and 4A(T) = 4B(Φ(T)) for every T ∈ A, it follows that
Φ(λP) = λΦ(P) for every rank-1 idempotent and scalar λ. So the operator A
in above paragraph is linear. Moreover Φ(x ⊗ f ) = A(x ⊗ f )A−1 for all x ∈ X
and f ∈ X′ with 〈x, f 〉 6= 0.

For any x ∈ X and f ∈ X′ with 〈x, f 〉 = 0, take g ∈ X′ such that 〈x, g〉 = 1.
Then

Φ(x⊗ f ) = Φ(x⊗ ( f − g) + x⊗ g) = ξ1Φ(x⊗ ( f − g)) + ξ2Φ(x⊗ g)

= A(ξ1x⊗ ( f − g) + ξ2x⊗ g)A−1 = A(x⊗ (ξ1( f − g) + ξ2g)A−1

for some nonzero scalars ξ1 and ξ2. Noticing that Φ preserves the spectrum of
operators, we must have α1 = α2. Therefore, Φ(x⊗ f ) = ξ A(x⊗ f )A−1 for some
scalar ξ. Next we verify that ξ = 1. Take a rank-1 idempotent P. It is easy to see
that σ(P + x⊗ f ) = σ(Φ(P) + Φ(x⊗ f )) = σ(P + ξx⊗ f ). So 〈(λ− P)−1x, f 〉 = 1
if and only if ξ〈(λ− P)−1x, f 〉 = 1 for every λ /∈ σ(P). Thus ξ = 1.

Claim 8. Φ(T) = ATA−1 for every T ∈ A.

By Lemma 2.3, for every λ ∈ Cwith |λ| > ‖T‖, we have that

λ ∈ ησ(T + x⊗ f ) ⇔ 〈(λI − T)−1x, f 〉 = 1.

Thus, for any T ∈ A, x ∈ X, f ∈ X′ and any λ ∈ Cwith |λ| > max{‖T‖, ‖Φ(T)‖},
λ ∈ 4A(T + x⊗ f ) = 4B(Φ(T)+ A(x⊗ f )A−1) if and only if 〈(λI−T)−1x, f 〉 =
〈(λI −Φ(T))−1 Ax, (A−1)′ f 〉 = 1. It follows that

(2.6) 〈(I −ωT)−1x, f 〉 = 〈(I −ωΦ(T))−1 Ax, (A−1)′ f 〉
holds for every ω ∈ C with 0 < |ω| < min{‖T‖−1, ‖Φ(T)‖−1} and for every
T ∈ A, x ∈ X, f ∈ X′. Since each side of Equation (2.6) is analytic in {ω :
0 < |ω| < min{‖T‖−1, ‖Φ(T)‖−1}} with removable singularity at 0, taking the
derivative at ω = 0, we get 〈Tx, f 〉 = 〈Φ(T)Ax, (A−1)′ f 〉 = 〈A−1Φ(T)Ax, f 〉.
Therefore, we have Φ(T) = ATA−1 for all T ∈ A.

A similar argument shows that the case (b) in Claim 5 will implies that Φ has
the form (ii) in the main theorem, i.e., Φ is an anti-isomorphism. The reflexivity
of X in this case is easily checked (for example, see proof of Theorem 1.4 in [6]).
We omit the details here.
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