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1. INTRODUCTION

The Gelfand theorem [10] suggests that a C∗-algebra can be thought of as
a noncommutative generalization of a topological space. This point of view has
been systematically developed by Connes [6] and many others. One of the key
properties of a topological space is its covering dimension, or Lebesgue dimen-
sion. Stable rank is one of several generalizations of the Lebesgue dimension of
topological spaces to the setting of C∗-algebras, and is defined to be the Bass sta-
ble rank of the unital ring obtained by unitizing a C∗-algebra. The seminal work
on stable rank of C∗-algebras is probably that of Rieffel [23]. In recent years, stable
rank has been of increasing interest for the classification program for C∗-algebras,
probably because of an example [26] of two C∗-algebras with the same Elliott in-
variant but different stable ranks. In this paper we give a counterexample that is
closely tied to the Dixmier-Douady classification of bundles of elementary alge-
bras. Recall that Dixmier and Douady [9] first showed (using Michael’s selection
theorem as has been done several times in classification problems) that locally
trivial Hilbert bundles over compact finite-dimensional paracompact spaces are
in fact trivial (this is nowadays a corollary of Kuiper’s theorem, which implies
contractibility of the structure group of a Hilbert bundle; the restriction on the
dimension can then be dropped). They then considered not necessarily locally
trivial bundles with fibres K(H) and structure group B(H)−1, such that sections
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by projections of rank 1 exist locally. The global sections of the bundle form a
C∗-algebra, and:

(1) These algebras are classified up to stable isomorphism by the third Čech
cohomology class defined by their transition functions [9].

(2) If the base space is finite-dimensional (and paracompact) then the bundle
is necessarily locally trivial ([8], Theorem 10.8.8).

(3) More recently, see Proposition 1.12 in [21], it has been noted that the algebra
of sections is stable if and only if the bundle is locally trivial (c.f. [7]).

It is of great interest to find an algebraic characterization of the above class
of algebras. Dixmier ([8], Theorem 10.9.5 and [7]) did this by showing that the
above algebras of sections are exactly the separable, ℵ0-homogeneous, continu-
ous trace C∗-algebras with Hausdorff spectrum. Naturally, the main case of inter-
est has been the locally trivial case. Nevertheless, local triviality can be dropped,
and Lee [14] showed that any C∗-algebra with Hausdorff spectrum and all rep-
resentations infinite-dimensional is the section algebra of some (possibly not lo-
cally trivial) bundle with varying fibres, leading to the theory of operator fields.
For some interesting results about obtaining local multiplier algebras and quasi-
standard C∗-algebras as operator fields, see Section 3.5 and 3.6 of [2]. Returning
to the topic of stable rank, one can pose questions such as the following:

QUESTION 1.1. Let X be a second countable, σ-compact metric space with
dimension k (possibly infinite). Suppose that A is a maximal full algebra of op-
erator fields over X with fibre algebras, say, {At}t∈X . Then is it the case that the
stable rank of A satisfies the inequality

sr(A) 6 sup
t∈X

sr(C([0, 1]k)⊗ At) ?

This is indeed the case if the space X has finite dimension [19], [18]. The
result was used to compute the stable rank of the universal C∗-algebra of an arbi-
trary finitely generated torsion-free two-step nilpotent group Γ. Roughly speak-
ing, Ng and Sudo showed that the stable rank of C∗(Γ) is controlled by the or-
dinary topological dimension of the one-dimensional irreducible representations
of Γ [19], [18].

2. MAIN RESULT

In this paper, we contribute modestly to the recent trend for examples of
C∗-algebras that cause difficulty for the classification program due to what are in
some sense higher-dimensional phenomena. (For example, see references [27] and
[24], and for an earlier application, Dixmier and Douady ([8], Section 10.10.9).)
Our counterexample gives a negative answer to the following two questions:
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(i) Given that the Dixmier-Douady invariant classified continuous trace C∗-
algebras with finite-dimensional Hausdorff spectrum, and more generally clas-
sified continuous trace algebras (with Hausdorff spectrum) up to stable isomor-
phism, is it possible that it classifies all ℵ0-homogeneous continuous trace alge-
bras with Hausdorff spectrum?

(ii) Given that [23] the stable rank of A⊗K is less than or equal to 2, is it true
that the section algebra of a bundle with fibres K will have stable rank less than
or equal to 2?

We exhibit a not locally trivial bundle with fibre K and infinite stable rank.
This algebra is immediately a counterexample for (ii), and since it has the same
Dixmier-Douady invariant as its stabilization, it is a counterexample to (i). Dix-
mier and Douady already had examples of not locally trivial bundles that are not
isomorphic to their stabilization, so question (i) is purely rhetorical. A counterex-
ample to (ii) is perhaps not very surprising, except that we can arrange for the
stable rank to be infinite. Given the growing role of stable rank in the classifica-
tion program, we hope our example may however be of interest.

Specifically, we aim to show the following:

THEOREM 2.1. There is a compact, second countable topological space Z and a
(not locally trivial) bundle over Z such that:

(i) every fibre of the bundle is isomorphic to K, the algebra of compact operators over
a separable infinite-dimensional Hilbert space;

(ii) the stable rank of the section algebra is infinite.

3. REMARKS ON DIFFERENTIAL TOPOLOGY

The key fact that we shall need is Proposition 4.3. Before stating it, let us
digress in order to give a quick exposé of the parts of differential topology that
we shall need. References for this section are [14] and [5].

By a generalization of the classical vector calculus, one can define coho-
mology groups in terms of differential forms. Explicit calculations show that the
compactly supported top cohomology group of Euclidean space is singly gen-
erated, and by the Leray-Hirsch theorem [5], in general, if E is a vector bundle,
there exists a cohomology class on the total space of E whose restriction to the
fibres is a generator of the fibre’s top cohomology group. More precisely,

PROPOSITION 3.1 ([5], Proposition 6.18). There is a unique cohomology class in
Hn(E) of the total space E of an oriented real vector bundle of rank n that restricts to the
generator of Hn(V) on each fibre V. The cohomology is defined to have compact support
in the fibre direction.

The above class is sometime called the Thom class of E. It follows from the
definition that the Thom class behaves well with respect to fibrewise direct sum
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of vector bundles:

PROPOSITION 3.2 ([5], Proposition 6.19). The Thom class of E⊕ F is the wedge
product of pullbacks π∗1 (Thom(E)) ∧ π∗2 (Thom(F)) where the πi are the projection
maps from E and F to the common base space M.

We can now define the Euler class to be a restriction of the form defining
the Thom class. More precisely, the Euler class is the pullback of the Thom class
by the zero section, z : M −→ E, regarded as a map into the total space E of a
vector bundle. The Euler class thus inherits the above property of Thom classes,
so that the Euler class of a fibrewise direct sum of vector bundles ξ1 ⊕ ξ2 is the
wedge product of the Euler classes e(ξ1) and e(ξ2). Since the dimension of the
Euler class depends on the real dimension of the vector bundle, and we shall be
using complex dimensions, it follows that the Euler class lives in H2n(M) where
n is the complex dimension of the vector bundle of interest.

Moreover, it is readily seen that if the vector bundle has a nowhere-zero
cross section, its Euler class is zero, and conversely. The Euler class can readily
be computed in most cases by means of an alternative construction involving a
curvature form.

Just as in cohomology we have the Thom isomorphism (or Poincaré Lemma)
relating the cohomology of the total space with that of the base space, in topo-
logical K-theory we have Bott periodicity, giving an isomorphism of K0(X) with
K0(S2X). The image of the generator of K0(pt) ∼= Z under this isomorphism is a
vector bundle over S2, called the Bott bundle (of S2), and the Euler class of the
Bott bundle is canonically given by an element of the image of the Chern map
from K-theory to cohomology.

4. PROOF OF MAIN RESULT

We borrow from the arguments of Villadsen and of Rørdam [24], [25], [27].
The first two lemmas are from Villadsen.

Suppose that M is a finite dimensional, compact, connected and orientable
differentiable manifold. Suppose that L is some finite dimensional normed real
vector space, and let B be the closed unit ball in L. Let π1 : B ×M → B and
π2 : B ×M → M be the natural projection maps. Let C(B ×M, L) be the
space of continuous functions from B×M into L, and let C(B×M, L) have the
supremum norm. Now let BM be the open unit ball in C(B×M, L), with centre
π1. With this terminology, we now can state the following lemma of Villadsen’s
(the lemma is similar to the Lefschetz theorem ([16], Theorem 7.3) and is therefore
likely to have a Morse-theoretical proof):

LEMMA 4.1 ([27], Theorem 1). There is a dense subset of BM consisting of func-
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tions f such that if π is the restriction of π2 to N := f−1{0}, then the induced map
π∗ : H∗(M) → H∗(N ) is injective.

Recall that Lgn(A), as defined by Bass [4], [3], [23], is the set of left-invertible
n-tuples of elements of the unitization Ã of A. The stable rank, by definition, is
the smallest integer such that Lgn(A) is dense in Ãn.

LEMMA 4.2 ([27], Proposition 5). Suppose that A is a unital C∗-algebra, p a
projection in A, and (b1, b2, . . . , bn) ∈ Lgn(A) such that pbi p = 0 for 1 6 i 6 n. Then
p is Murray-von Neumann equivalent to a subprojection of n(1− p) in A⊗K. Here, 1
is the unit of A, n(1− p) is the direct sum of n copies of (1− p), and K is the algebra of
compact operators over a separable infinite dimensional Hilbert space.

In the next proposition, γ is the K-theoretical Bott bundle over S2. One could
use copies of CPn instead of the S2 in the next proposition (as in the early pa-
per [13]).

PROPOSITION 4.3. Let Z :=
( ∞

∏
n=1
D

)
×

( ∞
∏

m=1
S2

)
. There exists a sequence (pk)

of nowhere zero one dimensional projections in C(Z)⊗K such that:
(i) the pks are mutually orthogonal;

(ii) for each k, there is a projection rk in C(S2)⊗K such that pk(~x,~y) = rk(yk) for

all ~x ∈
( ∞

∏
n=1
D

)
and ~y ∈

( ∞
∏

m=1
S2

)
= Z where yj denotes the coordinate belonging

to the jth copy of S2; moreover, the K0-class of rk corresponds to the K0-class of the Bott
bundle γ over S2;

(iii) there is a trivial one-dimensional projection θ1 ∈ C(Z) ⊗ K such that θ1 is or-
thogonal to every pk;

(iv) P =
∞
∑

k=1
pk converges in the strict topology inM(C(Z)⊗K), whereM(C(Z)⊗

K) is the multiplier algebra of C(Z)⊗K, and whereK is the algebra of compact operators
over a separable infinite dimensional Hilbert space.

We now begin the proof of Theorem 2.1:

Proof. Let θ1 be as in part (iii) of the proposition and let P be as in part
(iv) of the proposition. Let Q = θ1 ⊕ P. Let A = Q(C(Z) ⊕ K)Q, where K
is the algebra of operators over a separable infinite dimensional Hilbert space.
Here, A = Q(C(Z) ⊗ K)Q is the intersection of C(Z) ⊗ K with the hereditary
subalgebra ofM(C(Z)⊗K) generated by Q, and thus is a hereditary subalgebra
of C(Z)⊗ K. For the purposes of computing the stable rank of A, one must by
definition consider its minimal unitization Ã. Since Q certainly acts as the unit
on A, we may as well take Ã to be A⊕CQ. We shall show that for any integer n,
the stable rank is larger than n. Thus, we shall show that Lgn(A) is not dense in
Ãn for any n.

The projection Q is a strictly continuous [1] function from Z into the projec-
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tions of B(H), therefore, A is the algebra generated by the sections {Q f Q : f ∈
C(Z)⊗K}. These sections satisfy the axioms of Dixmier and Douady ([9], p. 268),
hence, (the presence of the one-dimensional constant projection θ1 insures that the
so-called Fell’s condition is satisfied) by the results discussed in the introduction,
the algebra A is actually the section algebra of a bundle with fibres each equal
to K or Mn(C) for some n. However, since the projection P ∈ M(C(Z)⊗ K) is
not of finite rank at any point in Z, it follows that the fibres of A must be infinite-
dimensional.

Since A is nonunital, as explained earlier the stable rank of A is the stable
rank of Ã ∼= A +CQ, the unitization of A.

To show that the stable rank of A is infinite, we must show that it is not

bounded by any finite n. So fix an integer n > 1. Let i1 : Dn ×
∞
∏

m=1
S2 → Z =

( ∞
∏

n=1
D

)
×

( ∞
∏

m=1
S2

)
be the continuous embedding given by i1(x1, x2, . . . , xn, y1,

y2, y3, . . .) = (x1, x2, . . . , xn, xn, xn, xn, . . . , y1, y2, y3, . . .) for (x1, x2, . . . , xn, y1, y2,

. . .) ∈ Dn ×
∞
∏

m=1
S2, where Dn is the n-fold Cartesian product of D with itself,

xi is in the ith copy of D in Dn, and yj is in the jth copy of S2. Now i1 induces a

surjective ∗-homomorphism Ψ : C(Z)⊗K → C
(
Dn ×

∞
∏

m=1
S2

)
⊗K.

This in turn, by the noncommutative Tietze extension theorem, induces
a strictly continuous surjective map, still denoted Ψ, from M(C(Z) ⊗ K) onto

M
(

C
(
Dn ×

∞
∏

m=1
S2

)
⊗ K

)
. Denoting the image of A under Ψ by B, we see

that the image of Ã is B + CΨ(Q), which is (isomorphic to) the unitization of
B since Ψ is a homomorphism. We can as well take B̃ to be B̃ ∼= B + CΨ(Q) =

Ψ(Q)
(

C
(
Dn ×

∞
∏

m=1
S2

)
⊗K

)
Ψ(Q).

By one of Rieffel’s results [23], passing to quotients can only decrease the
stable rank. Hence, to show that the stable rank of Ã is greater than n, it suffices
to show that the stable rank of the quotient B +CΨ(Q) is greater than n.

The element Ψ(θ1) is still a trivial one-dimensional projection in C
(
Dn ×

∞
∏

m=1
S2

)
⊗K, which we again denote by θ1. Also, since Ψ is strictly continuous,

Ψ(Q) = θ1 ⊕
∞
∑

k=1
Ψ(pk), where the the latter sum converges in the strict topol-

ogy. Now for each i, let ai ∈ C(Dn) be the projection onto the ith coordinate.

Let π1 : Dn ×
∞
∏

m=1
S2 → Dn be the natural projection. Then (a1 ◦ π1)θ1, (a2 ◦

π1)θ1, . . . , (an ◦ π1)θ1 are all elements of B. We will show that ((a1 ◦ π1)θ1, (a2 ◦
π1)θ1, . . . , (an ◦ π1)θ1) has distance at least one from Lgn(B+).
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So, suppose to the contrary, that (c1, c2, . . . , cn) ∈ Lgn(B̃) is such that ‖(ai ◦
π1)θ1 − ci‖ < 1 for every i. Since θ1ciθ1 ∈ C

(
Dn ×

∞
∏

m=1
S2

)
⊗K for each i, and

since in particular θ1 is a one-dimensional projection, there must exist a function

gi ∈ C
(
Dn ×

∞
∏

m=1
S2

)
such that

(4.1) θ1ciθ1 = giθ1

for every i.

To simplify notation, let Zn be Dn ×
∞
∏

m=1
S2, and for every positive integer

M, let Zn,M be Dn ×
M
∏

m=1
S2. By the definition of the product topology, C(Zn) is

an inductive limit C(Zn) =
∞⋃

M=1
C(Zn,M) with the obvious connecting maps. Let

us denote the connecting maps by φM1,M2 : C(Zn,M1) → C(Zn,M2), and φM :
C(Zn,M) → C(Zn). Choosing an integer M sufficiently large, we can find a hi ∈
C(Zn,M) for 1 6 i 6 M such that:

(i) ‖φM(hi)− gi‖ < ε for all i;

(ii) ‖ai ◦ πM
1 − hi‖ < ε for all i, where πM

1 : Zn,M = Dn ×
M
∏

m=1
S2 → Dn is the

natural projection.

Note that ai ◦ π1 = φN(ai ◦ πN
1 ) for every integer N, and also (a1 ◦ πM

1 , a2 ◦
πM

1 , . . . , an ◦ πM
1 ) = πM

1 . Hence, by Lemma 4.1, choosing ε sufficiently small, we
may assume that (h1, h2, . . . , hn) is in the dense subset of B∏M

m=1 S2 of functions
whose zero sets satisfy the conclusion of Lemma 4.1. More specifically, B∏M

m=1 S2

is as in Lemma 4.1, with M being
M
∏

m=1
S2, and with the real vector space L = Cn

given the supremum norm.
Now for each i, let di be ci + (φM(hi)− gi)θ1. As pointed out above, we may

assume that (d1, d2, . . . , dn) is in Lgn(B̃). Also, from equation (4.1), θ1diθ1 is equal
to φM(hi)θ1.

In order to make effective use of Lemma 4.1, let W be the closed subset of
Zn given by W := {z ∈ Zn : φM(h1)(z) = φM(h2)(z) = · · · = φM(hn)(z) = 0}.
Hence, by Lemma 4.2, we have that θ1|W is Murray-von Neumann equivalent in
B+|W = B|W +CΦ(Q)|W to a subprojection of Ψ(P)|W , where P = Q− θ1 is as
in part (iv) of Proposition 4.3. Since, as pointed out earlier, Ψ : M(A) → M(B)

is a strictly continuous surjection, we have that Ψ(P) =
∞
∑

k=1
Ψ(pk), where the

sum converges in the strict topology in the multiplier algebra M(B). It follows
from the definition of strict convergence of elements of a bundle that we still
have strict convergence if we restrict the base space to the closed subset W ⊂ Z.
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Hence, Ψ(P)|W =
∞
∑

k=1
Ψ(pk)|W , where the sum converges in the strict topology in

the multiplier algebra M(B|W).
To simplify notation, let us write θ1 for the trivial projection θ1|W . Now, by

Lemma 4.2, let ϑ1 ∈ B|W be a subprojection of Φ(P)|W such that in B|W the projec-

tion ϑ1 is Murray-von Neumann equivalent to θ1. Hence, both
∞
∑

k=1
(Ψ(pk)|W)ϑ1,

∞
∑

k=1
ϑ1(Ψ(pk)|W) and

∞
∑

k=1
(Ψ(pk)|W)ϑ1(Ψ(pk)|W) converge in norm as elements of

B|W to ϑ1. Moreover, since we have equivalence of the infinite sum to a proper
subprojection, there will be some large positive integer N such that θ1 is Murray-

von Neumann equivalent in B|W to a proper subprojection of
N
∑

k=1
(Ψ(pk)|W). In-

creasing N if necessary, we may assume that N > M.
We can, since N > M, choose in the definition of W to have W = WN ×

∞
∏

m=N+1
S2, where WN = {z ∈ Zn,N : φM,N(h1)(z) = φM,N(h2)(z) = · · · =

φM,N(hn)(z) = 0}. Now for each k, let rk be as in part (ii) of Proposition 4.3. Then,
by our construction of Ψ, for each k, Ψ(pk)(x1, x2, . . . , xn, y1, y2, . . .) = rk(yk)
for all (x1, x2, . . . , xn, y1, y2, . . .) ∈ Zn. Hence, by the proposition, in K0(WN),
ρ1 is isomorphic to a subbundle of the vector bundle (πN

2 )∗(γ⊗N)|WN , where

πN
2 : Zn,N →

N
∏

m=1
S2 is, as before, the natural projection map; γ is the Bott bundle

over S2, and γ⊗N is the N-fold fibrewise Cartesian product of γ with itself. Also,
ρ1 is the trivial one-dimensional complex line bundle over WN .

Then the Euler class e((πN
2 )∗(γ⊗N)|WN ) is zero. Now let i2 : WN → Zn,N

be the natural inclusion map, so that πN = πM
2 ◦ i2 is the restriction of πN

2 to
WN and (πN

2 )∗(γ⊗N |WN ) = (πN)∗(γ⊗N). By the naturality of the Euler classes,

(πN)∗(e(γ⊗N)) is still zero. However, e(γ⊗N) =
N
∏

m=1
e(γ), where the product on

the right hand side is the cup product, and since the Euler class generates the

top cohomology group,
N
∏

m=1
e(γ) is a generator of the top cohomology group of

γ⊗N . By the Kunneth formula, H2n(S2n) ∼= H2(S2)⊗ H2(S2)⊗ · · · ⊗ H2(S2) =
H2(S2)⊗n. Since e(γ) is a generator of the torsion-free group H2(S2) ∼= R, it is
clear that e(γ)⊗n is of infinite degree. Thus, in particular, e(γ⊗N) is nonzero.

Hence, to get a contradiction, it suffices to show that (πN)∗ : H∗
( N

∏
m=1

S2
)
→

H∗(WN) is injective and hence has no kernel. But by our choice of the his and by

Lemma 4.1, we have that (πM)∗ : H∗
( M

∏
m=1

S2
)
→ H∗(WM), which is constructed

in exactly the same way, is injective. Hence, by the naturality of the Kunneth
formula, (πN)∗ is also injective. This gives us the contradiction.
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