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ABSTRACT. We study the invertibility of Banach algebras elements in their
extensions, and invertible extensions of Banach and Hilbert space operators
with prescribed growth conditions for the norm of inverses. As applications,
the solutions of two open problems are obtained. In the first one we give a
characterization of E(T)-subscalar operators in terms of growth conditions.
In the second one we show that operators satisfying a Beurling-type growth
condition possess Bishop’s property (β). Other applications are also given.
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1. INTRODUCTION

1.1. PREAMBLE. A bounded linear operator can be made “nicer” by an exten-
sion or a dilation to a larger space. One example [31] is the celebrated Sz.-Nagy
Dilation Theorem (every Hilbert space contraction has a unitary dilation), or its
extension variant (every Hilbert space contraction has a coisometric extension).
A Banach space example is a result due to R.G. Douglas [8] stating that a Banach
space isometry has an extension to a surjective isometry. Douglas’ construction
is Hilbertian, in the sense that if the given operator acts on a Hilbert space, then
its extension, a unitary operator, acts also on a Hilbert space. In the framework
of Banach algebras, a classical result of R.F. Arens [1] states that if an element u of
a commutative unital Banach algebra A is not a topological divisor of zero, then
u is invertible in a commutative unital Banach algebra containing A. Other such
examples, related to the topic of the present paper, can be found in [29], [26], [24],
[27], [28], [6], [5].
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1.2. MOTIVATION. The aim of this paper is to study the invertibility of Banach al-
gebras elements in their extensions, and invertible extensions of Banach or Hilbert
space operators with prescribed growth conditions for the norm of inverses. We
obtain, among other things, generalizations of the above mentioned results of
Douglas and Arens.

Our investigations were also motivated by two open problems, which will
be solved positively in this paper. The first one is due to K.B. Laursen and
M.M. Neumann ([17], Problem 6.1.15) and M. Didas [9] and asks for a charac-
terization in terms of growth conditions of E(T)-subscalar operators, i.e., of oper-
ators which are similar to restrictions of E(T)-scalar operators to closed invariant
subspaces.

The second open problem asks [20] if operators T ∈ B(X) satisfying the
Beurling-type condition

(1.1)
∞

∑
n=1

log max(‖Tn‖, m(Tn)−1)
n2 < ∞

possess Bishop’s property (β) ; see (1.2) for the definition of the minimum mod-
ulus m(Tn) and Section 4 for the definition of property (β).

1.3. ORGANIZATION OF THE PAPER. Our first result in the second section is a
refinement of the Arens construction. We consider the invertibility of an element
u of a Banach algebra A in an extension of A with prescribed growth conditions
for ‖u−k‖, k > 1. We then consider extensions of Banach space operators. We use
a method due to one of the authors [24] to pass from the Banach algebra case to
the case of B(X).

In Section 3 we use an idea of Batty and Yeates [5] to show that, given a real
number p > 1 and T ∈ B(X), there is an isomorphic embedding π : X 7→ Y and
an invertible operator S ∈ B(Y) with prescribed growth conditions for ‖S−k‖,
k > 1, such that T is similar to the restriction of S to π(X). Moreover, the space Y
may be obtained from X as a quotient of a subspace of an ultraproduct of spaces
of the form Lp(X) (i.e., a SQp(X)-space). In particular, if p = 2 and X is a Hilbert
space, then so is Y.

In the last section we consider several applications. A characterization for
E(T)-subscalar operators is given in Theorem 4.1. The question from [20] con-
cerning operators satisfying the Beurling-type condition (1.1) is positively an-
swered in Theorem 4.5. We then consider operators satisfying some exponen-
tial growth conditions. Other applications concerning operators with countable
spectrum and Hilbert space contractions with spectrum a Carleson set are given.

1.4. NOTATION AND TERMINOLOGY. We recall now some known facts and intro-
duce some notation. All other undefined terms are classical or will be defined in
Section 4.
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Banach algebras. All Banach algebras are considered to be complex and with
unit. Let u be an element of a Banach algebra A. We write

dA(u) = inf{‖ux‖ : x ∈ A, ‖x‖ = 1}.

If no confusion can arise then we omit the upper index and write simply d(u)
instead of dA(u).

Let A,B be commutative Banach algebras. We say that B is an extension of
A if there exists an isometrical unit preserving homomorphism ρ : A → B. If we
identify A with the image ρ(A) we can consider A as a closed subalgebra of B
and write simply A ⊂ B.

Operators. In this paper X (and Y) will denote complex Banach spaces and H
(and K) will denote Hilbert spaces. Denote by B(X) the algebra of all bounded lin-
ear operators on the Banach space X. By an operator we always mean a bounded
linear operator. Note that for an operator T ∈ B(X) we can express the quantity
dB(X)(T) in a more convenient way by

(1.2) m(T) := dB(X)(T) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

This quantity is called the minimum modulus of T [12] or the lower bound of T [17].
We denote by σ(T) and σap(T) the spectrum and the approximate point

spectrum of a bounded linear operator T ∈ B(X), respectively. The latter is
given by

σap(T) = {λ ∈ C : inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0}.

Note that m(T) > 0 if and only if T ∈ B(X) is one-to-one and of closed range.
If T is a Hilbert space operator, then σap(T) coincides with the left spectrum and
m(T) > 0 if and only if T is left invertible.

We say that S ∈ B(Y) is an extension of T ∈ B(X) if there is an isometry
π : X → Y such that Sπ = πT. We can also consider X as a subspace of Y and
write T = S|X .

Banach spaces of class SQp. Let p > 1 be a real number. A Banach space E is
said to be a SQp-space if it is a quotient of a subspace of an Lp-space.

Let X be a Banach space. A Banach space E is said to be a SQp(X)-space if it
is (isometric to) a quotient of a subspace of an ultraproduct of spaces of the form
Lp(Ω, µ, X), for some measure spaces (Ω, µ). Since ultraproducts of Lp-spaces are
Lp-spaces, the latter definition is consistent with the former one. Note that any
Banach space is isometric to a subspace (a quotient) of an L∞-space (respectively
an L1-space). Also, if H is a Hilbert space, then each SQ2(H)-space is a Hilbert
space too.

SQp(X)-spaces are characterized by a theorem of R. Hernandez [13] (for
X = C this goes back to [16]). See also [25] (and Theorem 3.2 of [18]) for a different
proof using p-completely bounded maps. Namely, E is a SQp(X)-space if and
only if

‖a‖p,E 6 ‖a‖p,X
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for each n > 1 and each matrix a = [aij] ∈ Mn(C). Here

‖[aij]‖p,Y = sup
[(

∑
i

∥∥∥ ∑
j

aijyj

∥∥∥
p)1/p]

,

where the supremum runs over all n-tuples (y1, . . . , yn)∈Y satisfying ∑ ‖yj‖p 6 1.

Nearness. Let p > 1 and β : N → (0, ∞). Let X be a subspace of Y. Two
operators T and C in B(Y) are said to be (β, p)-near modulo X if for every N ∈ N
and for all x1, . . . , xN ∈ X we have

(1.3)
∥∥∥

N

∑
n=1

(Tn − Cn)xn

∥∥∥ 6
( N

∑
n=1

β(n)p‖xn‖p
)1/p

.

For a constant weight function β(n) ≡ s and for p = 2 this definition was intro-
duced and studied in [2], [3] under the name of quadratic nearness.

Note that if p = 1, and if the operators T, C ∈ B(Y) verify ‖Tn−Cn‖ 6 β(n)
for all n > 1, then (1.3) holds for every xn ∈ Y.

2. A REFINEMENT OF THE ARENS CONSTRUCTION

The result of R.F. Arens [1] implies that if A is a commutative Banach al-
gebra and dA(u) > 0, then there exists a commutative extension B ⊃ A such
that u is invertible in B. It follows from the Arens construction that ‖u−k‖ 6
(dA(u))−k (k > 1). The following theorem gives a necessary and sufficient condi-
tion for having invertible extensions of Banach algebra elements with prescribed
growth conditions for the norm of inverses.

THEOREM 2.1. Let u be an element of a commutative Banach algebra A. Let
(cj)∞

j=1 be a sequence of positive numbers which is submultiplicative, i.e., ci+j 6 cicj for
all i, j > 1. Then there is a commutative extension B ⊃ A such that u is invertible in B
and ‖u−j‖ 6 cj (j > 1) if and only if we have

‖a0‖ 6
∞

∑
j=1

cj‖aj − aj−1u‖

for every sequence (aj)∞
j=0 in A of finite support.

Proof. Suppose that B ⊃ A is a commutative extension with all the required
properties. Let (aj)∞

j=0 be a sequence in A such that aj = 0 for j > n. Write
f j = aj − aj−1u. Then
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‖a0‖A = ‖a0‖B = ‖u−nuna0‖

=
∥∥∥− u−n

( n

∑
j=1

un−j f j

)∥∥∥

=
∥∥∥

n

∑
j=1

u−j f j

∥∥∥ 6
n

∑
j=1

cj‖ f j‖.

For the converse, set formally c0 = 1. Consider the algebra C of all power

series
∞
∑

i=0
aixi in one variable x with coefficients ai ∈ A such that

∥∥∥
∞

∑
i=0

aixi
∥∥∥ =

∞

∑
i=0
‖ai‖ci < ∞.

With the multiplication given by
( ∞

∑
i=0

aixi
)
·
( ∞

∑
j=0

a′jx
j
)

=
∞

∑
k=0

xk
(

∑
i+j=k

aia′j
)

,

C is a commutative Banach algebra containing A as subalgebra of constants. Let
J be the closed ideal generated by the element 1 − ux and set B = C/J. Let
ρ : A → B be the composition of the embedding A → C and the canonical
homomorphism C → B = C/J. Then

ρ(u) · (x + J) = (u + J)(x + J) = 1A + J = 1B ,

and so ρ(u) is invertible in B with the inverse x + J. We have ‖(x + J)n‖B 6
‖xn‖C = cn for all n > 1.

It is sufficient to show that ρ is an isometry, i.e., that for each a ∈ A we have
‖a‖A = ‖ρ(a)‖B .

Obviously, ‖ρ(a)‖B = inf
c∈C

‖a + (1− ux)c‖ 6 ‖a‖A.

Suppose on the contrary that there is an a ∈ A such that ‖ρ(a)‖B < ‖a‖A.
Thus there are elements aj ∈ A such that

‖a‖A >
∥∥∥a + (1− ux)

∞

∑
j=0

ajxj
∥∥∥
C

= ‖a− a0‖A +
∞

∑
j=1

cj · ‖aj − aj−1u‖A

> ‖a‖ − ‖a0‖+
∞

∑
j=1

cj · ‖aj − aj−1u‖.

Thus ‖a0‖ >
∞
∑

j=1
cj‖ f j‖, where f j = aj − aj−1u. Moreover, we may assume that
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only a finite number of elements aj are non-zero. This contradicts to our assump-
tion.

We introduce the following definition.

DEFINITION 2.2. Let u be an element of a Banach algebra A. Let (cj)∞
j=1 be

a sequence of positive numbers which is submultiplicative, i.e., ci+j 6 cicj for all
i, j > 1. We say that (cj) satisfies condition (∗) for u ∈ A if there exists an increasing
sequence (kn) of integers such that 0 = k0 < k1 < k2 < · · · and

(∗) cj > (d(uk1)d(uk2−k1) · · · d(ukn+1−kn))−1‖ukn+1−j‖
for all n > 0 and j satisfying kn < j 6 kn+1.

THEOREM 2.3. Let u be an element of a commutative Banach algebra A. Let (cj)
be a sequence of positive numbers satisfying condition (∗) for u ∈ A. Then there is a
commutative extension B ⊃ A such that u is invertible in B and ‖u−j‖ 6 cj (j > 1).

Proof. Set formally c0 = 1. Let (aj)∞
j=0 be a sequence in A of finite support.

Write f j = aj − aj−1u.
We verify the condition of Theorem 2.1. We have

‖a0‖ 6 d(uk1)−1‖a0uk1‖
6 d(uk1)−1(‖a0uk1 − a1uk1−1‖+ · · ·+ ‖ak1−1u− ak1‖+ ‖ak1‖)
6 d(uk1)−1(‖ f1‖ · ‖uk1−1‖+ ‖ f2‖ · ‖uk1−2‖+ · · ·+ ‖ fk1‖)

+ d(uk1)−1d(uk2−k1)−1‖ak1 uk2−k1‖

6
k1

∑
j=1

cj‖ f j‖+ d(uk1)−1d(uk2−k1)−1(‖ak1 uk2−k1 − ak1+1uk2−k1−1‖

+ · · ·+ ‖ak2−1u− ak2‖+ ‖ak2‖)

6
k2

∑
j=1

cj‖ f j‖+ d(uk1)−1d(uk2−k1)−1‖ak2‖ 6 · · · 6
∞

∑
j=1

cj‖ f j‖,

since only a finite number of elements aj are non-zero.

Using a construction from [24] we obtain a similar result for extensions of
Banach space operators.

THEOREM 2.4. Let T be an operator acting on a Banach space X. Let (cj) be a
sequence of positive numbers satisfying condition (∗) for T ∈ B(X). Then there exists a
Banach space Y containing X as a closed subspace and an invertible operator S ∈ B(Y)
such that S|X = T and ‖S−j‖ 6 cj (j > 1). Moreover, we have ‖Sj‖ 6 ‖T j‖ (j > 1)
and σ(S) ⊂ σ(T).

Proof. Let A be a maximal commutative subalgebra of B(X) containing T.
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Set B = A⊕ X. Define the norm and multiplication in B by

‖A⊕ x‖ = ‖A‖+ ‖x‖
and

(A⊕ x)(A′ ⊕ x′) = AA′ ⊕ (Ax′ + A′x) (A, A′ ∈ A, x, x′ ∈ X).

Then B is a commutative Banach algebra and A 7→ A⊕ 0 (A ∈ A) is an isomet-
rical embedding A → B.

Let n > 0. It is easy to show that

dB
(
Tn ⊕ 0) = dB(X)(Tn) = m(Tn).

By Theorem 2.3, there exists a commutative Banach algebra C ⊃ B such that T⊕ 0
is invertible in C and

‖(T ⊕ 0)−j‖C 6 cj (j > 1).

Consider the operator S : C → C defined by Sc = (T ⊕ 0)c (c ∈ C). Then S is
invertible and

‖S−j‖ 6 cj (j > 1).

For x ∈ X we have

S(0⊕ x) = (T ⊕ 0)(0⊕ x) = 0⊕ Tx.

If we identify x ∈ X with 0⊕ x ∈ B ⊂ C, then T = S|X .
The relation ‖Sj‖ 6 ‖T j‖ (j > 1) is easy to verify.
Finally, we have

σB(X)(T) = σA(T) ⊃ σB(T ⊕ 0) ⊃ σC(T ⊕ 0) ⊃ σB(C)(S).

3. EXTENSIONS TO SQp(X)-SPACES

In this section we study the similarity to restrictions of invertible operators
acting on SQp(X)-spaces.

The proof of the following result uses an idea from [5].

THEOREM 3.1. Let (cj)∞
j=1 be a sequence of positive numbers which is submulti-

plicative. Let p > 1 be a fixed real number, X a Banach space and T ∈ B(X).
(i) Suppose that there exists a Banach space Y, M > 1, an operator π : X → Y

such that ‖x‖ 6 M‖π(x)‖ for all x ∈ X, and an invertible operator S ∈ B(Y) such
that Sπ = πT and S−1 is (c, p)-near the null operator modulo π(X), that is

∥∥∥
n

∑
j=1

S−jπ(yj)
∥∥∥ 6

( n

∑
j=1

cp
j ‖yj‖p

)1/p

for every n > 1 and all yj ∈ X. Then we have

‖x‖p 6 Mp(cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p),
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whenever Tnx = x0 + Tx1 + · · ·+ Tn−1xn−1.
(ii) Let M > 1 and p > 1. Suppose that the equality

Tnx = x0 + Tx1 + · · ·+ Tn−1xn−1 (xi ∈ X, 1 6 i 6 n)

always implies

‖x‖p 6 Mp(cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p).

Then there exists a Banach space (Y, | · |) which is a SQp(X)-space, an isomorphic em-

bedding π : X → Y satisfying ‖x‖
M2(p−1)/p 6 |π(x)| 6 ‖x‖ (x ∈ X), and an invertible

operator S ∈ B(Y) such that Sπ = πT and ‖S−j‖ 6 cj for every j > 1. Moreover, S−1

is (c, p)-near the null operator modulo π(X), ‖Sj‖ 6 ‖T j‖ (j > 1) and σ(S) ⊂ σ(T).

Proof. (i) Suppose that T has an invertible extension S as in the statement
of the theorem and let π : X → Y satisfy ‖x‖ 6 M‖π(x)‖ for all x ∈ X and
Sπ = πT. Suppose that Tnx = x0 + Tx1 + · · ·+ Tn−1xn−1. Then

‖x‖ 6 M‖π(x)‖ = M‖S−nSnπ(x)‖ = M‖S−nπ(Tnx)‖

= M
∥∥∥S−nπ

( n−1

∑
k=0

Tkxk

)∥∥∥ = M
∥∥∥

n−1

∑
k=0

S−(n−k)π(xk)
∥∥∥

6 M
( n−1

∑
k=0

cp
n−k‖xk‖p

)1/p
.

(ii) Suppose now that

‖x‖p 6 Mp(cp
n‖x0‖p + cp

n−1‖x1‖p + · · ·+ cp
1‖xn−1‖p),

whenever Tnx = x0 + Tx1 + · · ·+ Tn−1xn−1. For x0 = Tnx we get

‖Tnx‖ > 1
Mcn

‖x‖.

In particular, each operator Tn is injective.

The equivalence relation. Let X0 = X × Z. We define an equivalence relation
on X0 by (x, t) ∼ (y, s) if there exists m ∈ N such that s + m ∈ N, t + m ∈ N and
Ts+mx = Tt+my.

Let X1 = X0/ ∼ be the space of equivalence classes. We denote the equiv-
alence class containing (x, t) by [x, t]. Each equivalence class contains a member
(x, t) with t ∈ N.

The operations. The operations

[x, t] + [y, s] = [Tsx + Tty, s + t], s, t ∈ N, x, y ∈ X,

α[x, t] = [αx, t], t ∈ N, α ∈ C,

endow X1 with a structure of vector space.
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The norm. Set c0 = 1. We define the norm on X1 as follows. For [x, t] ∈
X1, set

|[x, t]|p = inf
{ n

∑
i=0
‖xi‖pcp

i : n ∈ N,
n

∑
i=0

[xi, i] = [x, t]
}

.

We note that the existence of a decomposition [x, t] =
n
∑

i=0
[xi, i] with t > n is

equivalent to

x =
n

∑
i=0

Tt−ixi.

It is easy to see that | · | is well-defined and |λ[x, t]| = |λ| |[x, t]| (λ ∈ C).
Let [x, t] and [y, s] be two elements of X1 decomposed by [x, t] = ∑

i
[xi, i] and

[y, s] = ∑
i
[yi, i]. Then [x, t] + [y, s] = ∑

i
[xi + yi, i]. By the triangular inequality in

`p, we have

|[x, t] + [y, s]| 6
(

∑
i
‖xi + yi‖pcp

i

)1/p
6

(
∑

i
(‖xi‖+ ‖yi‖)pcp

i

)1/p

6
(

∑
i
‖xi‖pcp

i

)1/p
+

(
∑

i
‖yi‖pcp

i

)1/p
.

Taking the infimum on the right hand side over all decompositions of [x, t] and
[y, s] we get |[x, t] + [y, s]| 6 |[x, t]|+ |[y, s]|.

We show that | · | is a norm. Let x ∈ X and t > 0. Consider a decomposition

[x, t] =
n

∑
i=0

[xi, i]

with xi ∈ X. Then

[x, t] =
n

∑
i=0

[xi, i] =
n

∑
i=0

[Tn−ixi, n] =
[ n

∑
i=0

Tn−ixi, n
]
.

Hence

Tn(x− Ttx0) = Tt
( n

∑
i=1

Tn−ixi

)
=

n

∑
i=1

Tn−i(Ttxi).

By hypothesis, we have

‖x− Ttx0‖p 6 Mp
( n

∑
i=1

cp
i ‖Ttxi‖p

)
.

Since
1

2p−1 ‖x‖p − ‖Ttx0‖p 6 ‖x− Ttx0‖p,

we get
1

2p−1 ‖x‖p 6 Mp
n

∑
i=0

cp
i ‖Ttxi‖p 6 Mp‖Tt‖p

n

∑
i=0

cp
i ‖xi‖p.
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Since this is true for all such decompositions, we obtain

|[x, t]| > 1
2(p−1)/p M‖Tt‖‖x‖.

In particular, |[x, t]| 6= 0 whenever x 6= 0.
The isomorphic embedding π. The space X embeds isomorphically into X1.

The embedding is given by π : x → [x, 0] and the trivial decomposition [x, 0] =
[x, 0] gives |π(x)| 6 ‖x‖. The previous paragraph, for t = 0, shows that

|π(x)| > 1
M2(p−1)/p

‖x‖.

The operator S. Define S on X1 by S[x, s] = [x, s− 1], x ∈ X, s ∈ Z. Clearly
the definition of S is correct, S is a linear map and Sπ = πT.

The inequality

|Sj[x, t]| 6 ‖T j‖ ·
∣∣∣[x, t]

∣∣∣
can be proved exactly as in [5]. Thus ‖Sj‖ 6 ‖T j‖ for all j > 0.

We show now that |S−s[x, t]| 6 cs|[x, t]| for all positive s and all classes [x, t].
Consider a decomposition

[x, t] =
n

∑
i=0

[xi, i]

with xi ∈ X. Then

[x, t + s] =
n

∑
i=0

[xi, i + s].

Thus

|[x, t + s]|p 6
n

∑
i=0

cp
i+s‖xi‖p.

Using the submultiplicativity of the sequence c = (cj)∞
j=1 we obtain

|S−s[x, t]|p = |[x, t + s]|p 6 cp
s

n

∑
i=0

cp
i ‖xi‖p.

This yields the announced estimate.
We show now that

∣∣∣
n

∑
j=1

S−jπ(yj)
∣∣∣ 6

( n

∑
j=1

cp
j ‖yj‖p

)1/p

for every n > 1 and all yj ∈ X. Indeed, we have
n

∑
j=1

S−jπ(yj) =
n

∑
j=1

S−j[yj, 0] =
n

∑
j=1

[yj, j].

Therefore ∣∣∣
n

∑
j=1

S−jπ(yj)
∣∣∣

p
6

n

∑
j=1

cp
j ‖yj‖p.
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In fact, the same arguments provide the stronger (if p > 1) inequality
∣∣∣

n

∑
j=0

S−jπ(yj)
∣∣∣

p
6

n

∑
j=0

cp
j ‖yj‖p,

for all yj ∈ X, j > 0.
The space Y. We take the Banach space Y to be the completion of X1 with the

norm | · | and extend S continuously to an operator (also denoted by) S on Y.
We show now that Y is an SQp(X)-space. Let [aij] be an n× n matrix with

complex entries such that ‖a‖p,X 6 1 (the definition of ‖a‖p,X is recalled in the
Introduction). Let [xj, tj] be elements of X1 with decompositions

[xj, tj] =
n(j)

∑
r=0

[w(j)
r , r].

We have

∑
i

∣∣∣ ∑
j
[ai,jxj, tj]

∣∣∣
p

= ∑
i

∣∣∣ ∑
j

∑
r

[ai,jw
(j)
r , r]

∣∣∣
p

6 ∑
i

∑
r

cp
r

∥∥∥ ∑
j

ai,jw
(j)
r

∥∥∥
p

= ∑
r

cp
r ∑

i

∥∥∥ ∑
j

ai,jw
(j)
r

∥∥∥
p

6 ∑
r

cp
r ∑

j
‖w(j)

r ‖p = ∑
j

∑
r

cp
r ‖w(j)

r ‖p.

By taking the infimum over all possible decompositions, we get

∑
i

∣∣∣ ∑
j
[ai,jxj, tj]

∣∣∣
p

6 ∑
j
|[xj, tj]|p.

Thus ‖a‖p,Y 6 1, and so [13] X1 and Y are SQp(X)-spaces.
Spectrum behaviour. Suppose that T− λ is invertible in B(X). Define L on X1

by L[x, t] = [(T − λ)−1x, t]. It is easy to see that the definition of L is correct. We
have

(S− λ)[x, t] = [x, t− 1]− [λx, t] = [(T − λ)x, t]
and L(S− λ)[x, t] = (S− λ)L[x, t] = [x, t]. Hence S− λ is invertible in B(Y).

REMARKS 3.2. (i) The embedding π becomes isometric if M = p = 1 (for
instance). The case M = p = 1 and cj = 1 for j > 1 was considered in [5].

(ii) An alternative definition of the norm in X1 is

|[x, t]|p = inf
{ n

∑
i=1
‖xi‖pcp

i : n ∈ N,
n

∑
i=1

[xi, i] = [x, t]
}

.

The difference is that decompositions of [x, t] start now at i = 1. The construction
of Y, S and π : X → Y remains unchanged. The embedding π satisfies in this
case

‖x‖
M

6 |π(x)| 6 c1‖T‖ · ‖x‖ (x ∈ X).



426 CĂTĂLIN BADEA AND VLADIMÍR MÜLLER

The remaining properties are without any change.
(iii) Note that σap(T) ⊂ σap(S).
(iv) We also note that Theorem 3.1 has a generalization to representations of

semigroups (like in [5]).

DEFINITION 3.3. Let X be a Banach space, T ∈ B(X), and let p > 1 be a
fixed real number. Let (cj)∞

j=1 be a sequence of positive numbers which is sub-
multiplicative. We say that (cj) satisfies condition (∗)p for T ∈ B(X) if there exists
an increasing sequence of integers (kn) such that 0 = k0 < k1 < k2 < · · · and

(∗)p cj > 2(n+1)(p−1)/p(kn+1 − kn)(p−1)/p

m(Tk1)m(Tk2−k1) · · ·m(Tkn+1−kn)
‖Tkn+1−j‖

for all n > 0 and j satisfying kn < j 6 kn+1.
We say that (cj) satisfies condition (∗)∞ for T ∈ B(X) if there exists an in-

creasing sequence of integers (kn) such that 0 = k0 < k1 < k2 < · · · and

(∗)∞ cj > 2n+1(kn+1 − kn)
m(Tk1)m(Tk2−k1) · · ·m(Tkn+1−kn)

‖Tkn+1−j‖

for all n > 0 and j satisfying kn < j 6 kn+1.

The condition (∗)1 is the same as condition (∗) considered above for Ba-
nach algebra elements. Clearly (∗)p implies (∗)q whenever ∞ > p > q > 1 ; in
particular, (∗)∞ implies all other conditions (∗)p, p > 1.

LEMMA 3.4. Let p > 1 be a fixed real number. Suppose that (cj) is a sequence of
positive numbers satisfying condition (∗)p for T ∈ B(X). Then

‖x‖p 6 cp
m‖x0‖p + cp

m−1‖x1‖p + · · ·+ cp
1‖xm−1‖p,

whenever Tmx = x0 + Tx1 + · · ·+ Tm−1xm−1.

Proof. Suppose that kn < m 6 kn+1 and that the conclusion of the lemma
was proved for decompositions of form Tkn+1 x = x0 + Tx1 + · · ·+ Tkn+1−1xkn+1−1.
If Tmy = y0 + Ty1 + · · ·+ Tm−1ym−1, then

Tkn+1 y = 0 + · · ·+ Tkn+1−my0 + Tkn+1−m+1y1 + · · ·+ Tkn+1−1ym−1

and the lemma will be also proved for decompositions starting with Tmy.
So suppose that

Tkn+1 x =
kn+1

∑
j=1

Tkn+1−jxkn+1−j.
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Then, using the inequality ‖a− b‖p > 1
2p−1 ‖a‖p − ‖b‖p, we have

‖x0‖p =
∥∥∥Tkn+1 x−

kn+1−1

∑
j=1

Tkn+1−jxkn+1−j

∥∥∥
p

=
∥∥∥Tkn+1−kn

(
Tkn x−

kn

∑
j=1

Tkn−jxkn+1−j

)
−

kn+1−1

∑
j=kn+1

Tkn+1−jxkn+1−j

∥∥∥
p

> 1
2p−1 m(Tkn+1−kn)p

∥∥∥Tkn x−
kn

∑
j=1

Tkn−jxkn+1−j

∥∥∥
p
−

∥∥∥
kn+1−1

∑
j=kn+1

Tkn+1−jxkn+1−j

∥∥∥
p
.

Using now the inequality

∥∥∥
N

∑
i=1

ai

∥∥∥
p

6 Np−1
( N

∑
i=1
‖ai‖p

)
,

we obtain

‖x0‖p+(kn+1 − kn − 1)p−1
kn+1−1

∑
j=kn+1

‖Tkn+1−j‖p‖xkn+1−j‖p

> 1
2p−1 m(Tkn+1−kn)p

∥∥∥Tkn x−
kn

∑
j=1

Tkn−jxkn+1−j

∥∥∥
p
.

Writing again

Tkn x−
kn

∑
j=1

Tkn−jxkn+1−j

as

Tkn−kn−1
(

Tkn−1 x−
kn−1

∑
j=1

Tkn−1−jxkn+1−j

)
−

kn

∑
j=kn−1+1

Tkn−jxkn+1−j

and applying the same inequalities, we arrive after several steps at

‖x0‖p + (kn+1 − kn − 1)p−1
kn+1−1

∑
j=kn+1

‖Tkn+1−j‖p‖xkn+1−j‖p

+
n

∑
r=1

( 1
2p−1

)r
m(Tkn+1−kn)p · · ·m(Tkn−r+2−kn−r+1)p(kn−r+1 − kn−r)p−1

×
kn−r+1

∑
j=kn−r+1

‖Tkn−r+1−j‖p‖xkn+1−j‖p

>
( 1

2p−1

)n+1
m(Tkn+1−kn)p · · ·m(Tk2−k1)pm(Tk1)p‖x‖p.



428 CĂTĂLIN BADEA AND VLADIMÍR MÜLLER

This yields

‖x‖p6
n

∑
r=0

(2p−1)n+1−r(kn−r+1 − kn−r)p−1

m(Tkn−r+1−kn−r )p · · ·m(Tk1)p

kn−r+1

∑
j=kn−r+1

‖Tkn−r+1−j‖p‖xkn+1−j‖p

6
n

∑
r=0

kn−r+1

∑
j=kn−r+1

cp
j ‖xkn+1−j‖p =

kn+1

∑
j=1

cp
j ‖xkn+1−j‖p.

The above results imply the following generalization of Theorem 2.4.

THEOREM 3.5. Let p > 1. Let T be an operator acting on a Banach space X.
Let (cj)∞

j=1 be a sequence of positive numbers satisfying condition (∗)p for T ∈ B(X).
Then there exists a Banach space Y which is a SQp(X)-space, an isomorphic embedding

π : X 7→ Y satisfying ‖x‖
2(p−1)/p 6 ‖π(x)‖ 6 ‖x‖ (x ∈ X) and an invertible operator

S ∈ B(Y) such that Sπ = πT, ‖S−j‖ 6 cj (j > 1) and ‖Sj‖ 6 ‖T j‖ (j > 1).
Moreover, S−1 is (c, p)-near the null operator modulo π(X) and σ(S) ⊂ σ(T).

4. APPLICATIONS

The previous extension results give a general way of constructing invertible
extensions of an operator with prescribed growth conditions. For an operator
T ∈ B(X) we write for short

vn(T) = max{‖Tn‖, m(Tn)−1} (n > 0).

We consider the following growth conditions for T:

(P(s)) (Polynomial growth condition) there are C > 0 and s > 0 such that
vn(T) 6 Cns (n > 1);

(B) (Beurling-type condition)
∞
∑

n=1

log vn(T)
n2 < ∞;

(E(s)) (Exponential growth) there are C > 0 and 0 < s < 1 such that vn(T) 6
Cens

(n > 1).

Note that condition (P(s)) implies (E(s′)) (for any s′ > 0), which implies (B).
Also [20] if T satisfies (B) and T is invertible, then σ(T) = σap(T) ⊂ T. If T
satisfies (B) and 0 ∈ σ(T), then σap(T) = T and σ(T) = {z : |z| 6 1}.

Other growth conditions can be also considered.

4.1. E(T)-SUBSCALAR OPERATORS. We denote as usually by E(C) the Fréchet
algebra of all C∞-functions on C with the topology of uniform convergence of
derivatives of all orders on compact subsets of C. An operator S ∈ B(X) is said
[7] to be generalized scalar (or E(C)-scalar) if there is a continuous algebra homo-
morphism Φ : E(C) → B(X) for which Φ(1) = I and Φ(z) = S. A bounded
linear operator is E(C)-subscalar if it is similar to the restriction of a E(C)-scalar
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operator to one of its closed invariant subspaces. According to a result of J. Es-
chmeier and M. Putinar (see Section 6.4 of [10]), a Banach space operator T is
E(C)-subscalar if and only if T has property (β)E , i.e., for every open set U ⊂ C,
the operator TU on E(U, X) (the space of C∞-functions from U into X), defined
by TU( f )(z) = (T − z) f (z), is injective and has closed range.

The following statements are equivalent (see [7]) :

(1) T is E(T)-scalar (by definition, this means that T has a continuous func-
tional calculus on the Fréchet algebra E(T) = C∞(T) of smooth functions on the
unit circle T);

(2) T is generalized scalar with σ(T) ⊂ T ;
(3) T is invertible, and there exist constants C > 0 and s > 0 such that

‖Tn‖ 6 C(1 + |n|)s (n ∈ Z).

K.B. Laursen and M.M. Neumann ([17], Problem 6.1.15) and M. Didas [9]
asked if E(T)-subscalar operators are characterized by the polynomial growth
condition (P(s)) above. We refer to [9], [17], [20], [23], [22],[21] for several partial
results. By [8] the hard implication holds for s = 0 and C = 1.

Since condition (P(s)) implies that σap(T) ⊂ T, it follows [24], [27] that T
has an invertible extension S such that σ(S) = σap(T) ⊂ T. By [28], if T acts on
a Hilbert space, then S acts also on a Hilbert space. However, no control on the
norms of inverses is guaranteed by this method.

The following result gives a complete positive answer.

THEOREM 4.1. (i) An operator T ∈ B(X) is E(T)-subscalar if and only if there
exist constants C > 0 and s > 0 such that

(P(s))
1

Cns ‖x‖ 6 ‖Tnx‖ 6 Cns‖x‖ (x ∈ X, n ∈ N).

Moreover, given p > 1, there exist a SQp(X)-space Y, an invertible E(T)-scalar operator
S on Y and a closed subspace M ⊂ Y invariant with respect to S such that T is similar
to the restriction S|M. We also have σ(S) = σap(T).

For p = 1 the operator S is an extension of T.
(ii) If the Hilbert space operator T ∈ B(H) verifies

(P(s))
1

Cns ‖h‖ 6 ‖Tnh‖ 6 Cns‖h‖ (h ∈ H, n ∈ N),

then there exists a Hilbert space K and a E(T)-scalar extension S ∈ B(K) with σ(S) =
σap(T).

Proof. (i) Suppose that T is similar to an operator having a E(T)-scalar ex-
tension S. According to the above mentioned result, S is E(T)-scalar if and only
if S is invertible and ‖Sn‖ is bounded by a constant times (1 + |n|)s, for each
n ∈ Z. Therefore, restrictions of E(T)-scalar operators satisfy the growth condi-
tion (P(s)) from the theorem. Consequently, T satisfies (P(s)).

Suppose now that T satisfies the growth condition (P(s)). Let C > 0 and
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s > 0 satisfy vn := vn(T) 6 Cns (n > 1). Let ε > 0. Then lim
n→∞

vn
ns+ε/6 = 0. Choose

k1 > e4 such that vn 6 ns+ε/6 for all n > k1.
Let

K = max{2k1‖T j‖ ·m(Tk1)−1 : 0 6 j 6 k1}
and set cj = K(j + 1)6s+3+ε. Clearly (cj) is a submultiplicative sequence.

We show that (cj) satisfies condition (∗)∞ for T. Set kn = k2n−1

1 (n > 1).
For j 6 k1 we have

2k1m(Tk1)−1 · ‖Tk1−j‖ 6 K 6 cj.

Let n > 1 and kn < j 6 kn+1. Then 2n−1 log k1 6 log j and

2n+1(kn+1 − kn)m(Tk1)−1 · · ·m(Tkn+1−kn)−1‖Tkn+1−j‖
6 2n+1kn+1(k1k2 · · · kn+1kn+1)s+ε/6

6
( 22

log k1
log j

)
k2n

1 (k1k2
1 · · · k2n

1 k2n

1 )s+ε/6

6 (log j)(k2n−1

1 )2(k3·2n

1 )s+ε/6

6 j(k2n−1

1 )2+6s+ε 6 j6s+ε+3 6 cj.

Thus (cj) satisfies condition (∗)∞. If p > 1 is fixed, then (cj) also satisfies
condition (∗)p. By Theorem 3.5, there exists an invertible operator S on a SQp(X)-
space Y extending T up to a similarity and satisfying ‖Sj‖ = ‖T j‖ and ‖S−j‖ 6 cj

for all j > 1. Clearly S has property (P(6s + ε + 3)). Moreover, S−1 is (c, p)-near
the null operator modulo X.

For p = 1, the space X is isometrically embedded into Y, and so S is an
extension of T.

Since σ(S) ⊂ T, we have σap(S) = σ(S). By the spectral radius formula we
have σ(T) ⊂ {z : |z| 6 1}. By [19],

min{|z| : z ∈ σap(T)} = lim
n→∞

m(Tn)1/n > 1.

Thus σap(T) = σ(T) ∩ T. By Theorem 3.1, σap(T) ⊂ σ(S) ⊂ σ(T). Hence σ(S) =
σap(T).

(ii) Since (cj) satisfies condition (∗)2 for T, it follows from Theorem 3.5 that
there exists a Hilbert space K, an isomorphic embedding π : H 7→ K and an
E(T)-scalar operator S ∈ B(K) satisfying Sπ = πT. We can introduce a new
equivalent Hilbert space norm on K such that π becomes an isometry. Indeed, let
P be the orthogonal projection onto π(H). Define the new norm on K by

|||u||| = (‖π−1Pu‖2
H + ‖(I − P)u‖2

K)1/2 (u ∈ K).

We have |||π(x)||| = ‖x‖H for all x ∈ H. Then S, acting on the Hilbert space
(K, ||| · |||), is the required E(T)-scalar extension of T.
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REMARK 4.2. Let H be the Hilbert space with an orthonormal basis (en)
(n = 0, 1, . . . ). It is easy to see that the Bergman shift on H, given by

Ben =
√

n + 1
n + 2

en+1,

satisfies the polynomial growth condition (P(1/2)). Therefore, the Bergman shift
has a generalized scalar extension with spectrum the unit circle. This has to be
compared to the known fact that B is subnormal, with minimal normal extension
(the multiplication by the variable z on L2(D, µ), where µ is the Lebesgue measure
in D) having as spectrum the closed unit disk D.

PROBLEM 4.3. Let s > 0. What is the optimal value of s′ = f (s) such that every
T ∈ B(X) satisfying (P(s)) has an invertible extension satisfying (P(s′))? What is the
optimal value of s′ = g(s) such that every T ∈ B(H) satisfying (P(s)) has an invertible
Hilbert space extension satisfying (P(s′)) ?

The proof of Theorem 4.1 can be modified to give, for fixed ε > 0 and
T ∈ B(X), a Banach space Y and an extension (with an isometric embedding)
S ∈ B(Y) satisfying condition (P(6s + ε)). Indeed, with k1 as in the proof of
Theorem 4.1, let

K = max{‖T j‖ ·m(Tk1)−1 : 0 6 j 6 k1}
and set cj = K(j + 1)6s+ε. Then a similar proof shows that the sequence (cj)
satisfies condition (∗)1 for kn = k2n−1

1 (n > 1).
We also notice that g(0) = 0. Indeed, if a Hilbert space operator T ∈ B(H)

satisfies (P(0)), then by [30] there exists an invertible operator L ∈ B(H) such that
V = L−1TL is an isometry. Let U be a unitary extension of V on a larger Hilbert
space K = H⊕H⊥. Then (L⊕ I)U(L⊕ I)−1 is an extension of T satisfying (P(0)).

We can consider representations of Nn to deal with E(Tn)-subscalar opera-
tors. The proof of the following result follows a different approach.

THEOREM 4.4. An n-tuple of commuting Banach space operators is E(Tn)-sub-
scalar if and only if each of the n operators is E(T)-subscalar.

Proof. The previous characterization of E(T)-subscalar operators implies
that if T1, . . . , Tn are commuting E(T)-subscalar operators, then the product op-
erator T1 · · · Tn is also E(T)-subscalar. The result follows from Theorem 2.2.7
in [9].

4.2. OPERATORS WITH BISHOP’S PROPERTY (β). Recall that an equivalent defi-
nition of decomposable operators is the following : T ∈ B(X) is decomposable if,
for every open cover C = U ∪ V, there are closed invariant (for T) subspaces Y
and Z of X such that X = Y + Z and σ(T | Y) ⊂ U, σ(T | Z) ⊂ V. We refer
for instance to [7] and [17]. An operator T ∈ B(X) has Bishop’s property (β) if,
for every open set U ⊂ C, the operator TU defined by TU( f )(z) = (T − z) f (z)
on the set O(U, X) of holomorphic functions from U into X is injective and has
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closed range. According to a result by E. Albrecht and J. Eschmeier (see [17], [10]),
T ∈ B(X) is subdecomposable (i.e., T is similar to the restriction of a decomposable
operator) if and only if T has Bishop’s property (β).

It was proved in Theorem 5.3.2 of [7] that an invertible operator S ∈ B(X)
is decomposable provided that

∞

∑
n=−∞

log ‖Sn‖
1 + n2 < ∞.

The following result answers in the affirmative a question from [20].

THEOREM 4.5. Let T ∈ B(X) be a Banach space operator such that
∞

∑
n=1

log max(‖Tn‖, m(Tn)−1)
n2 < ∞.

Then there exists a Banach space Y ⊃ X and an invertible operator S ∈ B(Y) such that
T = S|X and S satisfies

∞

∑
n=−∞

log ‖Sn‖
1 + n2 < ∞.

In particular, T has Bishop’s property (β). Moreover, σ(S) = σap(T) = σ(T) ∩T.
If X = H is a Hilbert space, then Y = K can be chosen to be a Hilbert space too.

Proof. Let T ∈ B(X) satisfy (B). By Theorem 3.5, it is sufficient to show the

existence of a submultiplicative sequence (dn) satisfying
∞
∑

n=1

log dn
n2 < ∞ and the

condition (∗)∞ for T.
Write rn = v2n (n > 0). Clearly rn+1 6 r2

n for all n.

Claim 1.
∞
∑

n=0

log rn
2n < ∞.

Proof. Fix n > 2. For 1 6 j 6 2n−3 we have

v2n 6 v2n−1+j · v2n−1−j.

Thus log rn 6 log v2n−1+j + log v2n−1−j and

log rn

22n 6
log v2n−1+j

22n +
log v2n−1−j

22n 6
log v2n−1+j

(2n−1 + j)2 +
log v2n−1−j

(2n−1 − j)2 .

Hence

2n−3 · log rn

22n 6
2n−3

∑
j=1

( log v2n−1+j

(2n−1 + j)2 +
log v2n−1−j

(2n−1 − j)2

)

and
1
8

∞

∑
n=2

log rn

2n 6
∞

∑
j=1

log vj

j2
< ∞.
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Let n be a non-negative integer and let n =
∞
∑

j=0
αj2j, where αj ∈ {0, 1}, be its

binary representation. Define

bn =
∞

∏
j=0

r
αj
j , cn = max{b2

j : n 6 j 6 2n} and dn = 4n2cn.

Claim 2. (bn) is submultiplicative, i.e., bn+m 6 bnbm for all m, n > 0.

Proof. Let n =
∞
∑

j=0
αj2j and m =

∞
∑

j=0
β j2j be the binary representations of n

and m, respectively.
By induction on j0, we prove the following statement:

There are numbers γj (0 6 j) such that n + m =
∞
∑

j=0
γj2j, γj ∈

{0, 1} (j < j0), γj0 ∈ {0, 1, 2, 3}, γj ∈ {0, 1, 2} (j > j0) and

bnbm >
∞
∏
j=0

r
γj
j .

For j0 = 0 the statement is clear for the numbers γj = αj + β j.
Suppose that the statement is true for some j0. We show it for j0 + 1. If

γj0 6 1 then the statement is clear. Let γj0 ∈ {2, 3}. Then

n + m =
∞

∑
j=0

γ′j2
j,

where γ′j = γj (j 6= j0, j0 + 1), γ′j0 = γj0 − 2 and γ′j0+1 = γj0+1 + 1. Then

bnbm >
∞

∏
j=0

r
γj
j >

∞

∏
j=0

r
γ′j
j .

The statement for j0 > log2(n + m) gives the inequality bnbm > bn+m.

Claim 3. (dn) is submultiplicative.

Proof. Notice that 16m2n2 > 4(m + n)2 for all positive integers m and n. We
have

dndm > 4(m + n)2 max{b2
i b2

j : n 6 i 6 2n, m 6 j 6 2m}
> 4(m + n)2 max{b2

l : n + m 6 l 6 2(n + m)} = dn+m.

Claim 4.
∞
∑

n=1

log dn
n2 < ∞.

Proof. It is sufficient to show the analogue claim for the sequence (cn).
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For 2j 6 n < 2j+1 we have cn = b2
i for some i, i 6 2n < 2j+2. So cn 6

b2
2j+2−1

=
j+1
∏
i=0

r2
i . Thus

∞

∑
n=2

log cn

n2 6
∞

∑
j=1

2j
j+1
∑

i=0
2 log ri

22j 6 2
∞

∑
i=0

log ri ·
∞

∑
j=i−1

2−j 6 8
∞

∑
i=0

log ri

2i < ∞.

Claim 5. (dn) satisfies condition (∗)∞ for T.

Proof. Set kn = 2n − 1. For kn < j 6 kn+1 we have 2n 6 j < 2n+1, and so

cj >
n
∏
i=0

r2
i . Hence

2n+1(kn+1 − kn)(m(Tk1)m(Tk2−k1) · · ·m(Tkn+1−kn))−1‖Tkn+1−j‖
6 2(2n)2r0r1 · · · rn · bkn+1−j

6 2j2
n

∏
i=0

r2
i

6 dj.

The inequality for j = 1 = k1 is clear.

Thus (dn) also satisfies condition (∗)1, and so there is an invertible extension
S of T such that ‖S−n‖ 6 dn (n > 0). Hence S is decomposable.

The equalities σ(S) = σap(T) = σ(T) ∩T can be shown as in Theorem 4.1.
If X = H is a Hilbert space, then the sequence (dn) satisfies condition (∗)2.

By Theorem 3.5, there is a Hilbert space K, an invertible operator S ∈ B(K) and
an isomorphic embedding π : H → K with πT = Sπ and ‖S−n‖ 6 dn (n > 0).
As in the proof of Theorem 4.1, K can be given a new equivalent Hilbertian norm
such that π becomes an isometry.

4.3. CONDITION (E(s)). The following consequence of Theorem 4.5 implies that
condition (b) from Theorem 3.2 in [22] is superfluous.

COROLLARY 4.6. Let T ∈ B(X) satisfying the exponential condition (E(s)), that
is, there are C > 0 and 0 < s < 1 such that vn(T) 6 Cens

(n > 0). Then T has
property (β).

The following result answers an open question from [20].

THEOREM 4.7. Let T ∈ B(X) satisfy (E). Then there exist a Banach space Y ⊃ X
and an invertible operator S on a larger space such that T is a restriction of S and S
satisfies (E(s′)) for suitable s′ < 1. The construction is Hilbertian.

Proof. Let ε be an arbitrary positive number. Set kn = 2n (n > 1). It is now a
matter of routine to verify that the sequence cj = K · ejs+ε

satisfies condition (∗)∞
for T, where K is a suitable constant. Thus T can be extended to an invertible
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operator satisfying condition (E(s + ε)). The construction is Hilbertian in the
sense that if X = H is Hilbert, then Y = K can be chosen a Hilbert space too. We
omit the details.

4.4. A HILBERTIAN COUNTERPART OF ARENS’ RESULT. We obtain the following
Hilbertian counterpart of Arens’ result.

COROLLARY 4.8. Let T ∈ B(H) be an operator on Hilbert space with m(T) > 0.
Then there exist a Hilbert space K, an isometric embedding π : H 7→ K and an invertible
operator S ∈ B(K) such that Sπ = πT, ‖Sj‖ 6 ‖T j‖ (j > 1), ‖S−1‖ 6 2

m(T) and

∥∥∥
N

∑
j=0

S−jπ(xj)
∥∥∥

2
6 2

N

∑
j=0

( √
2

m(T)

)2j
‖xj‖2

for every N ∈ N and all xj ∈ H.

Proof. Let cj =
( √

2
m(T)

)j
, j > 1. Then the sequence (cj) satisfies the condition

(∗)2 for T (take kn = n). It follows from the proof of Theorem 3.5 that there exist
a Hilbert space K, an isomorphic embedding π : H 7→ K satisfying 1√

2
‖x‖ 6

‖π(x)‖ 6 ‖x‖ for any x ∈ H, and an invertible operator S ∈ B(K) such that
Sπ = πT, ‖Sj‖ 6 ‖T j‖ (j > 1), ‖S−1‖ 6

√
2

m(T) and

∥∥∥
N

∑
j=0

S−jπ(xj)
∥∥∥

2
6

N

∑
j=0

( √
2

m(T)

)2j
‖xj‖2

for every N ∈ N and all xj ∈ H. We now introduce a new equivalent Hilbert
space norm on K such that π becomes an isometry as in the proof of Theorem 4.1.
So let P be the orthogonal projection onto πH and define the new norm on K by

|||x||| = (‖π−1Px‖2
H + ‖(I − P)x‖2

K)1/2.

Then |||x|||2 6 2‖Px‖2
K + ‖(I − P)x‖2

K 6 2‖x‖2
K. In the same way a lower bound

can be obtained; we get ‖x‖ 6 |||x||| 6 √
2‖x‖ for every x ∈ K. Then S, acting on

the Hilbert space (K, ||| · |||), verifies the required inequalities.

4.5. OPERATORS WITH COUNTABLE SPECTRUM. In the following two results we
assume that the spectrum of T is countable. We refer to [5], [4], [15] and their
references for related results.

THEOREM 4.9. Let T ∈ B(X) be a Banach space operator. Suppose that there are
positive constants M > 0, C > 0 and 0 < s < 1

2 such that

1
Cens ‖x‖ 6 ‖Tnx‖ 6 M‖x‖

for every x ∈ X and n ∈ N. Suppose also that the spectrum σ(T) of T is countable. Then

(P(0))
1
M
‖x‖ 6 ‖Tnx‖ 6 M‖x‖
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for every x ∈ X. In particular, T is E(T)-subscalar.

Proof. We have ‖Tn‖ 6 M and m(Tn))−1 6 Cens
. Let ε > 0 be a positive

number such that s + ε < 1
2 . Using (the proofs of) Theorems 4.7 and 2.4 (or 3.5),

there exists a constant K > 0 such that T has an invertible extension S on a Banach
space Y verifying ‖Sn‖ 6 M and ‖S−n‖ 6 K exp(ns+ε) for all n ∈ N. Moreover, it
is possible to have an extension satisfying σ(S) ⊂ σ(T). We obtain in particular
that

lim
n→∞

log ‖S−n‖√
n

= 0

and that the spectrum σ(S) of S is countable. From Remarque 2, p. 259 of [32] we
obtain ‖Sp‖ 6 M for all p ∈ Z. This yields m(Tn)−1 6 M for n > 1 and the stated
inequality (P(0)).

We obtain the following consequence in the case of Hilbert space operators.

COROLLARY 4.10. Let T ∈ B(H) be a power bounded operator on a Hilbert space
H. Suppose that there are positive constants C and s < 1

2 such that

m(Tn)−1 6 Cens
(n > 1)

and that σ(T) is countable. Then T is similar to a unitary operator.

Proof. By the previous theorem, the operator T satisfies (P(0)) on H, a con-
dition which characterizes Hilbert space operators similar to isometries [30]. As
the spectrum is a similarity invariant, T is similar to an isometry with a countable
spectrum. Since the spectrum of a non-invertible isometry is the entire closed
unit disk, we obtain that T is similar to a unitary operator.

4.6. CONTRACTIONS WITH SPECTRUM A CARLESON SET. Recall that a closed set
E of T is said to be a Carleson set if

2π∫

0

log
( 2

dist (eit, E)

)
dt < +∞.

THEOREM 4.11. Let T ∈ B(H) be a Hilbert space contraction such that σap(T) ⊂
T is a Carleson set. Suppose that there exist C > 0 and s > 0 such that m(Tn)−1 6 Cns.
Then T is an isometry.

Proof. Using Theorem 4.1, (ii), there exist K > 0, s′ > 0, a Hilbert space K
and an invertible operator S ∈ B(K) which is an extension of T such that ‖S‖ 6 1,
‖S−n‖ 6 Kns′ and σ(S) = σap(T). We obtain in particular that σ(S) = σap(T) is
a Carleson set. By a theorem of Esterle [11] (see also [14]), S is unitary. Therefore
its restriction T is an isometry.

Several results for unitaries (or operators similar to unitaries) can be trans-
ferred to results for isometries (or operators similar to isometries) in an analogous
manner.
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[31] B. SZ.-NAGY, C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, Translated
from the French and revised, North-Holland, Amsterdam 1970.

[32] M. ZARRABI, Contractions à spectre dénombrable et propriétés d’unicité des fermés
dénombrables du cercle, Ann. Inst. Fourier (Grenoble) 43(1993), 251–263.
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