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ABSTRACT. First, we prove that Kadison’s similarity problem is equivalent to
a problem about the invariant operator ranges of a single operator. We con-
struct an operator T on a separable Hilbert space such that Kadison’s problem
is equivalent to deciding if Dixmier’s invariant operator range problem is true
for each of the operators {T ⊗ In}, where In denotes the identity operator on
a Hilbert space of dimension n with n a countable cardinal. We prove that the
answer to Dixmier’s invariant operator range problem is affirmative when n
is finite.

Second, using Pisier’s theory of similarity and factorization degree, we
prove that the answer to Kadison’s problem is affirmative if and only if there
exists a "universal factorization formula" of the type considered by Pisier, con-
sisting of a particular set of scalar matrices and a set of polynomials in non-
commuting variables. This formula would factor matrices over any C∗-algebra
into products of scalar matrices and diagonal matrices, where the entries of the
diagonal matrices are determined by the non-commutative polynomials.
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1. INTRODUCTION

It was proved by Dixmier [11] that a bounded amenable group of operators
on a Hilbert space is similar to a group of unitary operators. However, L. Ehren-
preis and F. Mautner [13] gave examples showing that this result fails when the
amenability assumption is removed. Thus, there exist bounded homomorphisms
of groups into the group of invertible operators on a Hilbert space, that are not
similar to unitary representations of the group.

The analogous problem for representations of C∗-algebras, known as Kadi-
son’s similarity problem, is still an open problem. This problem of R. Kadison [25]
asks whether every bounded homomorphism of a C∗-algebra into the algebra of
operators on a Hilbert space is similar to a ∗-homomorphism.
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In this paper we present two reformulations of Kadison’s similarity prob-
lem, one coming from invariant operator ranges and the other from Pisier’s the-
ory of similarity and factorization degree. Each reformulation reduces the prob-
lem to the study of a special case. In particular, we will first show that Kadison’s
problem is equivalent to a problem concerning the invariant operator ranges of a
single operator. Next, we will show that the assumption that Kadison’s problem
is true is equivalent to the existence of certain "universal factorization formulas”.
These formulas are fixed expressions involving words in a free algebra and scalar
matrices that yield, upon substitution of elements from any C∗-algebra for the
variables, the factorization of a norm one matrix of elements from the C∗-algebra
as a product of scalar matrices and diagonal matrices from the C∗-algebra. What
is, precisely, meant by this will be made clear in later sections.

We begin with a brief history and some explanatory comments. In [20]
U. Haagerup proved that every homomorphism with a cyclic vector is similar
to a ∗-homomorphism. Moreover, Haagerup proved [20] that a bounded homo-
morphism on a C∗-algebra is similar to a ∗-homomorphism if and only if the ho-
momorphism is completely bounded. A similar result was obtained by E. Chris-
tensen [9]. Around the same time the first author [22] proved that a bounded
homomorphism is similar to a ∗-homomorphism if and only if it is a linear com-
bination of completely positive maps, and Wittstock [48] proved that the latter
condition is equivalent to the map being completely bounded. Much of this work
was organized and simplified by the second author in [32].

Suppose A is a C∗-algebra and ρ : A → B(H) is a bounded but not nec-
essarily completely bounded homomorphism. If for each positive integer n we
choose a norm-one matrix An ∈ Mn(A) such that ‖ρn(An)‖ > ‖ρn‖/2, and let
A0 be the C∗-algebra generated by the entries of all the An’s, we see that A0 is
separable and ρ|A0 is not completely bounded. Hence Kadison’s similarity prob-
lem reduces to the case of separable C∗-algebras. In this case ρ is a direct sum
of homomorphisms into separable Hilbert spaces, and we only need countably
many of these summands to maintain the lack of complete boundedness. Hence
we may also assume that the Hilbert space is separable. All of these facts are
well-known.

E. Christensen [8] proved that the inner derivation problem for von Neu-
mann algebras is equivalent to the question of whether every von Neumann alge-
bra is hyperreflexive. Recently, E. Kirchberg [26] proved that these two questions
are equivalent to Kadison’s similarity problem.

We will be concerned with two other equivalent reformulations of Kadi-
son’s problem. The first arises from Dixmier’s invariant operator range prob-
lem [10] and the second from Pisier’s theory of similarity and factorization de-
gree [40].
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2. INVARIANT OPERATOR RANGES

C. Foias [17] proved that an affirmative answer to Kadison’s similarity prob-
lem would imply an affirmative answer to a problem of J. Dixmier [11] concerning
invariant operator ranges. Dixmier’s problem asks: if the range of an operator T
is invariant for every operator in a von Neumann algebra M, then is there an
operator S ∈ M′ with ranS = ranT? It was proved by S.-C. Ong [29] that the
invariant operator ranges for a C∗-algebra are the same as those of the von Neu-
mann algebra it generates. Hence Dixmier’s problem is the same for C∗-algebras
as for von Neumann algebras.

G. Pisier ([38], Theorem 10.5) proves that the answer to Kadison’s problem
is affirmative if and only if the answer to Dixmier’s problem is affirmative, thus
showing the converse to Foias’ result.

The precise connection between these two problems is stated below. We
present a slightly different proof of the fact that Dixmier’s problem implies Kadi-
son’s problem than appears in Pisier’s book.

PROPOSITION 2.1. If A ⊂ B(H) is a C∗-algebra, such that every bounded homo-
morphism of A is similar to a ∗-homomorphism and the range of T is invariant for A,
then there is S ∈ A′ with ranS = ranT. Conversely, if A is a C∗-algebra such that for
every ∗-homomorphism τ : A → B(H) and for every operator T ∈ B(H) whose operator
range is invariant for τ(A)′′, there is an operator S ∈ τ(A)′′ with ranS = ranT, then
every bounded homomorphism of A into B(H) is similar to a ∗-homomorphism. Conse-
quently, Kadison’s similarity problem is equivalent to Dixmier’s operator range problem.

Proof. For a proof of the first statement see [17] or Theorem 10.5 of [38].
For the converse, suppose that Dixmier’s question has an affirmative an-

swer forA, and suppose that τ : A → B(H) is a bounded homomorphism. It was
proved by E. Christensen [9] that there is a positive operator W with ker W = 0
and a ∗-homomorphism σ : A → B(H) such that, for every x ∈ A,

π(x)W = Wτ(x).

It follows that ranW is invariant for π(A). Since Dixmier’s problem has an af-
firmative solution, there is an operator V ∈ π(A)′ such that ranV = ranW. It
follows from the closed graph theorem that D = V−1W is a bounded invertible
operator whose inverse is W−1V. However, for each x ∈ A, we have

D−1π(x)D = W−1Vπ(x)V−1W = W−1π(x)VV−1W = W−1π(x)W = τ(x).

Hence, τ is similar to a ∗-homomorphism.

COROLLARY 2.2. Kadison’s similarity problem is equivalent to the assertion that
for every separable C∗-subalgebraA of B(`2) and every positive injective operator T such
that ranT is invariant for every operator in A, the map ρ(A) = T−1 AT is completely
bounded.
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We now use ideas of E.A. Nordgren, M. Radjabalipour, H. Radjavi and
P. Rosenthal [28] to reduce the condition in the preceding corollary to a single
operator T.

THEOREM 2.3. Suppose H = `2 ⊕ `2 ⊕ · · · and D = 1 ⊕ (1/2) ⊕ (1/4) ⊕
· · · ∈ B(H). Then Kadison’s similarity problem is equivalent to the assertion that, for ev-
ery separable C∗-subalgebra of B(H) leaving ranD invariant, the map τ(A) = D−1 AD
is completely bounded.

Proof. Assume that Kadison’s similarity problem has a negative answer. By
the preceding corollary, there is a T ∈ B(`2), T > 0, ker T = 0 and a separa-
ble unital C∗-subalgebra A of B(`2) that leaves ranT invariant such that the map
ρ(A) = T−1 AT is not completely bounded. Since ρ is unaffected when T is re-
placed by T/‖T‖, there is no harm in assuming that ‖T‖ = 1.

Suppose π : A → B(`2) is a faithful unital representation of A. If we re-
place A with {A ⊕ π(A) ⊕ π(A) ⊕ · · · : A ∈ A} and replace T with T ⊕ 1 ⊕
(1/2) ⊕ (1/4) ⊕ · · · , we still get that the induced mapping ρ is not completely
bounded. Hence we can assume that each of the numbers 1/2n, n = 0, 1, 2, 3, . . .,
is an eigenvalue of T with infinite multiplicity. For each n ∈ N, let Pn be the spec-
tral projection of T corresponding to the set (1/2n, 1/2n−1]. Since ‖T‖ = 1, T > 0
and ker T = 0, we have 1 = P1 + P2 + · · · . Clearly, each Pn has infinite rank. Let
D = ∑

n∈N
(1/2n)Pn. Then D 6 T 6 2D. It follows that ranT = ranD and the map

τ(A) = D−1 AD is also not completely bounded.
Using unitary equivalence, we obtain a separable C∗-subalgebra A of B(H)

leaving invariant the range of the operator D = 1⊕ (1/2)⊕ (1/4)⊕ · · · such that
the map τ(A) = D−1 AD is not completely bounded.

REMARK 2.4. Note that the mapping τ(A) = D−1 AD is the Schur product
of A with the matrix (2j−i). In [19] J. Froelich and B. Mathes give an example of
a linear subspace S of B(H) and a matrix M such that the map ϕ on S defined as
the Schur product with M is bounded on S , but not completely bounded. If we

let A =
{(

λ S
0 λ

)
: λ ∈ C, S ∈ S

}
, then ρ

(
λ S
0 λ

)
=
(

λ ϕ(S)
0 λ

)
is the

Schur product with the matrix
(

I M
0 I

)
, and ρ is bounded but not completely

bounded. Moreover, ρ is a unital algebra homomorphism.

Now let us suppose M is a separable Hilbert space, H = M ⊕ M ⊕ · · · ,
D = diag(1, 1/2, 1/4, . . . ), let

D = {T ∈ B(H) : D−1TD ∈ B(H)},

and let

R = {D−1TD : T ∈ D}.
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It is clear that R = {S ∈ B(H) : DSD−1 ∈ B(H)} = D∗, and D is the set of all
operators leaving ranD invariant. Define τ : D → R by τ(T) = D−1TD, and
define τ−1 : R → D by τ−1(S) = DSD−1.

For each n ∈ Z, define ρn : B(H) → B(H) by

ρn(Aij) = (Bij),

where Bij = 0 if j 6= i + n and Bij = Aij if j = i + n. In other words ρn annihilates
all the diagonals of an operator matrix except the nth one, and leaves the nth

diagonal alone. We define σn : B(H) → B(H) by

σn(T) = ∑
|k|6n

ρn.

The following proposition contains some of the basic results we need.

PROPOSITION 2.5. Suppose S ⊂ D and T ⊂ R are norm-closed linear sub-
spaces. The following are true:

(i) R and D are unital algebras, and τ, τ−1 are unital algebra homomorphisms.
(ii) τ|S and τ−1|T are continuous.

(iii) ‖ρn|S‖ 6 ‖τ|S‖/2|n| and ‖ρn|S‖cb 6 ‖τ|S‖cb/2|n| for n 6 0.
(iv) ‖ρn|T ‖ 6 ‖τ−1|T ‖/2n and ‖ρn|T ‖cb 6 ‖τ−1|T ‖cb/2n for n > 0.
(v) If S∗ ⊂ D, then ‖ρn|S‖ 6 ‖τ|S‖/2|n| and ‖ρn|S‖cb 6 ‖τ|S‖cb/2|n| for

n ∈ Z.
(vi) If T ∗ ⊂ R, then ‖ρn|T ‖ 6 ‖τ−1|T ‖/2|n| and ‖ρn|T ‖cb 6 ‖τ−1|T ‖cb/2|n|

for n ∈ Z.
(vii) If dim M = d < ∞, then ‖ρn‖cb 6 d‖ρn‖ for n ∈ Z.

Proof. (i) This is obvious.
(ii) These follow from the closed graph theorem.
First note that, for every A ∈ S , B ∈ T , and every n ∈ Z, ρn(τ(A)) =

2nρn(A), ρn(τ(A∗))∗ = 2nρ−n(A), and ρn(τ−1(B)) = 2−nρn(B). From this fact,
statements (iii), (iv), (v) and (vi) are immediate consequences.

To prove statement (vii) note that if φ : S → Md(C) is a linear map, then
‖φ‖cb 6 d‖φ‖. Also the cb-norm of a direct sum of maps is the supremum of
the cb-norms of the summands. It follows that if dim M = d, then ‖ρn|W‖cb 6
d‖ρn|W‖ for any linear subspace W of B(H).

When M is finite-dimensional, we will characterize the C∗-subalgebras of
D. In particular, it is known that Kadison’s similarity problem has an affirmative
answer for such algebras.

THEOREM 2.6. If dim M = d < ∞, and A is a unital C∗-algebra contained in
D, then there is a number N such that every irreducible representation of A is at most
N-dimensional.

Proof. We know from the proof of the preceding theorem that there is an n0
so that σn0 : A → σn0(A) is a cb-isomorphism. Define a map α : σn0(B(H)) →
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∑
|i−j|6n0

⊕B(M) by

α(A)(i, j) = Aij.

Since α is a direct sum of complete contractions, it is clear that it is completely
bounded. It is also clear that α is surjective. Moreover, for−n0 6 k 6 n0, the map
βk that sends α(A) to ρk(A) is a complete contraction, and since α−1 = ∑

|k|6n0

βk,

we see that α−1 is completely bounded. Hence A is cb-isomorphic to a subspace
of ∑

|i−j|6n0

⊕B(M). Since M is finite-dimensional, every bounded map of an oper-

ator space into ∑
|i−j|6n0

⊕B(M) is completely bounded. Therefore, every bounded

map from an operator space into A is completely bounded. By Theorem 1.3 of
[46], every C∗-algebra with this property must satisfy the conclusion of this theo-
rem.

In the case where dim M = ℵ0, the ideas in the preceding two theorems still
give some information.

THEOREM 2.7. Suppose dim M = ℵ0 and 1 ∈ A ⊂ D is a C∗-algebra. The
following are equivalent.

(i) τ|A is completely bounded.
(ii) There is a positive integer n0 such that σn0 : τ(A) → σn0(τ(A)) is a cb-

isomorphism.

Proof. (i) ⇒ (ii). Suppose ‖τ|A‖cb = C < ∞. It follows from the proof of
part (v) of Proposition 2.5 that, for each n ∈ Z,

‖ρn|A‖cb 6
C

2|n|
.

Since ∑
n∈Z

‖ρn|A‖cb < ∞, it follows that ∑
n∈Z

ρn|A converges in the cb-norm to the

identity mapping idA on A. It follows that, for some n0 ∈ N,

‖idA − σn0 |A‖cb < 1.

It follows that σn0 |A is a cb-isomorphism from A to σn0(A). It is clear that
τ|σn0(A) is a cb-isomorphism from σn0(A) to τ(σn0(A)) = σn0(τ(A)). Hence tak-
ing inverse maps we get a cb-isomorphism from σn0(τ(A)) to A, and when we
follow this map with the cb-map τ we get that the inverse of the map σn0 |τ(A) is
a cb-map. Since σn0 |τ(A) is a cb-map, we have (ii) is true.

(ii) ⇒ (i). This follows from the fact that if (ii) is true, then

τ = (σn0 |τ(A))−1 ◦ (τ|σn0(A)) ◦ (σn0 |A)

is the composition of cb-maps.
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3. CONSEQUENCES OF PISIER’S FACTORIZATION DEGREE

Fix a C∗-algebra A and assume that every bounded homomorphism of A
into B(H) is similar to a ∗-homomorphism for every Hilbert space H. That is, as-
sume that the answer to Kadison’s similarity problem is affirmative for A. Pisier
[38] has proven that this is equivalent to the existence of an integer, d, called the
factorization degree of A and a constant K, such that the following holds:

Given an n and any (ai,j) ∈ Mn(A) with ‖(ai,j)‖ < 1, there exist scalar
matrices, C1, . . . , Cd+1 of appropriate sizes with ‖C1‖ · · · ‖Cd+1‖ < K and diag-
onal matrices, D1, . . . , Dd, whose entries come from the unit ball of A, such that
(ai,j) = C1D1 · · ·CdDdCd+1.

Note that in this formulation, the scalar matrices and the diagonal matrices
depend on the particular element (ai,j), and d and K depend on the particular
algebra.

A further consequence of the result of G. Pisier [40] is that if the answer to
Kadison’s similarity problem is assumed to be affirmative, then there exist d and
K that are independent of the particular C∗-algebra (see also [38], [33]). In this sec-
tion, we will prove that if the answer is assumed to be affirmative, then the scalar
matrices appearing in the above formula can not only be chosen independent of
the particular element but also independent of the particular algebra. Moreover,
in this case we will show that there are fixed polynomials in 2n2 non-commuting
variables so that the entries of the diagonal matrices are given by evaluating these
polynomials at a1,1, . . . , an,n, a∗1,1, . . . , a∗n,n.

Thus, these scalar matrices and non-commuting polynomials serve to give
a universal factorization formula that allows one to factor matrices over an arbitrary
C∗-algebra. Conversely, if one had such a formula, then it is easy to show that
any bounded homomorphism τ of any C∗-algebra is completely bounded with
‖τ‖cb 6 K‖τ‖d and so the answer to Kadison’s similarity problem is affirmative.

Consequently, we see that Kadison’s problem is equivalent to the existence
of these universal factorization formulas.

We begin by constructing some universal C∗-algebras. To this end let Fn de-
note the free, unital ∗-algebra with 2n2 generators, which we label x1,1, . . . , xn,n,
x∗1,1, . . . , x∗n,n. We shall often refer to an element of Fn as a non-commuting ∗-
polynomial in n2 variables. Given any C∗-algebra A and n2 elements of A, a1,1, . . . ,
an,n there exists a unique ∗-homomorphism π of Fn into A given by setting
π(xi,j) = ai,j. We call such a ∗-homomorphism π admissible provided that ‖(ai,j)‖
6 1, where the norm is taken in Mn(A). We endow Fn with a (pre)C∗-seminorm
by setting ‖p‖ = sup{‖π(p)‖ : π admissible} for p ∈ Fn.

It is most likely the case that the above formula actually defines a norm
on Fn. We let Bn denote the C∗-algebra that one obtains by completing Fn in
this C∗-seminorm. Clearly, Bn is the universal C∗-algebra for the entries of a n × n
contraction.



10 DONALD HADWIN AND VERN I. PAULSEN

Henceforth, when we wish to assume that the answer to Kadison’s similar-
ity problem is affirmative, we will simply say "assume KSP". As remarked above
in this case we will let d and K denote the universal similarity degree and con-
stant, respectively, that apply to all C∗-algebras.

We begin with a lemma that provides a useful estimate.

LEMMA 3.1. Let W be an operator space and let W ∈ Mn(W). Then we may
factor W = C1DC2 where C1, C2 are scalar matrices with ‖C1‖‖C2‖ 6 n and a diagonal
matrix D ∈ Mn2(W) whose diagonal entries are the entries of W, with ‖D‖ 6 ‖W‖.

Proof. Let C1 be the n × n2 matrix whose i-th row is all 0’s except for the
1 + (i − 1)n through in entries which are 1’s, let C2 be the n2 × n matrix whose
j-th column is 0’s except for the j + kn entries which are 1’s for 0 6 k 6 (n− 1),
and let D be the diagonal matrix with wi,j for the [j + (i− 1)n]-th diagonal entry.
Since ‖C1‖ = ‖C2‖ =

√
n, the result follows.

THEOREM 3.2. Assume KSP and let (d,K) be the universal constants. Then for
each natural number n, there exist scalar matrices C1, . . . , Cd+1, of appropriate sizes,
with ‖C1‖ · · · ‖Cd+1‖ 6 (K + 1) and diagonal matrices D1, . . . , Dd, whose entries are
from the unit ball of Fn such that the n× n matrix

(xi,j) = C1D1 · · ·CdDdCd+1

where xij, 1 6 i, j 6 n, denote the generators of Fn.

Proof. Set X = (xi,j). Since ‖X‖ = 1 in Mn(Bn), given any ε > 0 there
exists such a factorization of X where the norm of each scalar matrix is at most
(K + ε)1/(d+1) and the entries of the diagonal matrices all come from the unit ball
of Bn. Because Fn is dense in Bn we may choose diagonal matrices E1, . . . , Ed
whose entries are from the unit ball of Fn and satisfy ‖Di − Ei‖ < ε for all i.

Set Y = C1E1 · · ·CdEdCd+1, so that Y ∈ Mn(Fn) and ‖X − Y‖ < d(K + ε)ε.
Since W = (X − Y) ∈ Mn(Fn), by the lemma, there exist scalar matrices, C′1, C′2
with ‖C′1‖ = ‖C′2‖ 6

√
n‖W‖ and a diagonal matrix E′1 with entries in the unit

ball of Fn such that W = C′1E′1C′2.
Hence,

X = Y + W = (C1, C′1)(E1 ⊕ E′1)(C2 ⊕ I)(E2 ⊕ I) · · · (Cd ⊕ I)(Ed ⊕ I)(Cd+1, C′),

where the I’s denote identity matrices of the appropriate sizes. Since ε was ar-
bitrary, we may choose it sufficiently small that the products of the norms of the
scalar matrices appearing in this product are at most K + 1 and the result fol-
lows.

REMARK 3.3. Given any C∗-algebra A and any matrix (ai,j) in the unit ball
of Mn(A), there is a ∗-homomorphism π : Bn → A with π(xi,j) = ai,j. Applying
π to the factorization given by the above theorem, we see that

(ai,j) = C1π(D1) · · ·Cdπ(Dd)Cd+1,
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where π(Di) is the diagonal matrix obtained by applying π to each entry of Di.
Since the effect of π on elements in Fn is merely to substitute the ai,j’s for the xi,j’s
and a∗i,j’s for the x∗i,j’s, we see that the non-commutative polynomials and scalar
matrices appearing in the above theorem actually give a universal factorization
formula that holds for the unit ball of Mn(A) for any C∗-algebra A.

By decomposing the above factorization into homogeneous terms, one can
gain further insight into KSP. If ‖(ai,j)‖ 6 1, then for any 0 6 t 6 1, we have
that ‖(tai,j)‖ 6 1 and consequently there exist ∗-homomorphisms, πt : Bn → Bn,
defined by πt(xi,j) = txi,j, for 0 6 t 6 1. If pj ∈ Fn is a homogeneous polynomial
of degree j, then it is easy to see that πt(pj) = tj pj.

While it is probably the case that the inclusion of Fn into Bn is one-to-one,
that is, that the seminorm is actually a norm, the following result will be sufficient
for our needs.

LEMMA 3.4. Let p ∈ Fn be a non-commutative polynomial and let p =
m
∑

j=0
pj be

the decomposition of p into homogeneous terms of degree j. If ‖p‖ = 0, then ‖pj‖ = 0
for every j.

Proof. Applying the homomorphisms πt, we see that
∥∥∥ m

∑
j=0

tj pj

∥∥∥ = 0, for all

t, 0 6 t 6 1. Setting t = 0, yields ‖p0‖ = 0, and hence
∥∥∥ m

∑
j=1

tj−1 pj

∥∥∥ = 0, from

which it follows that ‖p1‖ = 0.
The result follows by repeating this argument.

Now let (xi,j) = C1D1 · · ·CdDdCd+1 be the factorization obtained in the
above theorem. Decomposing each of the entries of the diagonal matrices Di into
a sum of homogeneous terms, we may write Di = ∑

j
Hi,j where Hi,j is a diagonal

matrix each of whose terms is homogeneous of degree j. Applying πt, we find

(txi,j) = (πt(xi,j)) = C1πt(D1) · · ·Cdπt(Dd)Cd+1

= ∑
j1,...,jd

tj1+···+jd C1H1,j1 · · ·Cd Hd,jd Cd+1.

By the above lemma, we may equate like powers of t in the above expres-
sion. Equating the terms of degree 0, yields

C1H1,0C2 · · ·CdHd,0Cd+1 = 0.

Considering the terms of degree 1, leads to

(xi,j) = ∑
j1+···+jd=1

C1H1,j1 · · ·Cd Hd,jd Cd+1.
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Since j1 + · · ·+ jd = 1 implies that each jk is either 0 or 1, we have that this latter
sum has exactly d terms and

(xi,j) = C1H1,1C2H2,0 · · ·Cd Hd,0Cd+1 + · · ·+ C1H1,0C2 · · ·Cd Hd,1Cd+1.

Note that each Hi,0 is a scalar matrix times the identity of Bn and so each
term in this last sum is actually of the form Ai Hi,1Bi where Ai and Bi are scalar
matrices. Moreover, since Hi,0 = π0(Di), we have that ‖Hi,0‖ 6 1 and conse-
quently, ‖Ai‖‖Bi‖ 6 ‖C1‖ · · · ‖Cd+1‖ 6 (K + 1).

Thus, we have (xi,j) = A1H1,1B1 + · · ·+ Ad Hd,1Bd.
We let Λn = max{‖H1,1‖, . . . , ‖Hd,1‖}. Also, let Xn denote the n2 dimen-

sional subspace of Bn spanned by the xi,j’s and letWn denote the 2n2 dimensional
subspace of Bn spanned by these elements and their adjoints.

We assume that the reader is familiar with the concept of the maximal opera-
tor space of a normed space V, denoted MAX(V). See [34] or [33] for a discussion of
this concept.

LEMMA 3.5. Assume that KSP is true, let d,K be the universal constants and let
Λn be the constants obtained above. Then for every n, we have that

‖(xi,j)‖MAX(Wn) 6 d(K + 1)Λn.

Proof. By the characterization of the MAX norms given in [34], we have that

‖(xi,j)‖MAX(Wn) 6 ‖A1‖‖B1‖Λn + · · ·+ ‖Ad‖‖Bd‖Λn 6 d(K + 1)Λn.

Let Tn denote the n× n matrices equipped with the trace class norm and let
ei,j denote the standard basis.

LEMMA 3.6. For every n, the map φ : Xn → Tn given by φ(xi,j) = ei,j, is an
isometry.

Proof. Assume that
∥∥∑ ai,jxi,j

∥∥ 6 1, and let (bi,j) be in the unit ball of Mn.
Since there is a ∗-homomorphism sending xi,j to the complex number bi,j, we have
that

∣∣∑ ai,jbi,j
∣∣ 6 1. Thus,

∥∥∑ ai,jei,j
∥∥ 6 1 in Tn and φ is contractive.

To prove the converse, recall that the matrices of trace norm at most one
are the convex hull of the matrices of the form (αiβ j) where v = (α1, . . . , αn) and
w = (β1, . . . , βn) are vectors in the unit ball of Hilbert space. Thus, to prove that
φ−1 is contractive it is enough to observe that

∥∥∑ αixi,jβ j
∥∥ 6 1, since this quantity

is the product v(xi,j)wt.

LEMMA 3.7. For all n,

‖(xi,j)‖MAX(Wn) = ‖(xi,j)‖MAX(Xn) = n.

Proof. By the defining properties of the MAX operator space structure, when-
ever X ⊂ W, it follows that ‖(xi,j)‖MAX(W) 6 ‖(xi,j)‖MAX(X).

By Lemma 3.1, it follows that for any n× n matrix ‖(xi,j)‖MAX(X) 6 n.
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Thus,
‖(xi,j)‖MAX(Wn) 6 ‖(xi,j)‖MAX(Xn) 6 n.

Now given a contractive linear map ψ : Xn → B(H) with ψ(xi,j) = Ti,j,
we obtain a contractive linear map Ψ : Wn → B(H ⊕ H) by setting Ψ(xi,j) =(

0 Ti,j
0 0

)
and Ψ(x∗i,j) =

(
0 0

T∗i,j 0

)
. Using this construction it readily follows

that
‖(xi,j)‖MAX(Wn) = ‖(xi,j)‖MAX(Xn).

Finally, if we let Ei,j denote the standard matrix units for Mn, then it is read-
ily checked that the map defined on Xn by sending xi,j to Ei,j is a contraction,
since the trace norm dominates the operator norm. But ‖(Ei,j)‖ = n.

Thus, ‖(xi,j)‖MAX(Xn) > n, and the result follows.

Combining the above results leads to the following theorem, giving a lower
bound on the rate of growth of the constants Λn.

THEOREM 3.8. Assume that KSP is true, let d,K be the universal constants and
let Λn be the constants obtained above. Then for every n, we have that n 6 d(K + 1)Λn.

Recall that the constant Λn is the norm of the homogeneous term of degree
1 of a non-commutative polynomial whose norm is at most 1. Thus, if one could
obtain estimates on the norms of these terms of degree 1 that grew at a rate less
than n, one could prove that KSP is false.
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