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ABSTRACT. We obtain (very close) sufficient conditions and necessary condi-
tions on the spectral measure of a self-adjoint operator A, under which any
continuous function φ (without any additional smoothness properties) has a
directional operator-derivative

φ′(A)(B) :=
∂

∂γ
φ(A + γB)|γ=0

in the direction of a quite general bounded, self-adjoint operator B. Our sharp-
est results are in the case where B is a rank-one operator. We pay particular
attention to the case where the spectral measure of A is absolutely continuous,
and its additional smoothness properties compensate the lack of smoothness
of the function φ.
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1. INTRODUCTION

1.1. Let H be a Hilbert space, let B(H) be the algebra of all bounded linear
operators on H, and let B(H)h := {A ∈ B(H); A∗ = A} be its self-adjoint part.
Let φ : R → C be a continuous function. Via the usual functional calculus φ is
extended to a function on B(H)h, denoted also by φ. Namely, if a self-adjoint
operator A has a spectral measure E (and then A =

∫
R

λE(dλ)), then

φ(A) :=
∫
R

φ(λ) E(dλ).

It is natural to pose the following problem.
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Differentiability Problem: when is the extended function φ differentiable in the sense
of Gateaux or Fréchet, with respect to either the uniform, the strong, or the weak operator
topologies on B(H)?

Variants of this problem have been considered by many mathematicians,
see for instance [1], [7], [8], [16], and [20]. It is not difficult to see that a neces-
sary condition that the extended function φ is Gateaux-differentiable in B(H)h
(in the uniform operator topology) is that the scalar function φ must be continu-
ously differentiable. If instead of B(H)h we consider a commutative C∗-algebra
A, it is easily seen that the condition φ ∈ C1 is also sufficient. However, in [11]
Farforovskaya constructed an example of function in C1 whose extension to the
self-adjoint part of B(H) is not Gateaux-differentiable.

Daletskii and Krein [8] considered the differentiability problem in the con-
text of the self-adjoint elements in B(H). They showed that if φ ∈ C2(R), then the
extended operator function is differentiable. Moreover, they obtained a formula
for the derivative of φ in terms of a notion of “iterated operator integrals”, which
they also introduced. Birman and Solomyak ([5], [6], [7]) refined this concept
and introduced and developed the theory of “double operator integrals”, which
became the basis of all subsequent research in this area. They also found much
sharper sufficient conditions for operator differentiability. For instance, scalar
functions whose derivatives are Hölder continuous of some order α ∈ (0, 1), or
scalar functions whose derivatives have absolutely convergent Fourier series are
operator differentiable. Sharper sufficient and necessary conditions, formulated
in terms of Besov classes, were found by Peller [16]. Another approach in context
of the double operator integral technique was proposed by Arazy, Barton and
Friedman in [1] , where instead of the Fourier expansion of the scalar function φ
a decomposition of it into Möbius functions was considered (see also [2] and [3]).

In the present paper we study the “local” version of the Differentiability
Problem which deals with directional operator differentiability. Consider a pair
of bounded self-adjoint operators A and B acting in a Hilbert space H. Let us
consider the family of operators

Aγ = A + γB (γ ∈ R),

and let M > 0 be such that σ(A) ⊂ (−M, M).

PROBLEM 1.1. What spectral properties of the pair (A, B) guarantee that for every
φ ∈ C[−M, M] the limit

(1.1) lim
γ→0

φ(Aγ)− φ(A)
γ

exists in the strong operator topology (or in other operator topologies)?

This “local” version of the Differentiability Problem, arises naturally in ma-
ny applications. We shall show below that there are natural circumstances in
which the strong operator-limit (1.1) exists for all φ ∈ C[−M, M] without any
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additional smoothness. Thus, some “smoothness” properties of the pair (A, B)
compensate the lack of smoothness of φ ∈ C[−M, M] in this limiting procedure.
Explicitly, under the assumptions that the perturbing operator B is of rank one,
the spectral measure of the operator A is absolutely continuous and its density
satisfies some rather mild conditions, we prove in Theorem 2.5 that the limit (1.1)
exists in the uniform operator topology for any φ ∈ C[−M, M], and it is expressed
by formula (2.38) (in which φ0 is defined by (2.14) and P+, P− are Riesz projec-
tions in L2(R)). It is important to notice that this formula contains the difference
P−Mφ0 P+ − P+Mφ0 P−, where Mφ0 is the operator of multiplication by φ0. This
difference can be expressed in terms of Hankel operators as Hφ0 − H∗

φ0
(where

Hψ = P−MψP+ is the Hankel operator with symbol ψ, see [17]), and also in terms
of the commutator [H, Mφ0 ], where H = i(P+− P−) is the Hilbert transform. This
is not an accident. Indeed, in the paper of Peller [16] mentioned above the study
of Hankel operators plays a central role in the investigation of operator differ-
entiability. Moreover, under some preliminary conditions for the density of the
spectral measure of the operator A, we also find necessary conditions for oper-
ator differentiability in the strong operator topology (see Theorems 3.3, 3.8, 4.5
and 5.2). These necessary conditions are very close to the sufficient conditions
formulated in Theorem 2.5 mentioned above (see Remarks 3.9 and 4.6).

In our investigation we used a new approach, based on an expression of
the operator function φ(A) via the limit of contour integrals (Proposition A1.1).
We also make use of some boundary properties of Borel transform of functions
(essentially, Poisson formula, see Proposition A2.1).

The paper is divided into five sections and two appendices. After this in-
troduction, we prove in Section 2 Theorem 2.5 mentioned above. Especially, we
discuss the conditions imposed in Theorem 2.5 on the density of the spectral mea-
sure of the operator A, and compare them with some known conditions (see Sub-
section 2.5 of Section 2 and particularly Example 2.7).

In Section 3 we obtain necessary conditions for directional operator differ-
entiability of any continuous function, connected with a behavior of the spec-
tral measure of the operator A near endpoints of gaps of its spectrum. We con-
sider here the case of a general bounded self-adjoint perturbing operator B (The-
orem 3.3), as well as the case of a rank-one operator B (Theorem 3.8).

Section 4 is devoted to obtain necessary conditions for the directional oper-
ator differentiability of any φ ∈ C[−M, M] in case B is of rank one, in terms of
the behavior of the density ρ̃ of the spectral measure of the operator A in interior
points of its spectrum (Theorem 4.5). This theorem allows us to exhibit examples
(see Example 4.7) in which directional operator differentiability in the sense of
Problem 1.1 fails.

In Section 5 we link the necessary conditions for directional operator dif-
ferentiability found in Sections 3 and 4 (Theorem 5.2). Finally, the appendices
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are devoted to establish auxiliary results. In Appendix 1 we obtain an essen-
tially known formula for the operator function φ(A) mentioned above (Proposi-
tion A1.1), and in Appendix 2 we prove Proposition A2.1 about Borel transform
of functions, which may be considered as a non-classical generalization of the
well-known Sokhotskii boundary property of the integrals of Cauchy type. We
add the labels “A1” and “A2” to the number of propositions and formulas in
Appendices 1 and 2 respectively.

1.2. NOTATION. - N, R and C are the sets of all natural, real and complex num-
bers, respectively;

- <z and =z are the real and the imaginary parts of a number z ∈ C;
- O(x0) is a neighborhood of a point x0 belonging to a topological space T ;
- 1S(x) (x ∈ T) is the characteristic function of a subset S of a set T;
- mes(A) is the Lebesgue measure of a measurable set A ⊂ R;
- f̂ is the Fourier transform of a function f from L1(R) or from L2(R);
- supp( f ) is the support of a function f ;
- If ρ is a measure on R, then supp(ρ) denotes its support;
- Mφ is the operator of multiplication by a function φ(t) on R;
- ‖ · ‖E is the norm of a Banach space E ;
- C[a, b] is the Banach algebra of continuous functions on [a, b] with the

supremum norm;
- (·, ·)H and ‖ · ‖H are the inner product and the norm in a Hilbert space H.

If it is clear what Hilbert space is meant, we shall simply write (·, ·) and ‖ · ‖;
- span(M) is the closure of the linear span of a subset M of a Hilbert

space H;
- For Banach spaces E and F, B(E, F) is the Banach space of all bounded

linear operators from E into F;
- B(H) = B(H,H) is the Banach algebra of bounded linear operators acting

in a Hilbert space H.

If A is a linear operator acting in a Hilbert space H, then:
- σ(A) and σe(A) are the spectrum and essential spectrum of A;
- δ(A) = σ(A) \ σe(A); if A is self-adjoint, δ(A) consists of isolated eigen-

values of finite multiplicity;
- Rλ(A) (λ /∈ σ(A)) is the resolvent of A, i.e., Rλ(A) = (A− λI)−1;
- tr(A) is the trace of a linear operator A belonging to the trace class.

2. SUFFICIENT CONDITIONS FOR DIRECTIONAL OPERATOR DIFFERENTIABILITY

2.1. In this section we consider the case when the perturbing operator B is of
rank one, that is

(2.1) B = (·, g)g (g ∈ H).
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Like in [13] (Chapter X, Section 4, no 2), we shall represent the operators A and B
in a more convenient form.

Let {E(∆)}∆∈J be the family of spectral projections of the unperturbed op-
erator A, where we denote by J the set of all intervals (open, or closed, or semi-
open) of the real axis R. Consider the subspace

Hg = span({E(∆)g}∆∈J )

of the space H, where g is the vector from representation (2.1) of the operator
B. As is known ([13], Chapter X, Section 4, no 2), Hg is the minimal closed sub-
space containing the vector g and reducing both A and Aγ = A + γB (γ ∈ R).
Moreover, for any γ ∈ R

Hg = span({Eγ(∆)g}∆∈J ),

where {Eγ(∆)}∆∈J is the family of spectral projections of the operator Aγ. It is
evident that

A f = Aγ f , ∀ f ∈ H	Hg.

Hence it is enough to investigate the limit (1.1) only on the subspace Hg. Thus,
without loss of generality we can assume that Hg = H, that is, g is a cyclic vector
for both operators A and Aγ (γ ∈ R).

Consider the scalar measure

(2.2) ρ(∆) = (E(∆)g, g) (∆ ∈ J ).

As is known, the operator

f = U f̃ =
∞∫

−∞

f̃ (λ)E(dλ)g

maps isometrically the space

(2.3) H̃ = L2(R, ρ)

onto the space H. Moreover, if we define Ã := U−1 AU, then

(2.4) (Ã f̃ )(µ) = µ f̃ (µ) ( f̃ ∈ H̃)

([10], Chapter X, Section 5). Observe that the function g̃(µ) = (U−1g)(µ) is equal
to 1 almost everywhere with respect to the measure ρ. Furthermore, the operator
B̃ = U−1BU has the form:

(2.5) (B̃ f̃ )(µ) = ( f̃ , g̃)H̃ g̃(µ) =
∞∫

−∞

f̃ (t)g̃(t)ρ(dt)g̃(µ).

In the sequel we shall deal with the space H̃, defined by (2.3), and the oper-
ators Ã, B̃ and

(2.6) Ãγ = Ã + γB̃, γ ∈ R.
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This is a convenient model for the family Aγ = A + γB, γ ∈ R. We shall call
the measure ρ, defined by (2.2), the spectral measure of the operator Ã. Notice that
σ(Ã) = supp(ρ).

In this section we study the case of an absolutely continuous spectral mea-
sure ρ of the operator Ã. We shall show that, under additional assumptions on the
density ρ̃ of the measure ρ, the limit (1.1) exists in the uniform operator topology
for any continuous function φ.

2.2. In the sequel we shall need a well-known property of Riesz projections.
Recall that Riesz projections P+ and P− are the orthogonal projections in L2(R)
on the Hardy subspaces, respectively:

H+ = { f ∈ L2(R) : f̂ (ω) = 0 a.e. on (−∞, 0)},

H− = L2(R)	H+ = { f ∈ L2(R) : f̂ (ω) = 0 a.e. on (0, ∞)}.

PROPOSITION 2.1. For any ε > 0 the operators

(P+,εh)(u) :=
1

2πi

∞∫
−∞

h(s) ds
s− u− iε

,(2.7)

(P−,εh)(u) := − 1
2πi

∞∫
−∞

h(s) ds
s− u + iε

(2.8)

(h ∈ L2(R)) are bounded in the space L2(R) and ‖P+,ε‖ = ‖P−,ε‖ = 1. Furthermore,

P+ = lim
ε↓0

P+,ε, P− = lim
ε↓0

P−,ε

in the strong operator topology.

Proof. Indeed, let us define for ε ∈ (−∞, ∞) gε(x) := (2πi (x + iε))−1. Then

ĝε(t) = −sgn(ε)σ(εt) e−εt,

where σ(a) = 1 if a > 0 and σ(a) = 0 otherwise, and for ε > 0 we have

P+,εh = −h ∗ gε P−,εh = h ∗ g−ε .

The rest follows by standard techniques in Fourier analysis, see [19].

2.3. In what follows we shall use the following criterion of the weak conver-
gence of multiplication operators.

PROPOSITION 2.2. Let {ψε}0<ε<ε0 be a family of functions from the class L∞(R).
For any ε ∈ (0, ε0) consider a multiplication operator Mψε by a function ψε acting in the
space L2(R). The family of operators {Mψε}0<ε<ε0 converge to a multiplication operator
Mψ0 by a function ψ0 ∈ L∞(R) as ε ↓ 0 in the weak operator topology if and only if
lim
ε↓0

ψε = ψ0 in the weak-* topology of L∞(R), and this is equivalent to the following

conditions:
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(A) There exists ε1 ∈ (0, ε0), such that

ψ := sup
0<ε<ε1

‖ψε‖L∞(R) < ∞.

(B) For any x ∈ R

lim
ε↓0

x∫
0

ψε(t) dt =
x∫

0

ψ0(t) dt.

Proof. As is known, the weak operator convergence is equivalent to the fol-
lowing conditions:

(C) There exists ε1 ∈ (0, ε0), such that

ψ := sup
0<ε<ε1

‖Mψε‖B(L2(R)) < ∞;

(D) For some dense linear subspace D of L2(R),

lim
ε↓0

(Mψε f , g) = (Mψ0 f , g) ∀ f , g ∈ D.

But condition (C) coincides with condition (A), and condition (D) is equiva-
lent to condition (B), if we take as the set D the set of step functions with compact
supports. The proposition is proven.

2.4. We now return to the operators Ã, B̃ and Ãγ defined by (2.4), (2.5) and (2.6)
and acting in the Hilbert space H̃ = L2(R, ρ), where ρ is the spectral measure of
the operator Ã, defined by (2.2). For brevity we shall denote the inner product in
H̃ by (·, ·). We shall use the following well known representation for the resolvent
of the one-rank perturbed operator Ãγ (see [4]):

(2.9) (Rλ(Ãγ)− Rλ(Ã)) f̃ (µ) = −γ
Θ(λ, f̃ )

D(λ, γ)(µ− λ)
,

where

Θ(λ, f̃ ) = (Rλ(Ã) f̃ , g̃) =
∞∫

−∞

f̃ (s)ρ(ds)
s− λ

,(2.10)

D(λ, γ) = 1 + γ(Rλ(Ã)g̃, g̃) = 1 + γ

∞∫
−∞

ρ(ds)
s− λ

.(2.11)

Recall that the function g̃(µ) is equal to 1 almost everywhere with respect to the
measure ρ.

The following result concerning a representation of φ(Ãγ)−φ(Ã)
γ is of central

importance in the sequel.
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THEOREM 2.3. Assume that the spectral measure ρ of the operator Ã is absolutely
continuous, its density ρ̃ belongs to the class L∞(R) and has a compact support contained
in an interval (−M, M) (M > 0). For any φ ∈ C[−M, M] consider the functions

ψ+(t, ε, γ) =
φ0(t)

D(t + iε, γ)
,(2.12)

ψ−(t, ε, γ) =
φ0(t)

D(t− iε, γ)
,(2.13)

defined on R, where ε > 0,

φ0(t) =
{ φ(t) t ∈ [−M, M],

0 t /∈ [−M, M],(2.14)

and the function D(λ, γ) is defined by (2.11). In our case

(2.15) D(λ, γ) = 1 + γΘ(λ) (γ ∈ R),

where

(2.16) Θ(λ) =
∞∫

−∞

ρ̃(µ) dµ

µ− λ

is the Borel transform of the function ρ̃. Assume that for some subset C ⊆ C[−M, M]
there exists a number γ0 > 0 such that for any γ ∈ (−γ0, γ0) \ {0} and for any function
φ ∈ C there exists such a number ε0 > 0 that the families of multiplication operators

{Mψ+(·,ε,γ)}0<ε<ε0 and {Mψ−(·,ε,γ)}0<ε<ε0

belong to B(L2(R)) and converge as ε ↓ 0 in the weak operator topology to operators of
multiplication

Mψ+(·,0,γ) and Mψ−(·,0,γ)

by some functions ψ+(t, 0, γ) and ψ−(t, 0, γ) belonging to L∞(R). Then there exists a
number γ1 ∈ (0, γ0] such that for any γ ∈ (−γ1, γ1) \ {0} and for any function φ ∈ C
the following formula is valid:

(2.17)
φ(Ãγ)− φ(Ã)

γ
= −2πi{P−Mψ+(·,0,γ)P+ − P+Mψ−(·,0,γ)P−}Mρ̃,

where P+ and P− are Riesz projections in L2(R).

REMARK. The right hand side of (2.17) makes sense, because the member-
ship ρ̃ ∈ L∞(R) implies that Mρ̃ ∈ B(H̃, L2(R)).

Proof. Observe that there exists a number γ2 > 0 such that

σ(Ãγ) ⊂ (−M, M)

for any γ ∈ (−γ2, γ2) \ {0}. Let us put γ1 = min{γ0, γ2}. Then, making use
of formula (A1.1) (Proposition A1.1) and of representation (2.9), we get for any
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γ ∈ (−γ1, γ1) \ {0}, φ ∈ C and f̃ ∈ H̃:(φ(Ãγ)− φ(Ã)
γ

f̃
)
(µ) = − 1

2πi
lim
ε↓0

∞∫
−∞

φ0(t)
{ Θ(t + iε, f̃ )

D(t + iε, γ)(µ− t− iε)

− Θ(t− iε, f̃ )
D(t− iε, γ)(µ− t + iε)

}
dt,(2.18)

where the functional Θ(λ, ·) is defined by (2.10), that is, in our case

(2.19) Θ(λ, f̃ ) =
∞∫

−∞

f̃ (s)ρ̃(s) ds
s− λ

.

In view of (2.19), we can rewrite formula (2.18) in another form, making use of
the operators P+,ε and P−,ε defined by (2.7) and (2.8):

(2.20)
φ(Ãγ)− φ(Ã)

γ
= − lim

ε↓0
2πi{P−,ε Mψ+(·,ε,γ)P+,ε − P+,ε Mψ−(·,ε,γ)P−,ε}Mρ̃,

where the functions ψ+(t, ε, γ) and ψ−(t, ε, γ) are defined by formulas (2.12) and
(2.13) respectively.

Recall that, by Proposition A1.1, the limit of the family of operators in the
right hand side of (2.20) exists in the uniform operator topology. Thus, in order to
prove the formula (2.17), it is enough to show that in the weak operator topology
this limit is equal to the operator in the right hand side of (2.17). To this end
consider the following representation for f̃ , g̃ ∈ H̃:

((P+Mψ−(·,0,γ)P− − P+,ε Mψ−(·,ε,γ)P−,ε)Mρ̃ f̃ , g̃)

= J1,ε( f̃ , g̃) + J2,ε( f̃ , g̃) + J3,ε( f̃ , g̃),(2.21)

where

J1,ε( f̃ , g̃) = ((Mψ−(·,0,γ) − Mψ−(·,ε,γ))P−Mρ̃ f̃ , P+Mρ̃ g̃)L2(R),(2.22)

J2,ε( f̃ , g̃) = (Mψ−(·,ε,γ)P−Mρ̃ f̃ , (P+ − P+,ε)Mρ̃ g̃)L2(R),(2.23)

J3,ε( f̃ , g̃) = (Mψ−(·,ε,γ)(P− − P−,ε)Mρ̃ f̃ , P+,ε Mρ̃ g̃)L2(R).(2.24)

By the assumption of the theorem, the family of operators {Mψ−(·,ε,γ)}0<ε<ε0 con-
verges to Mψ−(·,0,γ) as ε ↓ 0 in the weak operator topology. Therefore, in view of
(2.22),

(2.25) lim
ε↓0

J1,ε( f̃ , g̃) = 0.

Furthermore, by the criterion of the weak convergence of multiplication opera-
tors, given in Proposition 2.2, there exist M > 0 and ε1 ∈ (0, ε0), such that for any
ε ∈ (0, ε1)

(2.26) ‖Mψ−(·,ε,γ)‖B(L2(R)) = ‖ψ−(·, ε, γ)‖L∞(R) 6 M.
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The latter fact, definition (2.23) and Proposition 2.1 imply that

(2.27) lim
ε↓0

J2,ε( f̃ , g̃) = 0.

From definition (2.24), estimate (2.26) and Proposition 2.1 we get:

(2.28) lim
ε↓0

J3,ε( f̃ , g̃) = 0.

The representation (2.21) and the limiting relations (2.25), (2.27) and (2.28) imply
that for any f̃ , g̃ ∈ H̃

lim
ε↓0

(P+,ε Mψ−(·,ε,γ)P−,ε Mρ̃ f̃ , g̃) = (P+Mψ−(·,0,γ)P−Mρ̃ f̃ , g̃).

In the analogous manner we prove that for any f̃ , g̃ ∈ H̃

lim
ε↓0

(P−,ε Mψ−(·,ε,γ)P+,ε Mρ̃ f̃ , g̃) = (P−Mψ−(·,0,γ)P+Mρ̃ f̃ , g̃).

These circumstances mean that the family of operators in the right hand side
of (2.20) converges to the operator in the right hand side of (2.17) in the weak
operator topology. The theorem is proven.

The following concrete realization of Theorem 2.3 is valid.

THEOREM 2.4. Assume that the spectral measure ρ of the operator Ã is absolutely
continuous, its density ρ̃ belongs to the class L∞(R) and has a compact support contained
in an interval (−M, M) (M > 0). Furthermore, assume that

R(t) =
∞∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞ for almost all t ∈ (−M, M),(2.29)

R ∈ L∞(−M, M).(2.30)

Then for every small enough γ 6= 0 and for any function φ ∈ C[−M, M] the representa-
tion (2.17) is valid with the L∞(R) functions

(2.31) ψ−(t, 0, γ) =
φ0(t)

D(t− i0, γ)
and ψ+(t, 0, γ) =

φ0(t)
D(t + i0, γ)

,

where the function φ0(t) is defined by (2.14),

D(t + i0, γ) = 1 + γΘ(t + i0), D(t− i0, γ) = 1 + γΘ(t− i0),(2.32)

Θ(t + i0) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds + iπρ̃(t),(2.33)

Θ(t− i0) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds− iπρ̃(t).(2.34)
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Proof. Taking into account definitions (2.15) and (2.16), we obtain from as-
sertion (ii) of Proposition A2.1 that there exists γ0 > 0, such that for every
γ ∈ (−γ0, γ0), t ∈ R and ε > 0

|D(t + iε, γ)| = |1 + γΘ(t + iε)| > 1
2

,(2.35)

|D(t− iε, γ)| = |1 + γΘ(t− iε)| > 1
2

.(2.36)

Take a function φ ∈ C[−M, M]. In view of the above estimates and definitions
(2.12), (2.13) and (2.14), for any γ ∈ (−γ0, γ0) the families of functions

(2.37) {ψ+(t, ε, γ)}ε>0 and {ψ−(t, ε, γ)}ε>0

satisfy condition (A) of Proposition 2.2 with ψ = 2‖φ‖C[−M,M]. Furthermore,
assertion (i) of Proposition A2.1 yields the limiting relations

lim
ε↓0

Θ(t + iε) = Θ(t + i0), lim
ε↓0

Θ(t− iε) = Θ(t− i0)

for almost all t ∈ R, where Θ(t + i0) and Θ(t − i0) are defined by (2.33) and
(2.34). Thus, definitions (2.12)–(2.15) and estimates (2.35) and (2.36) imply that, if
γ ∈ (−γ0, γ0), the following limiting relations are valid for almost all t ∈ R:

lim
ε↓0

ψ+(t, ε, γ) = ψ+(t, 0, γ) and lim
ε↓0

ψ−(t, ε, γ) = ψ−(t, 0, γ),

where ψ+(t, 0, γ) and ψ−(t, 0, γ) are defined by (2.31), (2.32) and (2.14). Hence,
by Lebesgue’s Theorem, also condition (B) of Proposition 2.2 is satisfied for the
families (2.37). Thus, by Proposition 2.2, for any γ ∈ (−γ0, γ0)

lim
ε↓0

Mψ+(·,ε,γ) = Mψ+(·,0,γ) and lim
ε↓0

Mψ−(·,ε,γ) = Mψ−(·,0,γ)

in the weak operator topology on B(L2(R)). So, the conditions of Theorem 2.3 are
satisfied if we take there C = C[−M, M]. Hence the desired assertion is valid.

We now turn to the main theorem of this section.

THEOREM 2.5. Assume that the spectral measure ρ of the operator Ã is absolutely
continuous, its density ρ̃ belongs to the class L∞(R) and has a compact support contained
in an interval (−M, M) (M > 0). If conditions (2.29) and (2.30) are satisfied, then for
any function φ ∈ C[−M, M] the limit

lim
γ→0

φ(Ãγ)− φ(Ã)
γ

exists in the uniform operator topology and it is equal to

(2.38) 2πi{P+Mφ0 P− − P−Mφ0 P+}Mρ̃,

where P+ and P− are Riesz projections in L2(R) and the function φ0(t) is defined by
(2.14).
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Proof. The assertion of the theorem immediately follows from (2.17) and
(2.31), and the fact that, in view of (2.32) and Corollary A2.2, the families of func-
tions { 1

D(t + i0, γ)

}
γ∈R

and
{ 1

D(t− i0, γ)

}
γ∈R

tend to 1 as γ → 0 in the L∞(R)-norm.

REMARK 2.6. It is easy to show that formula (2.38) can be written also in the
form:

lim
γ→0

φ(Ãγ)− φ(Ã)
γ

= π(HMφ0 − Mφ0 H)Mρ̃ = π[H, Mφ0 ]Mρ̃,

where H = i(P+ − P−) is Hilbert transform in L2(R).

2.5. In this subsection we shall discuss conditions (2.29) and (2.30) of Theo-
rems 2.4 and 2.5. It is evident that these conditions follow from the following
ones:

R̃(t) =
∞∫

−∞

|ρ̃(t + s)− ρ̃(t)|
|s| ds < ∞ a.e. in (−M, M),(2.39)

R̃ ∈ L∞(−M, M)(2.40)

(as above, we assume that supp(ρ̃) ⊂ (−M, M)). The latter conditions are well
known in the theory of integrals of Cauchy type ([12], Chapter I, Section 5, no5.2).
Under these conditions and some additional assumptions the classical Sokhotskii
formulas ([12], Chapter I, Section 4, no4.2) are valid for the boundary values of
the integrals of Cauchy type. The formulas (2.33) and (2.34) can be considered as
non-classical generalizations of Sokhotskii formulas (see Proposition A2.1). Ob-
serve that any function ρ̃ having a compact support and belonging to Hölder
class Lipα(R) with α ∈ (0, 1), satisfies conditions (2.39) and (2.40) (hence, also
conditions (2.29) and (2.30)).

Observe also that Hölder condition (and also the more general conditions
(2.39) and (2.40)) forbid very steep up- and down-slopes of the graph of a func-
tion at each point. Also, conditions (2.29) and (2.30) forbid such slopes in the
intervals of monotony of the function, because they are equivalent to conditions
(2.39) and (2.40) in such intervals. But conditions (2.29) and (2.30)) permit arbi-
trarily acute "cusps" of the graph (up- or down-directed), because in the integral
of (2.29) the values of the function ρ̃ at each pair of points t + s and t− s may be
almost equal, and thus annihilate each other. Therefore the up- and down-slopes
of these "cusps" may be arbitrarily steep. This means that conditions (2.29) and
(2.30) are essentially milder than (2.39) and (2.40).

The following example confirms the above qualitative arguments.

EXAMPLE 2.7. Consider a real-valued function ρ̃ having the properties:
(a) ρ̃ ∈ C(R);
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(b) supp(ρ̃) = [−1, 1];
(c) ρ̃ is even, that is ρ̃(−t) = ρ̃(t) for any t ∈ R;
(d) the function ρ̃ is continuously differentiable in R \ {0};
(e) ρ̃ is increasing in the interval (0, 1

2 );
(f) ρ̃ is concave in (0, 1

2 );
(g) the behavior of the function ρ̃ as t → 0 is defined by the condition:

1/2∫
0

ρ̃(µ)− ρ̃(0)
µ

dµ = ∞.

We shall show that the function ρ̃ satisfies conditions (2.29) and (2.30) with M > 1,
but it does not satisfy condition (2.40).

Indeed, taking into account conditions (a), (b) and (d), it is not difficult to
show that

sup
t∈(−M,M)

∞∫
1/4

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞,

sup
t∈(−M,M)\[− 1

4 , 1
4 ]

1/4∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞.

Thus, in order to prove that conditions (2.29) and (2.30) are satisfied, it is enough
to show that

(2.41) sup
t∈[− 1

4 , 1
4 ]

1/4∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞.

Assume that t ∈ [0, 1
4 ]. Consider the representation:

(2.42)
1/4∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds = I1(t) + I2(t),

where

I1(t) =
t∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds and I2(t) =
1/4∫
t

|ρ̃(t + s)− ρ̃(t− s)|
s

ds.
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Taking into account conditions (c), (d), (e), (f) and the fact that the derivative of a
concave function is non-increasing, we get:

I1(t) =
t∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds 6 2
t∫

0

ρ̃′(t− s) ds = 2(ρ̃(t)− ρ̃(0)),

I2(t) =
1/4∫
t

ρ̃(t + s)− ρ̃(s− t)
s

ds 6 2
1/4∫
t

ρ̃′(s− t) ds = 2
(

ρ̃
(1

4
− t

)
− ρ̃(0)

)
.

The latter estimates and representation (2.42) imply that

sup
t∈[0, 1

4 ]

1/4∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞.

In the analogous manner we prove that

sup
t∈[− 1

4 ,0)

1/4∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞.

So, we have proved property (2.41), that is, conditions (2.29) and (2.30) are satis-
fied for the function ρ̃.

Observe that, in view of conditions (a), (b) and (d), condition (2.39) is sat-
isfied for the function ρ̃. It remains to show that condition (2.40) fails. Consider
the function R̃(t) defined in (2.39). Taking into account condition (e), we have for
t > 0:

(2.43) R̃(t) >

1/4∫
0

ρ̃(t + s)− ρ̃(t)
s

ds.

In view of condition (f), the function

Γ(t) =
ρ̃(t + s)− ρ̃(t)

s

is non-increasing in the interval (0, 1
4 ) for any fixed s ∈ (0, 1

4 ). Thus, by the Mono-
tone Convergence Theorem ([18], Part One, Chapter 4) and conditions (e) and (g),
we have:

lim
t↓0

1/4∫
0

ρ̃(t + s)− ρ̃(t)
s

ds =
1/4∫
0

ρ̃(s)− ρ̃(0)
s

ds = ∞.

Applying estimate (2.43), we obtain lim
t↓0

R̃(t) = ∞. Therefore R̃ /∈ L∞(−M, M)),

that is, condition (2.40) is not satisfied for the function ρ̃.
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Notice that condition (g) is satisfied, if, for instance, the function ρ̃ has the
form in a neighborhood (−δ, δ) of the point t = 0:

ρ̃(t) =
{ m−1

∏
k=1

ln[k]
( 1
|t|

)(
ln[m]

( 1
|t|

))α}−1
+ C, if t ∈ (−δ, δ) \ {0},(2.44)

and ρ̃(0) = C,

where α ∈ (0, 1), m ∈ N, C ∈ R and

ln[1] u = ln u, ln[k+1] u = ln(ln[k] u).

Here the number δ > 0 is chosen small enough, such that the function ρ̃(t) is
continuous, increasing and concave in [0, δ).

3. NECESSARY CONDITIONS CONNECTED WITH GAPS OF σ(A)

In this section we shall obtain some necessary conditions for directional op-
erator differentiability of any continuous function. These conditions will be im-
posed on the behavior of the spectral measure of the unperturbed operator near
endpoints of gaps of its spectrum.

3.1. We shall first consider a general situation. Let A and B be bounded self-
adjoint operators acting in a Hilbert space H and M be such a positive number
that σ(A) ⊂ (−M, M). Denote by Σ(·, γ) the bounded linear operator acting
from the space C[−M, M] into the space B(H) and defined by

Σ(φ, γ) =
φ(Aγ)− φ(A)

γ
,

where Aγ = A + γB and γ ∈ R (γ 6= 0). Observe that the operator Σ(·, γ) is
defined for every small enough γ 6= 0, for which σ(Aγ) ⊂ (−M, M). We shall be
based on the following

LEMMA 3.1. If the following condition is satisfied:

(3.1) lim sup
γ→0

‖Σ(·, γ)‖B(C[−M,M],B(H)) = ∞,

then there exists a function φ ∈ C[−M, M], such that the limit (1.1) does not exist in the
strong operator topology.

Proof. By Banach-Steinhaus Theorem, condition (3.1) implies that there ex-
ists a function φ ∈ C[−M, M], such that

lim sup
γ→0

‖Σ(φ, γ)‖B(H) = ∞.

Making use again of Banach-Steinhaus Theorem, we get the assertion of the lem-
ma.
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REMARK 3.2. In Lemma 3.1, the space C[−M, M] can be complex or real.

The main theorem of this subsection is following:

THEOREM 3.3. If the limit (1.1) exists in the strong operator topology for any
φ ∈ C[−M, M], then

(3.2) ∃ γ0 > 0, ∀ γ ∈ (−γ0, γ0) : σ(Aγ) ⊆ σ(A).

Proof. Assume that the condition of the theorem is satisfied, but property
(3.2) is not valid. Then there exists a sequence of numbers γk ∈ R \ {0} and a
sequence of points λk ∈ σ(Aγk ), such that

(3.3) lim
k→∞

γk = 0

and λk ∈ (−M, M) \ σ(A). Therefore there exists a sequence of closed intervals
of the form ∆k = [λk − δk, λk + δk] (δk > 0) such that ∆k ⊂ (−M, M) and

(3.4) ∆k ∩ σ(A) = ∅ ∀ k ∈ N.

Denote ∆̃k =
[
λk − δk

2 , λk + δk
2
]
. Consider a sequence of real-valued functions φk

in C[−M, M] having the properties for any k ∈ N:
(a) supp(φk) ⊆ ∆k;
(b) φk(t) > 0 ∀ t ∈ ∆k;
(c) φk(t) = 1 ∀ t ∈ ∆̃k;
(d) ‖φk‖C[−M,M] = 1.

Let E(∆) and Eγ(∆) be the families of spectral projections of the operators
A and Aγ respectively. Making use of the relation (3.4) and property (a) of the
functions φk, we have:

φk(Aγk )− φk(A)
γk

=
1

γk

{ ∫
∆k

φk(t)Eγk (dt)−
∫

∆k

φk(t)E(dt)
}

=
1

γk

∫
∆k

φk(t)Eγk (dt).

Take a sequence of vectors fk ∈ H, such that ‖ fk‖ = 1 and fk ∈ Eγk (∆̃k)(H).
Then, taking into account properties (b) and (c) of the functions φk, we get:∥∥∥φk(Aγk )− φk(A)

γk

∥∥∥
B(H)

>
∣∣∣(φk(Aγk )− φk(A)

γk
fk, fk

)∣∣∣
>

1
|γk|

∫
∆̃k

φk(t)(Eγk (dt) fk, fk) =
1
|γk|

.

Hence, in view of (3.3),

lim
k→∞

∥∥∥φk(Aγk )− φk(A)
γk

∥∥∥
B(H)

= ∞.

In view of property (d) of functions φk, the latter fact means that the limiting
relation (3.1) is valid. Hence Lemma 3.1 implies that there exists a function
φ ∈ C[−M, M], such that the limit (1.1) does not exist in the strong operator
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topology. The latter contradicts the condition of the theorem. So, our assumption
that property (3.2) fails, is not true.

REMARK 3.4. It is evident that, in view of Remark 3.2, it is enough to assume
in the formulation of Theorem 3.3 that the limit (1.1) exists in the strong operator
topology for any real valued function φ ∈ C[−M, M].

3.2. If the perturbing operator B is compact, we can formulate a stronger nec-
essary condition for the directional operator differentiability of any continuous
function. It is based on the following

PROPOSITION 3.5. If the operator B is compact and property (3.2) is valid, then

(3.5) ∃ γ0 > 0, ∀ γ ∈ (−γ0, γ0) : σ(Aγ) = σ(A).

Proof. By Weyl Theorem ([13], Chapter IV, Section 5, no 6, Theorem 5.35),

(3.6) σe(Aγ) = σe(A).

Then, in view of (3.2), it is enough to prove that

(3.7) δ(A) ⊆ δ(Aγ) ∀γ ∈ (−γ0, γ0).

Take λ0 ∈ δ(A). Then, in view of (3.6) and (3.2), there exists a neighborhood
(λ0 − δ, λ0 + δ) of the point λ0, such that ((λ0 − δ, λ0 + δ) \ {λ0}) ∩ σ(Aγ) = ∅
for any γ ∈ (−γ0, γ0). Take σ ∈ (0, δ). Since the function

T(γ) = − 1
2πi

tr
( ∮
|λ|=σ

Rλ(Aγ) dλ
)

is continuous and takes only non-negative integer values and T(0) > 0, then
T(γ) > 0 for any γ ∈ (−γ0, γ0). This means that for these values of γ the point
λ0 belongs to δ(Aγ). Property (3.7) is proven, hence the proposition is proven
too.

Theorem 3.3 and Proposition 3.5 imply

COROLLARY 3.6. If the operator B is compact and the limit (1.1) exists in the
strong operator topology for all φ ∈ C[−M, M], then property (3.5) holds for the spectra
σ(A) and σ(Aγ).

3.3. In the case if the perturbing operator B is of rank one, the above necessary
conditions acquire a more constructive form. We return to the situation described
in Subsection 2.1 of Section 2, that is we consider the unperturbed operator Ã of
the form (2.4), the perturbing operator B̃ of the form (2.5) and the operator Ãγ of
the form Ãγ = Ã + γB̃ (γ ∈ R). All these operators act in the space H̃ = L2(R, ρ).
We have called ρ the spectral measure of Ã. We assume that Ã ∈ B(H̃), hence
σ(Ã) = supp(ρ) is a compact set. We turn to the following
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PROPOSITION 3.7. Let {(aj, bj)} be the gaps of the spectrum σ(Ã) of the operator
Ã, that is

R \ supp(ρ) = (a1, b1) ∪ (a2, b2) ∪
⋃

j∈N\{1,2}
(aj, bj),

where a1 = −∞, b2 = ∞ and either N = {1, 2, . . . , N} (N > 2), or N = N. Then the
property

(3.8) ∃ γ0 > 0, ∀ γ ∈ (−γ0, γ0) : σ(Ãγ) ⊆ σ(Ã)

of the spectra of the operators Ã and Ãγ is valid if and only if

(3.9) sup
λ∈R\supp(ρ)

∣∣∣ ∞∫
−∞

ρ(ds)
s− λ

∣∣∣ < ∞.

That is, the Borel transform Θ(λ) :=
∫
R

(t−λ)−1 ρ(dt) of ρ is bounded in R \ supp(ρ).

Furthermore, property (3.9) implies that

∀ k ∈ N \ {1} :

ak∫
−∞

ρ(ds)
ak − s

< ∞,(3.10)

∀ k ∈ N \ {2} :
∞∫

bk

ρ(ds)
s− bk

< ∞.(3.11)

Proof. As is known, σ(Ãγ) \ σ(Ã) is the set of points λ ∈ R \ supp(ρ) satis-
fying the equation

∞∫
−∞

ρ(ds)
s− λ

= − 1
γ

(see [4]). On the other hand, the function Θ(λ) =
∞∫
−∞

ρ(ds)
s−λ increases in each gap

(ak, bk) of supp(ρ), because

dΘ(λ)
dλ

=
∞∫

−∞

ρ(ds)
(s− λ)2 .

Furthermore, since supp(ρ) is compact, then

lim
|λ|→∞

∞∫
−∞

ρ(ds)
s− λ

= 0.
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Thus, it is evident that property (3.8) is valid if and only if there exists θ > 0, such
that

lim
λ↓ak

∞∫
−∞

ρ(ds)
s− λ

> −θ for any k ∈ N \ {1},

lim
λ↑bk

∞∫
−∞

ρ(ds)
s− λ

6 θ for any k ∈ N \ {2}.

These circumstances imply the equivalence of (3.8) and (3.9).
We now turn to the proof of the second assertion of the proposition. Assume

that k ∈ N \ {1} and λ ∈ (ak, bk). Then from the equality
∞∫

ak

ρ(ds)
s− λ

=
∞∫

bk

ρ(ds)
s− λ

and the fact that supp(ρ) ⊆ [b1, a2], we get the existence of the following limit:

lim
λ↓ak

∞∫
ak

ρ(ds)
s− λ

=
∞∫

bk

ρ(ds)
s− ak

.

In this situation, the Monotone Convergence Theorem ([18], Part One, Chapter 4)
and property (3.9) imply that

ak∫
−∞

ρ(ds)
ak − s

= lim
λ↓ak

ak∫
−∞

ρ(ds)
λ− s

< ∞.

That is, property (3.10) is valid. Property (3.11) is proved analogously.

Theorem 3.3 and Proposition 3.7 imply the following result.

THEOREM 3.8. Let Ã, B̃, Ãγ and ρ be as above. Let M > 0 be such, that
supp(ρ) ⊂ (−M, M). If for any function φ ∈ C[−M, M] the limit

lim
γ→0

φ(Ãγ)− φ(Ã)
γ

exists in the strong operator topology, then the spectral measure ρ of the operator Ã has
property (3.9).

REMARK 3.9. It is easy to check that if the spectral measure ρ of the operator
Ã is absolutely continuous with a density ρ̃, then condition (3.9) can be written in
the form:

sup
t∈R\supp(ρ)

(∣∣∣ ∞∫
0

ρ̃(t + s)− ρ̃(t− s)
s

ds
∣∣∣) < ∞.
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This means that the sufficient conditions for the directional operator differentia-
bility, found in Theorem 2.5, are close in some sense to necessary ones in the gaps
of the spectrum of the unperturbed operator.

The following consequence of Theorem 3.8 is valid:

COROLLARY 3.10. If the conditions of Theorem 3.8 are satisfied, then δ(Ã) = ∅,
that is σ(Ã) = σe(Ã). The same holds for the operator A.

Proof. Assume that λ0 ∈ δ(Ã), that is, λ0 is an isolated eigenvalue of Ã
(equivalently, λ0 is an isolated point of supp(ρ)). This implies that in some punc-

tured neighborhood O(λ0) \ {λ0} the function Θ(λ) =
∞∫
−∞

ρ(ds)
s−λ is analytic and

the point λ = λ0 is a pole of this function. Hence lim
λ↑λ0

Θ(λ) = ∞, that is, con-

dition (3.9) is not satisfied. This fact and Theorem 3.8 imply the desired asser-
tion.

4. NECESSARY CONDITIONS CONNECTED WITH THE INTERIOR OF σ(A)

In this section we shall consider only the case of a rank-one perturbation.
Recall that the measure ρ, the space H̃ and the operators Ã, B̃ and Ãγ have been
defined in Subsection 2.1 of Section 2. We shall obtain necessary conditions for
the directional operator differentiability, imposed on the spectral measure ρ of
the operator Ã in intervals contained in its spectrum. We assume the spectral
measure ρ to be absolutely continuous and, furthermore, we impose on its density
ρ̃ some preliminary conditions. These necessary conditions are close to sufficient
ones, formulated in Theorem 2.5 (see Remark 4.6 below).

4.1. Before formulating the main result of this section, we need two lemmas and
a proposition.

LEMMA 4.1. Assume that a real-valued function ρ̃ ∈ L1(R), with a compact
support, has bounded variation in a closed interval [c, d] (c < d). Then

(4.1)
∞∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞

is valid for almost all t ∈ (c, d).

Proof. Let Σ be the set of all points t ∈ (c, d), for which property (4.1) is
valid. Let Σ̃ be the set of all points t ∈ (c, d), for which

∞∫
0

|ρ̃(t + s)− ρ̃(t)|+ |ρ̃(t)− ρ̃(t− s)|
s

ds < ∞.
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It is evident that Σ ⊇ Σ̃. Let T = (c, d) \ Σ̃. Clearly, it is enough to prove that
mes(T) = 0. If t ∈ T, then either

∞∫
0

|ρ̃(t + s)− ρ̃(t)|
s

ds = ∞, or
∞∫

0

|ρ̃(t)− ρ̃(t− s)|
s

ds = ∞,

or both. Therefore, either there exists a sequence s+
n ↓ 0 as n → ∞, such that

lim
n→∞

|ρ̃(t + s+
n )− ρ̃(t)|
s+

n
= ∞,

or, there exists a sequence s−n ↓ 0 as n → ∞, such that

lim
n→∞

|ρ̃(t− s−n )− ρ̃(t)|
s−n

= ∞.

In these circumstances it follows that the set T is contained in the set T̃ of all
points t ∈ (c, d), at which the derivative ρ̃′(t) does not exist. Thus, by a known
property of functions of bounded variation, mes(T̃) = 0. Hence mes(T) = 0. The
lemma is proven.

LEMMA 4.2. Assume that ρ̃ ∈ C(R) has support in an interval (−M, M) (M >
0) and has bounded variation. Assume also that (a, b) ⊂ (−M, M) and that ρ̃(t) > 0 in
(a, b). Let φ ∈ C[−M, M] have support in (a, b), and consider the following functions:

(4.2) ψ+(t, ε, γ) =
φ0(t)

D(t + iε, γ)
, ψ−(t, ε, γ) =

φ0(t)
D(t− iε, γ)

(ε > 0, γ ∈ R),

where the function D(λ, γ) is defined by (2.15) and (2.16), and the function φ0 is defined
by (2.14). Then, for any fixed γ 6= 0 there exists ε0 > 0 such that for any ε ∈ (0, ε0) the
functions (4.2) belong to L∞(R) in the variable t, and

lim
ε↓0

φ+(t, ε, γ) = φ+(t, 0, γ) and lim
ε↓0

φ−(t, ε, γ) = φ−(t, 0, γ)

in the weak-* topology of L∞(R), where

(4.3) ψ+(t, 0, γ) =
φ0(t)

D(t + i0, γ)
and ψ−(t, 0, γ) =

φ0(t)
D(t− i0, γ)

,

and the functions D(t + i0, γ) and D(t − i0, γ) are defined by formulas (2.32), (2.33)
and (2.34). Thus, the functions (4.3) belong to L∞(R) and the families of multiplication
operators

{Mψ+(· ,ε,γ)}0<ε<ε0 and {Mψ−(· ,ε,γ)}0<ε<ε0 ,

acting in L2(R), converge as ε ↓ 0 in the weak operator topology to the multiplication
operators Mψ+(· ,0,γ) and Mψ−(· ,0,γ) respectively.

Proof. We shall use the criterion for weak operator convergence of multipli-
cation operators given in Proposition 2.2. Let [α, β] be a closed interval for which

(4.4) supp(φ) ⊆ [α, β] ⊂ (a, b).
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In view of (2.15) and (2.16), we have:

=D(t + iε, γ) = γ=Θ(t + iε, γ) = γε

M∫
−M

ρ̃(µ) dµ

(µ− t)2 + ε2 .

Hence, by the continuity of the function ρ̃ and a well-known property of the Pois-
son kernel

Pε(s) =
ε

π(s2 + ε2)
,

the family of functions {=D(t + iε, γ)}ε>0 converges uniformly as ε ↓ 0 to the
function γπρ̃ in the interval [α, β]. Since ρ̃(t) > 0 in [α, β] and γ 6= 0, we obtain:

(4.5) ∃ ε0 > 0, inf
(t,ε)∈[α,β]×(0,ε0)

|D(t + iε, γ)| > 0.

Thus, in view of definition (4.2) of the function ψ+(t, ε, γ), the inclusion (4.4) and
definition (2.14), we have:

(4.6) sup
(t,ε)∈R×(0,ε0)

|ψ+(t, ε, γ)| < ∞.

That is, condition (A) of Proposition 2.2 is satisfied for the family {ψ+(t, ε, γ)}
(0 < ε < ε0).

On the other hand, by Lemma 4.1 and assertion (i) of Proposition A2.1,
lim
ε↓0

Θ(t + iε) = Θ(t + i0) for almost all t ∈ R, where Θ(t + i0) is defined by

(2.33). Thus, in view of (4.2), (4.4), (4.5), (2.14) and (2.15), we get that for almost
all t ∈ R:

lim
ε↓0

ψ+(t, ε, γ) = ψ+(t, 0, γ),

where ψ+(t, 0, γ) is defined by (4.3). This limiting relation, property (4.6), and
Lebesgue’s Theorem imply that also condition (B) of Proposition 2.2 holds for the
family {ψ+(t, ε, γ)} (ε ∈ (0, ε0)). So, we have proved the assertion of the lemma
for this family.

The family {ψ−(t, ε, γ)} is treated analogously.

We now turn to the following

PROPOSITION 4.3. Assume that the spectral measure ρ of the operator Ã is ab-
solutely continuous, its density ρ̃ is continuous on R, its support is contained in an
interval (−M, M) (M > 0) and ρ̃ has bounded variation. Furthermore, assume that
ρ̃(t) > 0 in some interval (a, b) contained in (−M, M). Then there exists a number
γ0 > 0 such that for any γ ∈ (−γ0, γ0) \ {0} and for any function φ ∈ C[−M, M]
with supp(φ) ⊂ (a, b) the representation (2.17) is valid for (φ(Ãγ)− φ(Ã))/γ, where
the functions ψ+(t, 0, γ) and ψ−(t, 0, γ) are defined via formulas (4.3), (2.32), (2.33),
(2.34) and (2.14), and they belong to L∞(R).
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Proof. By Lemma 4.2, the conditions of Theorem 2.3 are satisfied if we take
there C = {φ ∈ C[−M, M] : supp(φ) ⊂ (a, b))}. Hence the desired assertion is
valid.

In what follows we shall need the following result from summability theory
(see [15], Chapter X, Section 1). A sequence {Φn(t, x)}∞

n=0 of functions on the
square [a, b]× [a, b] is said to be a (summability) kernel, if

(1) for every x ∈ [a, b] the functions t 7→ Φn(t, x) are in L1[a, b];
(2) for all choices of α, β and x such that a 6 α < x < β 6 b,

lim
n→∞

β∫
α

Φn(t, x) dt = 1.

Let Ψ(t, x) and Φ(t, x) be functions on [a, b]× [a, b]. Ψ(t, x) is said to be a convex
majorant of Φ(t, x) if

(1) |Φ(t, x)| 6 Ψ(t, x) ∀ t, x ∈ [a, b];
(2) for every x ∈ [a, x] the map t 7→ Ψ(t, x) is non-decreasing in [a, x] and

non-increasing in [x, b].
The following result is due to D.K. Faddeyev (see Chapter X, Section 2, Theorem 3
of [15]).

THEOREM 4.4. Let {Φn(t, x)}∞
n=0 be a kernel on [a, b] × [a, b]. Assume that

Ψn(t, x) is a convex majorant of Φn(t, x) for every n, and that
b∫

a

Ψn(t, x) dt < K(x) < ∞ ∀x ∈ [a, b], ∀n ∈ N.

Then, for every f ∈ L1(a, b) and every Lebesgue point x of f ,

lim
n→∞

b∫
a

f (t)Φn(t, x) dt = f (x).

We now turn to the main theorem of this section.

THEOREM 4.5. Assume that the spectral measure ρ of the operator Ã is absolutely
continuous, its density ρ̃ is continuous on R, its support is contained in an interval
(−M, M) (M > 0) and ρ̃ has bounded variation. Furthermore, assume that ρ̃(t) > 0
in some interval (a, b) and the limit

(4.7) lim
γ→0

φ(Ãγ)− φ(Ã)
γ

exists in the strong operator topology for any function φ ∈ C[−M, M]. Then the integral

(4.8) S(t) :=
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds
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exists for almost all t ∈ R, and for any closed interval [α, β] ⊂ (a, b) (α < β) the
function S|(α,β) belongs to the class L∞(α, β).

REMARK. It is plain that the assumption that the strong operator limit (4.7)
exists for all φ ∈ C[−M, M] is equivalent to its existence for all real valued φ ∈
C[−M, M].

Proof. The first assertion of the theorem follows from Lemma 4.1 and asser-
tion (i) of Proposition A2.1.

Let us prove the second assertion. Consider the Borel transform Θ(λ) of the
function ρ̃ defined by (2.16). By Lemma 4.1 and assertion (i) of Proposition A2.1,
the limits Θ(t + i0) = lim

ε↓0
Θ(t + iε) and Θ(t− i0) = lim

ε↓0
Θ(t− iε) exist for almost

all t ∈ R, the functions Θ(t + i0) and Θ(t − iε) belong to L2(R) and formulas
(2.33) and (2.34) are valid for them. Hence, in view of the fact that ρ̃ is continuous
and compactly supported, the function S(t) (defined by (4.8)) belongs to L2(R)
as well. Assume, on the contrary, that the second assertion of the theorem does
not hold, that is there exists a closed interval [α, β] ⊂ (a, b) (α < β) such that

(4.9) S|(α,β) /∈ L∞(α, β).

Our aim is to prove that, under the above assumption, there exists a function φ ∈
C[−M, M] such that the limit (4.7) does not exist in the strong operator topology.
In view of Lemma 3.1, it is enough to prove that

(4.10) lim sup
γ→0

‖Σ(·, γ)‖B(C[−M,M],B(H̃)) = ∞,

where Σ(·, γ) is the bounded linear operator acting from C[−M, M] into B(H̃)
(H̃ = L2(R, ρ)), defined by the expression:

(4.11) Σ(φ, γ) =
φ(Ãγ)− φ(Ã)

γ
.

Notice that, since supp(ρ̃) ⊂ (−M, M) and ρ̃(t) > 0 in (a, b), the interval (a, b) is
contained in (−M, M). By Proposition 4.3, there exists a number γ0 > 0 such that
for any γ ∈ (−γ0, γ0) \ {0} and for any function φ ∈ C[−M, M] with supp(φ) ⊂
(a, b) the representation (2.17) is valid for Σ(φ, γ), where the functions ψ+(t, 0, γ)
and ψ−(t, 0, γ) are defined via formulas (4.3), (2.32), (2.33), (2.34) and (2.14), and
they belong to L∞(R). Hence we have:

(4.12) Σ(φ, γ) = 2πi{(H
ψ−(· ,0,γ))

∗ − Hψ+(· ,0,γ)}Mρ̃, if supp(φ) ⊂ (a, b).

Here Hξ denotes the Hankel operator on L2(R) with a symbol ξ(t) (see [17]), that
is

Hξ = P−Mξ P+,
and P+ and P− are Riesz projections in L2(R). Observe that, in view of this defi-
nition, the operators

Hψ+(· ,0,γ) and (H
ψ−(· ,0,γ))

∗
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are disjointly supported, i.e. have orthogonal ranges and co-kernels. Hence, in
view of (4.12),

‖Σ(·, γ)‖B(C[−M,M],B(H̃))(4.13)

> 2π sup{max(‖Hψ+(·,0,γ) Mρ̃‖B(H̃), ‖Mρ̃ H
ψ−(·,0,γ)‖B(H̃));

‖φ‖C[−M,M] 6 1, supp(φ) ⊂ (a, b)},

where ψ+(t, 0, γ) and ψ−(t, 0, γ) are connected with φ(t) by formulas (4.3) and
(2.14). Thus, in order to prove (4.10), it is enough to show that

lim sup
γ→0

(sup{‖Hψ+(·,0,γ)Mρ̃‖B(H̃); ‖φ‖C[−M,M] 6 1,(4.14)

supp(φ) ⊂ (a, b)}) = ∞.

Consider a closed interval [α, β] ⊂ (a, b) (α < β), for which the assumption (4.9)
holds, and recall that H̃ = L2(R, ρ). We have:

‖Hψ+(·,0,γ)Mρ̃‖B(H̃)(4.15)

= sup{|(Hψ+(·,0,γ)Mρ̃ f̃ , g̃)H̃|; f̃ , g̃ ∈ H̃

and ‖ f̃ ‖H̃, ‖g̃‖H̃ 6 1}

= sup{|(Mψ+(·,0,γ)P+Mρ̃ f̃ , P−Mρ̃ g̃)L2(R)|; f , g ∈ H̃

and ‖ f̃ ‖H̃, ‖g̃‖H̃ 6 1}

> sup
{∣∣∣ M∫
−M

ψ+(t, 0, γ)(P+ f )(t)(P−g)(t) dt
∣∣∣; f , g ∈ B1,q

}
,

where

B1,q = { f ∈ L2(R) : supp( f ) ⊆ [α, β], ‖ f ‖L2(R,q) 6 1},

‖ f ‖L2(R,q) =
( ∞∫
−∞

| f (t)|2q(t) dt
)1/2

,

q(t) =

{
1

ρ̃(t) t ∈ [α, β],
0 t /∈ [α, β].

Observe that, since ρ̃ is continuous and ρ̃(t) > 0 in [α, β],

q = sup
t∈R

q(t) < ∞.

Then the estimate
‖ f ‖L2(R,q) 6

√
q‖ f ‖L2(R)

implies that

(4.16) B 1√
q
⊆ B1,q,
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where

(4.17) Br = { f ∈ L2(R) : supp( f ) ⊆ [α, β], ‖ f ‖L2(R) 6 r}.

Taking into account the inclusion (4.16), we can proceed with estimate (4.15) in
the following manner:

(4.18) ‖Hψ+(·,0,γ)Mρ̃‖B(H̃) >
1
q

sup
f ,g∈B1

∣∣∣ M∫
−M

ψ+(t, 0, γ)(P+ f )(t)(P−g)(t) dt
∣∣∣.

Let [α̃, β̃] be a closed interval, such that [α, β] ⊂ (α̃, β̃) and [α̃, β̃] ⊂ (a, b).
Consider a function κ ∈ C(R) having the properties:

κ(t) =
{

1 t ∈ [α, β],
0 t /∈ [α̃, β̃],

(4.19)

and 0 6 κ(t) 6 1 for any t ∈ R. It is clearly enough to prove (4.14) where φ is
restricted to have the form φ(t) = ψ(t)κ(t) (t ∈ [−M, M]) for ψ ∈ C[−M, M].
In view of estimate (4.18) and definitions (4.3) and (2.14), in order to prove (4.14)
for the class of functions φ(t) = ψ(t)κ(t), it is enough to find a sequence of real
numbers γk, such that γk 6= 0 for any k ∈ N,

lim
k→∞

γk = 0,(4.20)

lim
k→∞

(
sup

{∣∣∣ M∫
−M

ψ(t)Φ(t, γk)(P+ f )(t)(P−g)(t) dt
∣∣∣;(4.21)

‖ψ‖C[−M,M] 6 1, f , g ∈ B1

})
= ∞,(4.22)

where B1 is defined by (4.17) with r = 1,

Φ(t, γ) =
κ(t)

D(t + i0, γ)
,(4.23)

D(t + i0, γ) = 1 + γΘ(t + i0).(4.24)

Notice that, in view of definition (4.23), the inclusion supp(κ) ⊂ (a, b) and Lem-
ma 4.2, the function Φ(t, γ) belongs to L∞(R) for each γ 6= 0. Recall that the
function Θ(t + i0) satisfies (2.33), that is

(4.25) Θ(t + i0) = S(t) + iπρ̃(t).

Also, recall that the function S(t) is defined by (4.8). Since the function S belongs
to L2(R), it is measurable. For every k ∈ N we define the set

(4.26) Ak = {t ∈ (α, β) : |S(t)| > k}.

Observe that, since the assumption (4.9) holds for the interval [α, β], the sets Ak
have positive measures. Recall that Θ(·+ i0) ∈ L2(R). Thus, for each k ∈ N there
exists a point tk ∈ Ak, which is a Lebesgue point of the function Θ(t + i0). In view
of (4.25) and the continuity of the function ρ̃, each tk is a Lebesgue point also for
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the function S(t). Hence, in particular, |S(tk)| < ∞. On the other hand, in view
of (4.26), we have:

|S(tk)| > k ∀ k ∈ N.

Hence, if we put

(4.27) γk = − 1
S(tk)

,

then the limiting relation (4.20) holds for γk, and γk 6= 0 for all k ∈ N. Further-
more, in view of (4.23),(4.24), (4.25), (4.19), (4.27) and the membership tk ∈ (α, β),
we have the estimate:

(4.28) |Φ(tk, γk)| =
1

π|γk|ρ̃(tk)
>

1
π|γk|ρ

,

where ρ = max
t∈[α,β]

ρ̃(t). We also see that |Φ(tk, γk)| < ∞. Using (4.19) (4.23), (4.24)

and (4.25), we have the estimate:

|Φ(t, γk)−Φ(tk, γk)| 6
|Θ(t + i0)−Θ(tk + i0)|

π2m2|γk|
,

where t belongs to a neighborhood of tk contained in [α, β], and

m = min
t∈[α,β]

ρ̃(t).

Since each tk is a Lebesgue point of the function Θ(t + i0), the latter estimate
implies that it is a Lebesgue’s point of the function Φ(t, γk) as well.

In order to prove that (4.22) holds, let us choose the functions f and g in the
following manner:

f (t) = fk(t) :=
eiτkt∆

(
t−tk

σk

)
∥∥∥∆

(
t−tk

σk

)∥∥∥
L2(R)

=

√
3

2σk
eiτkt∆

( t− tk
σk

)
,(4.29)

g(t) = gk(t) := fk(t),(4.30)

where

∆(x) =
{

1− |x| |x| 6 1,
0 |x| > 1,

(4.31)

and the sequences {σk} and {τk} satisfy the conditions: σk > 0, τk > 0 for any
k ∈ N,

(4.32) lim
k→∞

σk = 0

and lim
k→∞

τk = ∞. In the sequel some additional conditions will be imposed on the

sequences {σk} and {τk} and a relationship between them will be specified. The
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straightforward calculation yields the following formula for the Fourier trans-
form of the function fk:

(4.33) f̂k(ω) =
√

3σk
2

∆̂(σk(ω − τk))e−i(ω−τk)tk ,

where

(4.34) ∆̂(ω) = 2

√
2
π

sin2 (
ω
2
)

ω2 .

On the other hand, by the definition of Riesz projections, we get:

(4.35) P̂+ fk(ω) = 1[0,∞)(ω) f̂k(ω)

and

P̂−gk(ω) = 1(−∞,0](ω)ĝk(ω).

From these equalities, definition (4.30) and the property ĥ(ω) = ĥ(−ω) of the
Fourier transform, we obtain that the Fourier transform of the function P−gk co-
incides with the Fourier transform of the function P+ fk. Hence

(4.36) P−gk = P+ fk.

Observe that, in view of definitions (4.29)–(4.31) and the membership tk ∈ (α, β),
we can choose the sequence {σk} such that both the limiting relation (4.32) and
the following inclusion

(4.37) ∀ k ∈ N supp( fk) = supp(gk) = [tk − σk, tk + σk] ⊂ (α, β)

hold. Furthermore, we see from (4.29) and (4.30) that ‖ fk‖L2(R) = ‖gk‖L2(R) = 1.
Thus fk, gk ∈ B1, where B1 is defined by (4.17) with r = 1. Then, taking into
account (4.36), we have for ψ ∈ C[−M, M]:

sup
{∣∣∣ M∫
−M

ψ(t)Φ(t, γk)(P+ f )(t)(P−g)(t) dt
∣∣∣; f , g ∈ B1

}

>
∣∣∣ M∫
−M

ψ(t)Φ(t, γk)((P+ fk)(t))2 dt
∣∣∣.(4.38)

Making use of (4.29), let us represent the latter integral in the following manner:

(4.39)
M∫

−M

ψ(t)Φ(t, γk)((P+ fk)(t))2 dt = I1(ψ, tk, γk, σk) + I2(ψ, γk),
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where

I1(ψ, x, γk, σ) =
M∫

−M

ψ(t)Φ(t, γk)e2iτktδ(t− x, σ) dt (σ > 0),(4.40)

δ(t, σ) =
(
∆
( t

σ

))2∥∥∆
(

t
σ

)∥∥2
L2(R)

,(4.41)

I2(ψ, γk) =
M∫

−M

ψ(t)Φ(t, γk)(((P+ fk)(t))2 − ( fk(t))2) dt.(4.42)

Let us put

(4.43) ψ(t) = ψk(t) := e−2iτkt.

Then we get from (4.40):

(4.44) I1(ψk, x, γk, σ) =
M∫

−M

Φ(t, γk)δ(t− x, σ) dt.

Observe that, in view of (4.41) and (4.31), for any fixed k ∈ N the kernel δ(t− x, σ)
of the integral operator I1(ψk, x, γk, σ) is a summability kernel (as σ ↓ 0) and

∞∫
−∞

δ(t, σ) dt = 1. Furthermore, it is non-negative, it is non-increasing for t > x

and it is non-decreasing for t 6 x. Recall that for any k ∈ N the function Φ(t, γk)
belongs to L∞(R) and the point tk is a Lebesgue point of Φ(t, γk). Thus, the
conditions of Faddeyev Theorem 4.4 are satisfied for the integral operator (4.44),
if we take the function δ(t − x, σ) as a convex majorant for itself. Then we have
for any fixed k ∈ N:

lim
σ↓0

I1(ψk, tk, γk, σ) = Φ(tk, γk).

Hence, in view of estimate (4.28) and the limiting relation (4.20), we can choose
the sequence {σk} so that the limiting relation (4.32), the inclusion (4.37) and the
following limiting relation

(4.45) lim
k→∞

|I1(ψk, γk, σk)| = ∞
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all hold. Let us estimate the integral I2(ψk, γk) (defined by (4.42)) using the choice
(4.43) of the function ψk and formulas (4.33), (4.34) and (4.35):

|I2(ψk, γk)| 6 I(Φ, γk)(‖P+ fk‖L∞(R) + ‖ fk‖L∞(R))‖ fk − P+ fk‖L∞(R)

6
1

2π
I(Φ, γk)(‖P̂+ fk‖L1(R) + ‖ f̂k‖L1(R))‖ f̂k − P̂+ fk‖L1(R)

6
6σk
π2 I(Φ, γk)

∞∫
−∞

sin2 ( σk(ω−τk)
2

)
(σk(ω − τk))2 dω

0∫
−∞

sin2 ( σk(ω−τk)
2

)
(σk(ω − τk))2 dω

6
6

π2 I(Φ, γk)
∞∫

−∞

sin2 ( s
2
)

s2 ds
0∫

−∞

dω

(σk(ω − τk))2

=
6

π2σ2
k τk

I(Φ, γk)
∞∫

−∞

sin2 ( s
2
)

s2 ds,

where

I(Φ, γ) =
M∫

−M

|Φ(t, γ)|dt.

If we choose the sequence {τk} such that lim
k→∞

τk = ∞ and

lim
k→∞

I(Φ, γk)
σ2

k τk
= 0,

then we get from the latter estimate that

(4.46) lim
k→∞

I2(ψk, γk) = 0.

Taking into account that, in view of (4.43), ‖ψk‖C[−M,M] = 1, we obtain from
(4.38), (4.39), (4.45) and (4.46) that the desired limiting relation (4.22) is valid. The
theorem is proven.

REMARK 4.6. If, along with the conditions of Theorem 4.5, the density ρ̃ is
a monotone function in the interval (a, b), then the assertion

S|(α,β) ∈ L∞(α, β), if [α, β] ⊂ (a, b)

of this theorem is equivalent to condition (2.30) of Theorems 2.4 and 2.5, in which
the function R(t) is defined by (2.29) and the numbers −M and M are replaced
by α and β respectively. This means that the necessary conditions of the direc-
tional operator differentiability given by Theorem 4.5 are close to the sufficient
conditions given by Theorem 2.5.
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4.2. In the following example we apply Theorem 4.5 in order to establish if there
exists a continuous function, for which the directional operator differentiability
fails.

EXAMPLE 4.7. Consider an absolute continuous spectral measure ρ of the
operator Ã with a density ρ̃ having the properties:

(a) ρ̃ ∈ C(R);
(b) supp(ρ̃) = [−1, 1];
(c) ρ̃(t) > 0 for any t ∈ (−1, 1);
(d) the function ρ̃ is continuously differentiable in R \ {0};
(e) ρ̃ is increasing in the interval (− 1

2 , 1
2 );

(f) ρ̃ is concave in (0, 1
2 );

(g) the behavior of the function ρ̃ as t ↓ 0 is defined by the condition:

1/2∫
0

ρ̃(µ)− ρ̃(0)
µ

dµ = ∞.

Observe that condition (g) is satisfied, if, for instance, the function ρ̃ has the form
(2.44) in a suitably small semi-interval (0, δ) with C > 0 and α ∈ (0, 1). It is
evident that the function ρ̃ has bounded variation in [−1, 1]. Our aim is to show
that

(4.47) S /∈ L∞(−1
2

,
1
2
),

where the function S is defined by (4.8), that is the necessary condition of the
directional operator differentiability, given by Theorem 4.5, is not satisfied. This
means that in the situation of this example there exists a function

φ ∈ C[−M, M] (M > 1),

such that the limit

lim
γ→0

φ(Ãγ)− φ(Ã)
γ

does not exist in the strong operator topology.

Indeed, it is evident that

sup
t∈[− 1

4 , 1
4 ]

∣∣∣ ∞∫
1/4

ρ̃(t + s)− ρ̃(t− s)
s

ds
∣∣∣ < ∞.

Hence, in order to prove (4.47), it is enough to show that

(4.48) lim
t↓0

1/4∫
0

ρ̃(t + s)− ρ̃(t− s)
s

ds = ∞.
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In view of condition (e), we have for any t ∈ (0, 1
4 ):

(4.49)
1/4∫
0

ρ̃(t + s)− ρ̃(t− s)
s

ds >

1/4∫
0

ρ̃(t + s)− ρ̃(t)
s

ds.

Making use of the Monotone Convergence Theorem in the same manner as in
Example 2.7 and taking into account condition (g), we get:

lim
t↓0

1/4∫
0

ρ̃(t + s)− ρ̃(t)
s

ds =
1/4∫
0

ρ̃(s)− ρ̃(0)
s

ds = ∞.

Hence, by virtue of estimate (4.49), we get the desired limiting relation (4.48).

5. GLOBAL NECESSARY CONDITIONS

In this section we continue to study the case of a rank-one perturbation.
Recall that the measure ρ, the space H̃ and the operators Ã, B̃ and Ãγ have
been defined in Subsection 2.1 of Section 2. We shall prove a theorem, which
links the necessary conditions for directional operator differentiability given by
Theorem 4.5 with ones given by Theorem 3.8. To this end we need the following

LEMMA 5.1. Let ρ̃ be a non-negative continuous function defined on R and having
a compact support. Assume that ρ̃(t) = 0 in an interval (a, b) (−∞ 6 a < b 6 ∞)
and one of the following conditions is satisfied: either

(A) a > −∞ and the function ρ̃ is non-increasing and concave in a semi-interval
(a− δ−, a] (δ− > 0), and, furthermore, it satisfies the condition

a∫
−∞

ρ̃(u)
a− u

du < ∞,

or
(B) b < ∞ and the function ρ̃ is non-decreasing and concave in a semi-interval [b, b +

δ+) (δ+ > 0), and, furthermore, it satisfies the condition

(5.1)
∞∫

b

ρ̃(u)
u− b

du < ∞.

Then in the case (A) there exists a semi-interval I−(a) = (a − σ−, a] (σ− > 0), such
that the function

S(t) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds

is bounded in I−(a), and in the case (B) there exists a semi-interval I+(b) = [b, b +
σ+) (σ+ > 0), such that this function is bounded in I+(b).
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Proof. We shall consider only the case (B), because the case (A) is treated
analogously. We have to prove that

(5.2) ∃ σ+ > 0 : sup
t∈[b,b+σ+)

S(t) < ∞.

Assume that t > b and represent:

(5.3) S(t) = I1(t) + I2(t),

where

I1(t) =
t−b∫
0

ρ̃(t + s)− ρ̃(t− s)
s

ds

and

(5.4) I2(t) =
∞∫

t−b

ρ̃(t + s)− ρ̃(t− s)
s

ds.

Let us estimate the integral I1(t). Observe that, since the function ρ̃ is concave in
the semi-interval [b, b + δ+), it is absolutely continuous there and its derivative ρ̃′

is non-increasing ([14], Chapter I, Section 1, Lemma 1.3 and Theorem 1.1 (p. 5)).
Furthermore, observe that for t ∈ [b, b + δ+

2 ) and s ∈ [0, t− b] the points t + s and
t − s belong to the semi-interval [b, b + δ+). These circumstances imply that for
any t ∈ [b, b + δ+

2 )

|I1(t)| 6 2
t−b∫
0

ρ̃′(t− s) ds = 2(ρ̃(t− b)− ρ̃(0)).

This estimate means that

(5.5) sup
t∈[b,b+ δ+

2 )

|I1(t)| < ∞.

Now let us estimate the integral I2(t) defined by (5.4). To this end represent it in
the form:

(5.6) I2(t) = I+
2 (t) + I−2 (t),

where

I+
2 (t) =

∞∫
t−b

ρ̃(t + s)
s

ds and I−2 (t) =
∞∫

t−b

ρ̃(t− s)
s

ds.

Observe that, if t ∈ [b, b + (b− a)) and s ∈ (t− b, b− a), then t− s ∈ (a, b), hence
ρ̃(t− s) = 0. Therefore for t ∈ [b, b + (b− a))

I−2 (t) =
∞∫

b−a

ρ̃(t− s)
s

ds,
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hence

(5.7) sup
t∈[b,b+(b−a))

|I−2 (t)| < ∞.

Let us estimate the integral I+
2 (t) representing it in the form for t ∈ [b, b + δ+

2 ):

I+
2 (t) = J1(t) + J2(t),

where

J1(t) =
δ+/2∫
t−b

ρ̃(t + s)
s

ds and J2(t) =
∞∫

δ+/2

ρ̃(t + s)
s

ds.

It is evident that
sup

t∈[b,b+ δ+
2 )

|J2(t)| < ∞.

It remains only to estimate the integral J1(t). Taking into account condition (5.1),
the equality ρ̃(b) = 0 and the fact that the function ρ̃ is non-decreasing and con-
cave in [b, b + δ+), we have for t ∈ [b, b + δ+

2 ):

|J1(t)| 6 2
δ+/2∫
t−b

ρ̃(t + s)− ρ̃(b)
t + s− b

ds 6 2
δ+/2∫
t−b

ρ̃(s + b)
s

ds 6 2
∞∫

b

ρ̃(u) du
u− b

< ∞.

Hence the function J1(t) is bounded in the semi-interval [b, b + δ+

2 ). Thus, also
the function I+

2 (t) is bounded in this semi-interval too. The latter fact, property
(5.7), representation (5.6), property (5.5) and representation (5.3) imply the de-
sired property (5.2). The lemma is proven.

We now turn to the theorem promised in the beginning of this section.

THEOREM 5.2. Assume that the spectral measure ρ of the operator Ã is absolutely
continuous and its density ρ̃ has a compact support contained in an interval (−M, M),
(M > 0). Assume also that the density ρ̃ satisfies the following conditions:

(a) ρ̃ ∈ C(R);
(b) ρ̃ has bounded variation;
(c) the set

Zρ̃ = {t ∈ R : ρ̃(t) = 0}
consists of two closed semi-axes and at most a finite number of compact intervals, such
that each of them is not an one-point set. In other words,

Zρ̃ = (−∞, b1] ∪
N−1⋃
j=2

[aj, bj] ∪ [aN , ∞),

where N > 2 and aj < bj for any j ∈ {2, 3, . . . , N − 1} (if N = 2, the compact intervals
[aj, bj] are absent in the right hand side of the last formula);
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(d) for any ν ∈ {1, 2, . . . , N − 1} the function ρ̃ is non-decreasing and concave in a
semi-interval [bν, bν + δ+

ν ) (δ+
ν > 0) and for any j ∈ {2, 3, . . . , N} the function ρ̃ is

non-increasing and concave in a semi-interval (aj − δ−j , aj] (δ−j > 0).
Furthermore, assume that the limit

lim
γ→0

φ(Ãγ)− φ(Ã)
γ

exists for any function φ ∈ C[−M, M] in the strong operator topology. Then the integral

S(t) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds

exists for almost all t ∈ R and the function S belongs to the class L∞(R).

Proof. The first assertion of the theorem follows from the first assertion of
Theorem 4.5. Let us prove the second assertion. Observe that, in view of Theo-
rem 3.8 and Remark 3.9,

S|Zρ̃
∈ L∞(Zρ̃).

Hence, in order to prove the membership S ∈ L∞(R), it is enough to show that

(5.8) S|Pρ̃
∈ L∞(Pρ̃),

where Pρ̃ = R \ Zρ̃.
Let I−(aj) (j ∈ {2, 3, . . . , N}) and I+(bν) (ν ∈ {1, 2, . . . , N − 1}) be semi-

intervals of the form:

I−(aj) = (aj − σ−j , aj] (σ−j > 0) and I+(bν) = [bν, bν + σ+
ν ) (σ+

ν > 0).

Consider the following set:

O =
( N⋃

j=2

I−(aj)
) ⋃ ( N−1⋃

ν=1

I+(bν)
)

.

It is clear that, if σ+
ν and σ−j are small enough, the set Pρ̃ \ O consists of a finite

number of compact intervals Ik (k = 1, 2, . . . , K), that is

Pρ̃ \ O =
K⋃

k=1

Ik.

Since ρ̃(t) > 0 for t ∈ Pρ̃ \ O, then, by the second assertion of Theorem 4.5, we
have:

(5.9) S|Pρ̃\O ∈ L∞(Pρ̃ \ O).
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On the other hand, by Theorem 3.8 and the second assertion of Proposition 3.7,
we have that

∞∫
bν

ρ̃(u)
u− bν

du < ∞ for any ν ∈ {1, 2, . . . , N − 1},

aj∫
−∞

ρ̃(u)
aj − u

du < ∞ for any j ∈ {2, 3 . . . , N}.

Thus, making use of condition (d) and Lemma 5.1, we can choose the semi-
intervals I−(aj), j ∈ {2, 3, . . . , N}, and I+(bν), ν ∈ {1, 2, . . . , N − 1}, such that

S|O ∈ L∞(O).

The latter membership together with (5.9) yields the desired membership (5.8).
The theorem is proven.

APPENDIX 1: A FORMULA FOR THE OPERATOR FUNCTION φ(A)

In this section we shall obtain a formula for the operator function, which
has been used in Sections 2 and 4. It is given by the following

PROPOSITION A1.1. Let A be a bounded self-adjoint operator acting in a Hilbert
space H and M > 0 be such that σ(A) ⊂ (−M, M). Then for any function φ ∈
C[−M, M]

(A1.1) φ(A) = − 1
2πi

lim
ε↓0

∫
Cε

φ0(<λ)Rλ(A) dλ

where the limit is in the uniform operator topology, the function φ0(t) is defined by (2.14),
the contour Cε has the form:

Cε = {λ ∈ C : |=λ| = ε} (ε > 0)

and the orientation on the lines of Cε is positive with respect to the strip {λ ∈ C :
|=λ| < ε}.

Proof. Let us represent the integral in the right hand side of (A1.1) in the
form:

− 1
2πi

∫
Cε

φ0(<λ)Rλ(A) dλ =
1

2πi

M∫
−M

φ(t)(Rt+iε(A)− Rt−iε(A)) dt.
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Consider the corresponding scalar integral replacing the operator A by a real
number µ:

f (µ, ε) =
1

2πi

M∫
−M

φ(t)
( 1

µ− t− iε
− 1

µ− t + iε

)
dt(A1.2)

=
M∫

−M

Pε(µ− t)φ(t) dt,

where Pε(u) is the Poisson kernel: Pε(u) = ε
π(u2+ε2) . Since σ(A) ⊂ (−M, M) and

the function φ(t) is continuous in [−M, M], a well known property of Poisson
kernel guarantee that the limiting relation

lim
ε↓0

f (µ, ε) = φ(µ)

is valid uniformly on σ(A). Then, by a property of the functional calculus of nor-
mal operators, we have the following limiting relation with respect to the uniform
operator topology:

lim
ε↓0

f (A, ε) = φ(A)

(see Chapter IX, Section 3, Corollary 15 of [10]). In order to prove equality (A1.1),
it remains only to show that

(A1.3) f (A, ε) =
1

2πi

M∫
−M

φ(t)(Rt+iε(A)− Rt−iε(A)) dt.

Consider a sequence of Riemann sums Sn(µ) for the second integral of (A1.2).
Since the function Φ(µ, t) = Pε(µ− t)φ(t) is continuous in the compact set σ(A)×
[−M, M], these sums converge to the second integral of (A1.2) uniformly with re-
spect to µ ∈ σ(A). On the other hand, each Sn(µ) is a rational function, hence
replacing the variable µ by the operator A, we obtain Sn(A). Using again the
property of the functional calculus mentioned above, we obtain (A1.3).

COROLLARY A1.2. The formula (A1.1) can be written in terms of the Poisson
kernel

Pε(x) =
ε

π(x2 + ε2)
ε > 0

in the form

φ(A) = lim
ε↓0

∫
R

φ0(t) Pε(A− tI) dt.
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APPENDIX 2: BOUNDARY VALUES OF BOREL TRANSFORM

We used a property of Borel transform

Θ(λ) =
∞∫

−∞

ρ̃(µ) dµ

µ− λ
, λ ∈ C \R

of a function ρ̃, defined on R, which may be considered as a non-classical general-
ization of the well known Sokhotskii boundary property of the integral of Cauchy
type ([12], Chapter 1, Section 4, no4.2).

PROPOSITION A2.1. Assume that a function ρ̃ ∈ L2(R) has a compact support,
contained in an interval (−M, M) (M > 0), and the following condition is satisfied :

(A2.1)
∞∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds < ∞ for almost all t ∈ (−M, M).

Then the Borel transform Θ(λ) of the function ρ̃ has the following properties:
(i) The following limits

Θ(t + i0) = lim
ε↓0

Θ(t + iε),(A2.2)

Θ(t− i0) = lim
ε↓0

Θ(t− iε),(A2.3)

exist for almost all t ∈ R, the integral
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds

exists for almost all t ∈ R, and the following formulas are valid :

Θ(t + i0) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds + iπρ̃(t),

Θ(t− i0) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s

ds− iπρ̃(t).

Furthermore, the functions Θ(t + i0) and Θ(t− i0) belong to the class L2(R).
(ii) Moreover, if ρ̃ ∈ L∞(R) and the function

(A2.4) R(t) =
∞∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds

belongs to the class L∞(−M, M), then the families of functions

(A2.5) {Θ(t + iε)}ε>0 and {Θ(t− iε)}ε>0

are uniformly bounded on R.
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Proof. We shall prove the assertion of the proposition only for the function
Θ(t + iε), because the function Θ(t− iε) is treated analogously. Let us represent
the function Θ(t + iε) (t ∈ R) in the form:

(A2.6) Θ(t + iε) = Θ̃(t, ε) + P(t, ε),

where

Θ̃(t, ε) =
∞∫

0

ρ̃(t + s)− ρ̃(t− s)
s− iε

ds,(A2.7)

P(t, ε) =
∞∫

0

ρ̃(t− s)
( 1

s− iε
− 1

s + iε

)
ds = iπ

∞∫
−∞

ρ̃(µ)2P−
ε (µ− t) dµ,(A2.8)

and P−
ε (s) is a "half Poisson" kernel:

P−
ε (s) =

{
ε

π(s2+ε2) s 6 0,
0 s > 0.

Observe that

(A2.9)
∞∫

−∞

2P−
ε (s) ds = 1

and the function 2P−
ε (µ − t) is a summability kernel (as ε ↓ 0) of the integral

operator P(t, ε), defined by (A2.8). Furthermore, the function 2P−
ε (s) is non-

negative, it is increasing for s 6 0 and it is non-increasing for s > 0. These
circumstances mean that the function 2P−

ε (µ− t) is a convex majorant for itself,
which satisfies the condition of Faddeyev Theorem 4.4. Thus, since the function
ρ̃ is compactly supported and belongs to L2(R), we have:

(A2.10) lim
ε↓0

P(t, ε) = iπρ̃(t) a. e. in R.

We now turn to the integral Θ̃(t, ε) defined by (A2.7). Observe that, in view
of the inclusion supp(ρ̃) ⊂ (−M, M) and condition (A2.1), the integral in (A2.1)
exists for almost all t ∈ R. Hence the integral Θ̃(t, 0) exists for almost all t ∈ R
and, furthermore,

lim
δ↓0

δ∫
0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds = 0 for almost all t ∈ R.

Let us take a point t ∈ R, for which the latter limiting relation holds. Hence the
integral Θ̃(t, 0) exists for this t. Consider the following representation for δ > 0:

(A2.11) Θ̃(t, ε)− Θ̃(t, 0) = I1(t, ε, δ) + I2(t, ε, δ),
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where

I1(t, ε, δ) =
δ∫

0

(ρ̃(t + s)− ρ̃(t− s))
( 1

s + iε
− 1

s

)
ds

and

(A2.12) I2(t, ε, δ) =
∞∫

δ

(ρ̃(t + s)− ρ̃(t− s))
( 1

s + iε
− 1

s

)
ds.

We have:

|I1(t, ε, δ)| 6 2
δ∫

0

|ρ̃(t + s)− ρ̃(t− s)|
s

ds,

therefore, in view of the choice of the point t,

(A2.13) ∀ ν > 0 ∃ δ > 0, ∀ ε > 0 : |I1(t, ε, δ)| < ν

2
.

Let us estimate the integral I2(t, ε, δ) defined by (A2.12):

|I2(t, ε, δ)| 6 ε

δ2

∞∫
δ

(|ρ̃(t + s)|+ |ρ̃(t− s)|) ds 6
2ε

δ2

M∫
−M

|ρ̃(s)|ds.

Then
∃ ε0 > 0, ∀ ε ∈ (0, ε0) : |I2(t, ε, δ)| < ν

2
.

Using the latter property, representation (A2.11) and property (A2.13), we get:

lim
ε↓0

Θ̃(t, ε) = Θ̃(t, 0) a. e. in R.

The latter limiting relation, the relation (A2.10) and representation (A2.6) imply
the first part of assertion (i). The membership Θ(·+ i0) ∈ L2(R) follows from the
condition ρ̃ ∈ L2(R) and Proposition 2.1.

We now turn to the proof of assertion (ii). Making use of (A2.6), (A2.7),
(A2.8) and (A2.9), we get for ε > 0:

‖Θ(t + iε)‖L∞(−M,M) 6 ‖R‖L∞(−M,M) + π‖ρ̃‖L∞(R),

where the function R(t) is defined by (A2.4). Furthermore, in view of the in-
clusion supp(ρ̃) ⊂ (−M, M), the family of functions {Θ(t + iε)}ε>0 is uniformly
bounded on the set R \ (−M, M). These circumstances and the fact that each
function Θ(t + iε) (ε > 0) is continuous imply assertion (ii). The proposition is
proven.

Proposition A2.1 implies the following

COROLLARY A2.2. If condition (A2.1) of Proposition A2.1 is satisfied and the
function R(t), defined by (A2.4), belongs to the class L∞(−M, M), then the functions
Θ(t + i0) and Θ(t− i0), defined by (A2.2) and (A2.3), belong to L∞(R).
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