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ABSTRACT. We show that the complete lattice of R-valued sup-preserving
maps on a complete lattice G of projections of a von Neumann algebra M,
is isomorphic to some complete lattice MG

R of extended spectral families in
M, provided with the spectral order. We get various classes of (not necessar-
ily densely defined) self-adjoint operators affiliated with M as conditionally
complete lattices with completion MG

R, extending the Olson’s results. When
M is the universal enveloping von Neumann algebra of a C∗-algebra A, and
G the set of open projections, the elements of MG

R are said to be extended
q-upper semicontinuous, generalizing the usual notions. The q-upper regu-
larization map is defined using the spectral order, and characterized in terms
of the above isomorphism. When A is commutative with spectrum X, we

give an isomorphism Π of complete lattices from RX
into the set of extended

self-adjoint operators affiliated with M. By means of Π, the above charac-
terizations appear as generalizations of well-known properties of the upper
regularization of R-valued functions on X. A noncommutative version of the
Dini-Cartan’s lemma is given. An application is sketched.
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1. INTRODUCTION

The spectral order has been first considered by Olson ([15]), and next ap-
pears in various contexts ([3], [4], [13]). In noncommutative topology, and by
means of spectral projections, L.G. Brown defines a notion of semicontinuity for
self-adjoint operators in the universal enveloping von Neumann algebra A′′ of a
C∗-algebra A, the so-called q-semicontinuity; the usual notion for bounded func-
tions on a locally compact Hausdorff space X is recovered by taking A commuta-
tive with spectrum X. Brown observes that in general, the q-lower semicontinuity
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is not preserved by strongly increasing nets ([6], pp. 905). However, since the q-
semicontinuity is defined spectrally, it is natural to work with it by considering
the spectral order, and particularly the fact that the self-adjoint part of a von Neu-
mann algebra provided with this order is a conditionally complete lattice; as an
immediate consequence, the above drawback disappears since the join for the
spectral order of any bounded family of q-lower semicontinuous operators is q-
lower semicontinuous. It is easy to see that for A completely σ-unital, the open
projections can be equivalently defined via the spectral order in place of the usual
one; moreover, each q-lower semicontinuous operator is the join of some set in the
self-adjoint part of Ã, where Ã is the unitization of A. So, the q-semicontinuity
seems to behave particularly well with the spectral order. We then can hope to ex-
tend somewhat more involved properties of functions related to semicontinuity
and order.

The aim of this paper is to extend to general C∗-algebras, the essential prop-
erties of the upper regularization map f 7→ f defined on the set RX

of [−∞, +∞]-
valued functions on X, where f denotes the least upper semicontinuous function
greater than f . In fact, these properties will be generalized even in the commuta-
tive case.

In order to handle the case where f takes infinite values, we introduce in
Section 2 the notion of extended self-adjoint operator affiliated with a von Neu-
mann algebra M (Definition 2.1). Let P denote the set of projections of M, and
G ⊂ P be a complete lattice containing the identity operator, and in which the
joins coincide with the joins in P . The set MG

R of extended self-adjoint operators
x satisfying Ex

]−∞,λ[ ∈ G for all reals λ, provided with the spectral order is then

a complete lattice. More precisely, Theorem 2.3 gives an isomorphism ψG of par-
tially ordered sets between MG

R and the complete lattice Sup(G, R) of R-valued
sup-preserving maps on G, provided with the usual order on functions (we shall
write simply ψ when G = P). As a direct consequence, MG

R ∩M is a condition-

ally complete lattice (recovering the Olson’s result with G = P) for which MG
R is

a completion. Other conditionally complete lattices are obtained by requiring the
extended spectrum to be in a given set (Corollary 2.4).

In Section 3, we take M = A′′ and G the set of open projections. The ele-
ments of A′′G

R are said to be extended q-upper semicontinuous, generalizing the

usual notions. Since A′′G
R is a complete lattice, we can define the q-upper regu-

larization x for any x ∈ A′′
R in a natural way (Definition 3.1). The map x 7→ x

is a closure operator which extends the one defined by Akemann on projections
(Proposition 3.2); it is then characterized in terms of ψ and ψG in Theorem 3.3,
and Theorem 3.4 looks like a Dini-Cartan’s lemma.

In Section 4, we prove that the two above theorems are not only formal ana-
logues of classical results for functions, but true generalizations. For this purpose,
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we study in detail the case where A is commutative with spectrum X. Theo-
rem 4.2 gives an isomorphism of complete lattices Π from RX

into A′′
R satisfying

all the required properties, and in particular Π( f ) = Π( f ) for all f ∈ RX
. Then,

taking A commutative in Theorem 3.3, the properties of the upper regularization
map are recovered by restriction on the image of Π and using the above equality
(Corollary 4.4). The Dini-Cartan’s lemma is obtained as the commutative case of
Theorem 3.4 (Corollary 4.5).

In Section 5, the properties of the q-upper regularization map are used to
obtain a noncommutative version of a basic result in large deviation theory.

1.1. NOTATIONS AND BACKGROUND MATERIAL. Throughout the paper, A is a
C∗-algebra considered as a C∗-subalgebra of its universal enveloping von Neu-
mann algebra A′′. A projection p ∈ A′′ is open if there is an increasing net in the
positive part of A converging strongly to p. A projection p ∈ A′′ is closed if 1− p
is open, where 1 is the unit of A′′. A closed projection p is compact if there is a
positive x ∈ A such that p 6 x. The join of any set of open projections is an open
projection. Let x be a self-adjoint operator on some closed subspace of the uni-
versal Hilbert space, and affiliated with A′′. Then, x is q-upper semicontinuous if
Ex

]−∞,λ[ is open for all reals λ, where {Ex
λ : λ ∈ R} is the spectral family of x ([6],

[14]).
A complete (respectively conditionally complete) lattice L is a partially or-

dered set (poset) in which every subset (respectively bounded subset) S has a
join

∨L S, and a meet
∧L S. Let L′ ⊂ L be two complete lattices, and S ⊂ L′; by

convention, we write
∨

S for
∨L S. An isomorphism of posets is an order preserv-

ing injective map with order preserving inverse. Let L be a complete lattice, and
L′ ⊂ L. In general, the joins or meets in L′ do not coincide with the ones in L,
even when L′ is a complete lattice; however,

∨L′ S >
∨L S for any S ⊂ L′ having

a join in L′. A map γ : L′ → L between complete lattices is sup-preserving if
γ(

∨
S) =

∨{γ(x) : x ∈ S} for all sets S ⊂ L′; the image of such a map is a com-
plete lattice in which the joins coincide with the joins in L; the set Sup(L′, L) of
such maps is a complete lattice. Any surjective isomorphism of complete lattices
is sup-preserving. We refer to [5] and [11] for more details.

2. COMPLETE LATTICES OF EXTENDED SELF-ADJOINT OPERATORS

We introduce here the notion of extended self-adjoint operator. By means
of suitable isomorphisms, we identify complete lattices of such operators with
complete lattices of sup-preserving maps (Theorem 2.3). The generalization of
Olson’s results is a direct consequence (Corollary 2.4).
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DEFINITION 2.1. Let M be a von Neumann algebra acting on some Hilbert
space H, and P the set of its projections. An extended self-adjoint operator x affil-
iated with M is a continuous from the right family {Ex

λ : λ ∈ R} ⊂ P . The
extended self-adjoint part of M is the set MR of all such operators provided with
the spectral order: x � y if Ex

λ > Ey
λ for all reals λ. The spectrum of x is the set

σ(x) of reals λ such that Ex
λ−ε 6= Ex

λ+ε for all ε > 0. The extended spectrum σR(x) is
the set σ(x) to which is added −∞ (respectively +∞) if 0 6= ∧

λ∈R
Ex

λ (respectively

1 6= ∨
λ∈R

Ex
λ). An element x ∈ MR is bounded if σR(x) ⊂ [−a, a] for some real a.

The above definition of the spectral order extends the one for bounded self-
adjoint operators; this order coincides with the usual order on P and on commut-
ing elements of M ([15]).

Let us introduce some notations. For any x ∈ MR and all reals a < b, we
put Ex

]−∞,b[ =
∨

µ<b
Ex

µ, Ex
]a,b[ = Ex

]−∞,b[ ∧ (1− Ex
a ), Ex

]a,b] = Ex
b ∧ (1− Ex

a ), Ex
]a,+∞[ =

1− Ex
a , Ex

[a,+∞[ = 1− Ex
]−∞,a[. The elements x + a1 and −x in MR are respectively

defined by Ex+a1
λ = Ex

λ−a and E−x
λ = Ex

[−λ,+∞[ for all reals λ. For any sets G ⊂ P
and L ⊂ R, we denote by MG

L the set of elements x ∈ MR such that Ex
]−∞,λ[ ∈ G

for each real λ, and σR(x) ⊂ L. We shall omit the symbol G when G = P .
Then, x ∈ M]−∞,+∞] if and only if there exists a self-adjoint operator Tx on

some closed subspace Hx ⊂ H; note that Ex
λ(H) = ETx

λ (Hx) for each real λ; in
particular, T−x = −Tx and σ(x) = σ(Tx). By Lemma 2.2, it is easy to see that
x ∈ M[0,+∞] if and only if Tx is positive; in other words, M[0,+∞] = {x ∈ MR :
∀λ < 0, Ex

λ = 0} is the extended positive part of M in the sense of Haagerup
([12], Theorem 1.5); x ∈ MR if and only if Hx = H, that is MR is the set of self-
adjoint operators on H affiliated with M; x is bounded if and only if Hx = H
and Tx is bounded, that is the bounded part of MR is the self-adjoint part of M.
In the rest of the paper, we identify x with Tx for any x ∈ M]−∞,+∞].

LEMMA 2.2. Let ψ : MR → RP
defined by ψ(x)(p) = inf{λ ∈ R : p 6 Ex

λ}.
For each x ∈ MR, p ∈ P , and λ0 ∈ R, the following properties hold:

(a)

(2.1) sup{λ ∈ R : ∀ε > 0, pEx
]λ−ε,λ+ε] 6= 0} 6 ψ(x)(p).

If ψ(x)(p) is finite, then the equality holds, the L.H.S. is a maximum, and the R.H.S. is
a minimum; if moreover p = Ex

λ0
, then p = Ex

ψ(x)(p) and ψ(x)(p) = min{µ ∈ R :
p = Ex

µ}. If ψ(x)(p) > −∞, then ψ(x)(p) = inf{λ ∈ σ(x) : p 6 Ex
λ}, which is a

minimum if ψ(x)(p) is finite.
(b) λ0 ∈ σ(x) if and only if ψ(x)(Ex

λ0
) = λ0. Moreover, σ(x) = ∅ if and only if

ψ(x) is {−∞, +∞}-valued.
(c) The following statements are equivalent:
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(i) x ∈ M.
(ii) ψ(x)|P\{0} is real-valued and bounded.

(iii) ψ(x)|P\{0} is σ(x)-valued and bounded.

(d) For any G ⊂ P and each x ∈ MG
R, ψ(x)(p) = inf

q>p,q∈G
ψ(x)(q).

(e) ψ(x + λ01) = ψ(x) + λ0, and ψ(λ0x)|P\{0} = λ0ψ(x)|P\{0} if moreover
λ0 > 0 and x ∈ M.

Proof. (a) Let l and r denote respectively the L.H.S. and R.H.S. of (2.1). Since
{Ex

λ : λ ∈ R} is continuous from the right, r is finite implies p 6 Ex
r and r is a

minimum. Suppose that r < l. There exists a real λ such that r < λ < l and
pEx

]λ−ε,λ+ε] 6= 0 for all ε > 0, which implies p 66 Ex
λ−ε for all ε > 0, and the con-

tradiction if r = −∞; if r is finite, then p 6 Ex
r 6 Ex

λ−ε for ε sufficiently small
gives the contradiction; thus, (2.1) holds. Suppose that r is finite. If l < r, then
pEx

]r−ε0,r+ε0]
= 0 for some ε0 > 0, and p 6 Ex

r−ε0
(since p 6 Ex

r+ε0
) contradicts

the definition of r; thus l = r; if l is not a maximum, then pEx
]l−ε0,l+ε0]

= 0 =
pEx

]r−ε0,r+ε0]
for some ε0 > 0, and p 6 Ex

r−ε0
(since p 6 Ex

r ) contradicts the defini-
tion of r; if moreover p = Ex

λ0
, then

ψ(x)(p) = min{µ ∈ R : p 6 Ex
µ} 6 inf{µ ∈ R : p = Ex

µ} 6 λ0,

which implies p = Ex
ψ(x)(p), hence ψ(x)(p) = min{µ ∈ R : p = Ex

µ}. The last
assertion is a direct consequence. The proofs of (b), (c), (d) follow easily from (a),
and are left to the reader.

When L ⊂ R has a bottom element 0L, we define ψGL : MG
L → LG by

ψGL (x)(p) = inf{λ ∈ σ(x) : p 6 Ex
λ} if ψ(x)(p) > −∞ (where ψ is the map

of Lemma 2.2), and ψGL (x)(p) = 0L otherwise. Since ψGL∪{−∞}(x) = ψ(x)|G for all

x ∈ MG
L by Lemma 2.2, we have in particular ψPR = ψ; we then shall omit the

symbol G (respectively L) when G = P (respectively L = R).

THEOREM 2.3. Let G ⊂ P be a complete lattice containing 1 in which the joins
coincide with the joins in P , and let L ⊂ R be a nonempty compact set. Then,

(a) MG
L is a complete lattice.

(b) ψGL is an isomorphism of complete lattices from MG
L onto Sup(G, L).

(c) For each γ ∈ Sup(G, R) and each real λ, we have E(ψG )−1(γ)
λ =

∧
µ>λ

E′µ, where

E′µ =
∨{p ∈ G : γ(p) 6 µ} for each real µ.

Proof. First step: the case L = R. Let γ ∈ Sup(G, R). For each real µ,
we define the projection E′µ =

∨{p ∈ G : γ(p) 6 µ}. Then, E′µ1
6 E′µ2

when

µ1 6 µ2, and the family
{

Eλ =
∧

µ>λ
E′µ : λ ∈ R

}
is a continuous from the right

family of projections in M. For each λ, µ, ε in R with λ − ε < µ < λ, we have
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Eλ−ε 6 E′µ 6 E]−∞,λ[ so that E]−∞,λ[ =
∨

µ<λ
E′µ ∈ G. Put φG(γ) = {Eλ : λ ∈ R}

and get a map φG : Sup(G, R) →MG
R. Note that for each x ∈ MG

R, the following
properties hold:

(i) p 6 Ex
ψG (x)(p) for all p ∈ G with ψG(x)(p) ∈ R (by Lemma 2.2).

(ii) ψG(x)(Ex
]−∞,λ[) 6 λ for each real λ ( ψG(x)(Ex

]−∞,λ[) is well defined since

x ∈ MG
R ).

Let x = {Ex
λ : λ ∈ R} ∈ MG

R and {pi : i ∈ I} ⊂ G. Since ψG(x) is clearly

increasing, we have ψG(x)
( ∨

i∈I
pi

)
> sup

i∈I
ψG(x)(pi), and to prove the converse

inequality, we can assume sup
i∈I

ψG(x)(pi) ∈ R. By (i), pi 6 Ex
ψG (x)(pi)

for all i ∈ I,

and so
∨
i∈I

pi 6 Ex
supi∈I ψG (x)(pi)

. By (ii), ψG(x)
( ∨

i∈I
pi

)
6ψG(x)(Ex

]−∞,supi∈I ψG (x)(pi)+ε[)

6 sup
i∈I

ψG(x)(pi) + ε for all ε > 0, so that ψG(x)
( ∨

i∈I
pi

)
6 sup

i∈I
ψG(x)(pi) and

ψG(x) ∈ Sup(G, R).
We will prove that γ = ψG ◦φG(γ) for all γ ∈ Sup(G, R). Let γ ∈ Sup(G, R),

p ∈ G and φG(γ) = {Eλ : λ ∈ R}.
We first show that γ(p) > ψG ◦ φG(γ)(p). We can suppose γ(p) < +∞,

which implies inf{λ ∈ R : p 6 Eλ} < +∞. Let λ ∈ R such that p(Eλ+ε − Eλ−ε) 6=
0 for all ε > 0. Then p 66 Eλ−ε, and therefore p 66 E′λ−ε which implies γ(p) > λ− ε

for all ε > 0. Thus, γ(p) > λ, and γ(p) > ψG ◦ φG(γ)(p) by Lemma 2.2.
We show now that γ(p) 6 ψG ◦ φG(γ)(p). Suppose that γ(p) = +∞ and

ψG ◦ φG(γ)(p) < +∞. Then, p 6 Eλ 6
∧

µ>λ
E′µ for some real λ with γ(E′µ) 6 µ,

which gives the contradiction. Thus, γ(p) = +∞ implies ψG ◦ φG(γ)(p) = +∞.
Suppose that ψG ◦ φG(γ)(p) < γ(p) < +∞, and note that γ(p) ∈ σ(φG(γ))
(otherwise, there exists ε > 0 such that Eγ(p)−ε = Eγ(p)+ε; let µ1, µ2 such that
γ(p) − ε < µ1 < γ(p) < µ2 < γ(p) + ε, and obtain Eγ(p)−ε 6 E′µ1

6 E′µ2
6

Eγ(p)+ε which implies E′µ1
= E′µ2

; but p 6 E′µ2
, and γ(E′µ1

) 6 µ1 implies p 66 E′µ1
,

which gives the contradiction). By Lemma 2.2, we have p(Eγ(p)+ε′ − Eγ(p)−ε′) = 0
for some ε′ > 0, with Eγ(p)+ε′ − Eγ(p)−ε′ 6= 0. Since p 6 E′

γ(p)+ε′ 6 Eγ(p)+ε′ , we
get p 6 Eγ(p)−ε′ . Choose µ with γ(p)− ε′ < µ < γ(p) and obtain γ(p) 6 γ(E′µ) 6

µ, which gives the contradiction. Thus, γ(p) 6 ψG ◦ φG(γ)(p).
We prove now that ψG is injective. Let x1 and x2 in MG

R such that γ =
ψG(x1) = ψG(x2). If γ(Ex1

]−∞,λ+ε[) > −∞, then γ(Ex1
]−∞,λ+ε[) ∈ R and for each real

λ and ε > 0, we have

Ex1
]−∞,λ+ε[ 6 Ex2

γ(E
x1
]−∞,λ+ε[)

6 Ex2
λ+ε
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by (i) and (ii), which gives Ex1
λ 6 Ex2

λ by right continuity; since Ex1
λ 6 Ex2

λ if
γ(Ex1

]−∞,λ+ε[) = −∞, in any case we have Ex1
λ 6 Ex2

λ , and by symmetry Ex1
λ = Ex2

λ .

We have proved that ψG is a bijection from MG
R to Sup(G, R), and (c) holds;

(a) and (b) will follow once proved that ψG is a poset isomorphism. Let x1 and x2

in MG
R. Suppose that ψG(x1) 6 ψG(x2). For all reals λ and ε > 0, we have

ψG(x1)(Ex2
]−∞,λ+ε[) 6 ψG(x2)(Ex2

]−∞,λ+ε[) 6 λ + ε

by Lemma 2.2 applied to ψ(x2). If ψG(x1)(Ex2
]−∞,λ+ε[) = −∞, then Ex2

]−∞,λ+ε[ 6 Ex1
λ

and Ex2
λ 6 Ex1

λ . If ψG(x1)(Ex2
]−∞,λ+ε[) > −∞, then by Lemma 2.2 applied to ψG(x1),

there is some real λ′ such that Ex2
]−∞,λ+ε[ 6 Ex1

λ′ and ψG(x1)(Ex2
]−∞,λ+ε[) = λ′, which

implies
Ex2

]−∞,λ+ε[ 6 Ex1
λ′ 6 Ex1

]−∞,λ+ε[,

and Ex2
λ 6 Ex1

λ by right continuity, i.e. x1 � x2. Suppose that x1 � x2 and
ψG(x2)(p) < ψG(x1)(p) for some p ∈ G. By Lemma 2.2, there exists a real λ
such that p 6 Ex2

λ and

(2.2) ψG(x2)(p) 6 λ < ψG(x1)(p).

Since x1 � x2, we have p 6 Ex2
λ 6 Ex1

λ and ψG(x1)(p) 6 λ, which contradicts
(2.2); thus x1 � x2 implies ψG(x1) 6 ψG(x2). The theorem is proved when L = R.

Second step: the general case. Put L− = L ∪ {−∞}. Since the nonempty
joins in L coincide with the nonempty joins in R, Sup(G, L−) ⊂ Sup(G, R), and
since any set in Sup(G, L−) has a join (which is the join in Sup(G, R)), Sup(G, L−)
is a complete lattice; consequently, (ψG)−1(Sup(G, L−)) is a complete lattice. For
each γ ∈ Sup(G, L−), γ = ψG(x) for some x ∈ MG

R by the preceding case. Let
λ ∈ σ(x). By Lemma 2.2 (b) and (d), we have

λ = inf
q>Ex

λ ,q∈G
ψ(x)(q) = inf

q>Ex
λ ,q∈G

ψG(x)(q),

so that λ ∈ L since ψG(x)(q) ∈ L. If +∞ ∈ σR(x), then ψG(x)(1) = ψ(x)(1) =
+∞ ∈ L. It follows that σR(x) ⊂ L−, hence (ψG)−1(Sup(G, L−)) ⊂ MG

L− . Since
ψG(x)|G\{0} = ψ(x)|G\{0} is σR(x)-valued for each x ∈ MG by Lemma 2.2, we

have ψG(MG
L−) ⊂ Sup(G, L−), so that (ψG)−1(Sup(G, L−)) = MG

L− . Therefore,

(a) and (b) hold for L− since ψGL− = ψG
|MG

L−
. It remains to prove the case where

−∞ 6∈ L. Put Sup(G, L−)′ = {γ ∈ Sup(G, L−) : ∀p 6= 0, γ(p) ∈ L}. It is easy
to verify that the map ∆ : Sup(G, L−)′ → Sup(G, L) defined by ∆(γ)(p) = γ(p)
for p 6= 0 and ∆(γ)(0) = 0L is a surjective poset isomorphism with converse map
∆−1(γ)(p) = γ(p) for p 6= 0 and ∆−1(γ)(0) = −∞; in particular, Sup(G, L−)′ is
a complete lattice. Note that ψGL = ∆ ◦ ψG

|MG
L
. For each x ∈ MG

L , ψG(x)|G\{0} is

L-valued, and so ψG(x) ∈ Sup(G, L−)′ since ψG(x) ∈ Sup(G, L−). Conversely,
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each γ ∈ Sup(G, L−)′ has the form γ = ψG(x) for some x ∈ MG
L− ; but x ∈

MG
L since ψG(x)|G\{0} is L-valued. Therefore, ψG

|MG
L

is a poset isomorphism onto

Sup(G, L−)′; MG
L is then a complete lattice, and ψGL an isomorphism of complete

lattices as a composition of such maps. This proves (a) and (b) for L.

In [15], M.P. Olson has shown that the self-adjoint part ofM (i.e., MR ∩M)
is a conditionally complete lattice, in which the joins and meets of a bounded set
{xi : i ∈ I} are given respectively by the first and second equality of (b). These
results are recovered in the following corollary by considering the bounded part
of MG

]a,b[ with a = −∞, b = +∞, and G = P .

COROLLARY 2.4. Under the same hypotheses as Theorem 2.3, we have:
(a) Any isomorphism from L onto R induces an isomorphism from MG

L onto MG
R. If

L = [a, b] with a, b in R, then MG
]a,b], M

G
]a,b[, M

G
[a,b[, and their respective bounded parts

are conditionally complete lattices, in which the nonempty joins and nonempty meets
coincide with the ones in MG

R. In particular, MG
R is a completion for MG

]a,b[, M
G
[−∞,b[,

MG
]a,+∞], and for their respective bounded parts.
(b) For any set {xi : i ∈ I} ⊂ MR and each real λ,

E
∨

i∈I xi
λ =

∧
i∈I

Exi
λ , E

∧
i∈I xi

λ =
∧

µ>λ

∨
i∈I

Exi
µ , E

∧
i∈I xi

]−∞,λ[ =
∨
i∈I

Exi
]−∞,λ[.

(c) For each x ∈ MR,

x =
∧

a∈R
x ∨ a1 =

∨
b∈R

x ∧ b1 =
∨

b∈R

∧
a∈R

((x ∧ b1) ∨ a1) =
∧

a∈R

∨
b∈R

((x ∧ b1) ∨ a1).

(d) MG
{0,1} = {1− p : p ∈ G}.

Proof. (a) Any isomorphism h from L onto R induces an isomorphism from
Sup(G, L) onto Sup(G, R) defined by h ◦ γ(p) for all γ ∈ Sup(G, L) and p ∈ G;
the first assertion follows then from Theorem 2.3. Now, suppose L = [−∞, +∞].
For each bounded subset S ⊂ MG

R,
∧ S and

∨ S exist in MG
R with x � ∧ S �∨ S � y for some x and y in MG

R, that is ψ(x) 6 ψ(
∧ S) 6 ψ(

∨ S) 6 ψ(y)
by Theorem 2.3. Then,

∧
λ∈R

E
∧ S
λ =

∧
λ∈R

E
∨ S
λ = 0 and

∨
λ∈R

E
∧ S
λ =

∨
λ∈R

E
∨ S
λ = 1,

and the second assertion holds for MG
R. Replace MG

R by MG
R ∩M in the above

proof, and get
∧ S ∈ MG

R ∩M and
∨ S ∈ MG

R ∩M since for any z ∈ MG
R, z ∈

MG
R ∩M if and only if ψ(z)|P\{0} is real-valued and bounded by Lemma 2.2; this

proves the second assertion for MG
R ∩M. The other cases are proved similarly

by noting that λ ∈ σR(z)\{+∞} if and only if ψ(z)(p) = λ for some p ∈ P\{0},
and +∞ ∈ σR(z) implies ψ(z)(1) = +∞. The last assertion follows by noting
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that when it exists, the top (respectively bottom) element of any of the mentioned
lattices coincides with the one of MG

R.

(b) Let λ∈R. Since ψ(xi)
( ∧

i∈I
Exi

λ

)
6λ for all i ∈ I, we have ψ

( ∨
i∈I

xi

)( ∧
i∈I

Exi
λ

)
6 λ, and so

∧
i∈I

Exi
λ 6 (E

∨
i∈I xi )′µ for all µ > λ by Theorem 2.3, which implies∧

i∈I
Exi

λ 6 E
∨

i∈I xi
λ , and the first equality holds (the converse inequality is obvious).

Define z ∈ MR by Ez
λ =

∧
µ>λ

∨
i∈I

Exi
µ , and note that Ez

λ >
∨
i∈I

Exi
λ , and Ez

λ 6
∨
i∈I

Exi
µ

for all reals µ > λ. Then, E
∧

i∈I xi
λ >

∨
i∈I

Exi
λ is equivalent to

∧
µ>λ

E
∧

i∈I xi
µ >

∨
i∈I

Exi
λ ,

and E
∧

i∈I xi
µ >

∨
i∈I

Exi
µ implies E

∧
i∈I xi

λ > Ez
λ, that is

∧
i∈I

xi = z, and the second

equality holds. For each µ < λ and each i ∈ I, we have by the second equality,

Exi
µ 6 E

∧
i∈I xi

µ =
∧

ν>µ

∨
i∈I

Exi
ν 6

∧
µ<ν<λ

∨
i∈I

Exi
ν 6

∨
i∈I

Exi
]−∞,λ[,

so that ∨
i∈I

∨
µ<λ

Exi
µ =

∨
i∈I

Exi
]−∞,λ[ =

∨
µ<λ

E
∧

i∈I xi
µ = E

∧
i∈I xi

]−∞,λ[,

and the third equality holds.
(c) By (b), we have Ex∨a1

µ = Ex
µ if µ > a, and Ex∨a1

µ = 0 if µ < a, which
implies

(2.3) E
∧

a∈R x∨a1
µ =

∧
ν>µ

∨
a∈R

Ex∨a1
ν = Ex

µ,

and the first equality holds. Since Ex∧b1
µ = Ex

µ if µ 6 b, and Ex∧b1
µ = 1 if µ > b, we

get

(2.4) E
∨

b∈R x∧b1
µ =

∧
b∈R

Ex∧b1
µ = Ex

µ,

and the second equality holds. Put y = x ∧ b1, and get by (2.3) and (2.4),

E
∨

b∈R(
∧

a∈R(y∨a1))
µ =

∧
b∈R

E
∧

a∈R(y∨a1)
µ =

∧
b∈R

Ey
µ = Ex

µ,

so that the third equality holds. The last one is proved similarly since (x ∧ b1) ∨
a1 = (x ∨ a1) ∧ b1.

(d) Clearly ψ|{1−p:p∈G} is injective with values in Sup(G, {0, 1}). Let γ ∈
Sup(G, {0, 1}). Define p0 =

∨{p ∈ G : γ(p) = 0} and note that p0 ∈ G with
γ(p0) = 0. For each p ∈ G, ψ(1− p0)(p) = 0 if and only if p 6 p0 if and only if
γ(p) = 0, hence ψ(1− p0) = γ and ψ|{1−p:p∈G} is surjective.
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3. EXTENDED Q-SEMICONTINUITY AND Q-UPPER REGULARIZATION

In this section, we take M = A′′ the universal enveloping von Neumann
algebra of a C∗-algebra A, and G the set of open projections. We define the q-
upper regularization map, and study its properties via the isomorphisms ψ and
ψG (Theorems 3.3 and 3.4). These ones look like noncommutative versions of
well-known properties for functions; we will show in the next section, that there
are true generalizations, and not only formal similarities.

Note that x ∈ A′′G
[−∞,+∞[ (respectively x ∈ A′′G

R ∩ A′′) if and only if x is a un-
bounded (respectively bounded) q-upper semicontinuous operator in the sense
of [14]. Since A′′G

R is a complete lattice by Theorem 2.3, we can give the following
definition.

DEFINITION 3.1. Let x ∈ A′′
R. Then, x is extended q-upper semicontinuous

(respectively extended q-lower semicontinuous, extended q-continuous) if x ∈ A′′G
R

(respectively −x ∈ A′′G
R , x ∈ A′′G

R and −x ∈ A′′G
R ). The element x =

∧A′′G
R

{
y ∈

A′′G
R : y � x

}
is the q-upper regularization of x.

The closure of a projection p ∈ P has been introduced in [1] as the least
closed projection greater than p; it coincides with p as shows the next proposition
(note that A′′G

{0,1} is the complete lattice of closed projections by Corollary 2.4).
Moreover, the meet in A′′

R of any family of extended q-upper semicontinuous
operators is extended q-upper semicontinuous, so that x � x, and the map x 7→ x
is then a closure operator on A′′

R. The next proposition following easily from
Corollary 2.4, the proof is left to the reader.

PROPOSITION 3.2. For any S ⊂ A′′G
R , if the meet of S exists in one of the follow-

ing lattices: A′′G
R , A′′G

R ∩ A′′, A′′G
{0,1}, A′′

R, A′′
R ∩ A′′, A′′

{0,1}, then it exists in any other

containing S , and coincides with the meet of S in A′′G
R .

The following theorem gives various characterizations of the q-upper regu-
larization map, in terms of ψ and ψ

G
. We will prove in Corollary 4.4 that they are

generalizations (even in the commutative case) of well-known characterizations
of the upper regularization of R-valued functions on a locally compact Hausdorff
space.

THEOREM 3.3. For each x ∈ A′′
R and each p ∈ P , the following properties hold:

(i) x is the unique extended q-upper semicontinuous operator y satisfying

(3.1) ψG(y) = ψ(x)|G ;

(ii) x =
∨{y ∈ A′′

R : ψ(y)|G = ψ(x)|G};
(iii) ψ(x)(p) = inf

q>p,q∈G
ψ(x)(q).
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Proof. Let x ∈ A′′
R. Since the join in P of any family of open projections

is an open projection, ψ(x)|G ∈ Sup(G, R), and (ψG)−1(ψ(x)|G) ∈ A′′G
R by The-

orem 2.3. Put x0 = (ψG)−1(ψ(x)|G). By Lemma 2.2 (d), we have ψ(x0)(p) =
inf

q>p,q∈G
ψ(x0)(q) for all p ∈ P , and since ψG(x0)(q) = ψ(x)(q) for each q ∈ G, it

follows that ψ(x0)(p) > ψ(x)(p), i.e. x0 � x by Theorem 2.3. For all z ∈ A′′G
R with

z � x, we have ψG(z) = ψ(z)|G > ψ(x)|G , and so (ψG)−1 ◦ ψG(z) = z � x0. We
then have x0 = x so that

(3.2) ψG(x) = ψ(x)|G ,

and x satisfies (3.1). If y ∈ A′′G
R satisfies (3.1), then y = y = (ψG)−1(ψ(y)|G) =

(ψG)−1(ψ(x)|G) = x by (3.2), and (i) holds. Put z =
∨{y ∈ A′′

R : ψ(y)|G =
ψ(x)|G}. By Theorem 2.3, ψ(z)(q) = sup{ψ(y)(q) : y ∈ A′′

R, ψ(y)|G = ψ(x)|G},
so that ψ(z)|G = ψ(x)|G , which gives z = x by (i). Apply (3.2) to z, and get
z = z by definition of z since z � z, which gives (ii). For each p ∈ P , ψ(x)(p) =

inf
q>p,q∈G

ψ(x)(q) by Lemma 2.2 (d), and since ψ(x)|G = ψ(x)|G by (i), (iii) holds.

The following theorem is a noncommutative version of the Dini-Cartan
lemma ([9]), as will establish Corollary 4.5. Suppose A unital, and let (xi)i∈I be a
decreasing net (with respect to the spectral order) of bounded q-upper semicon-
tinuous operators satisfying

∧
i∈I

xi = 0. Since ψ(x)(1) = ‖x‖ for all x ∈ A′′
R ∩ A

by Lemma 2.2 (a), (3.3) with p = 1 gives inf
i∈I
‖xi‖ = 0. If moreover each xi = pi

is a projection (and thus a compact one), we get pi0 = 0 for some i0 ∈ I, and we
recover a well known result of Akemann ([1], Proposition II. 10).

THEOREM 3.4. Let (xi)i∈I be a decreasing net of extended q-upper semicontinu-
ous operators. Then, for all compact projections p commuting with all the Exi

λ (i ∈ I, λ ∈
R), we have

(3.3) ψ
( ∧

i∈I
xi

)
(p) = inf

i∈I
ψ(xi)(p).

Proof. By means of an increasing homeomorphism from [0, 1] onto R (which
is a surjective isomorphism of complete lattices), we can suppose {xi : i ∈ I} ⊂
A′′G

[0,1] by Corollary 2.4. Put x =
∧
i∈I

xi, and let p ∈ P . Clearly, ψ(x)(p) 6

inf
i∈I

ψ(xi)(p). Suppose ψ(x)(p) < s < inf
i∈I

ψ(xi)(p) for some real s. Then,

(3.4) inf{λ ∈ R : p 6 Ex
λ} < s < inf

i∈I
inf{λ ∈ R : p 6 Exi

λ }

and so there exists a real λ < s such that p 6 Ex
λ. Since Ex

]λ,+∞[ =
∨

µ>λ

∧
i∈I

Exi
]µ,+∞[ by

Corollary 2.4, we have p ∧ ∧
i∈I

Exi
]µ,+∞[ = 0 for all µ > λ, hence p ∧ ∧

i∈I
Exi

[s,+∞[ = 0
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by taking µ < s. If p is compact, then p ∧ E
xi0
[s,+∞[ = 0 for some xi0 ([2], Proposi-

tion 1.1.2), that is pE
xi0
[s,+∞[ = 0 if moreover p commutes with all the Exi

λ . But (3.4)

implies p 66 E
xi0
s and the contradiction.

4. AN OPERATOR-THEORETIC REPRESENTATION FOR RX

The aim of this section is to prove that the properties of the q-upper regular-
ization map given in the preceding section generalize the classical ones; that is,
properties for functions on X must be recovered by taking A commutative with
spectrum X in Theorems 3.3 and 3.4; this will be obtained in Corollaries 4.4 and
4.5. For that purpose, we need to represent any R-valued function on X as a true
operator in such a way that this representation (say Π) coincides with the known
notions of q-upper semicontinuous operators (bounded or unbounded), and sat-
isfies Π( f ) = Π( f ); this is achieved in Theorem 4.2, where moreover Π is an
isomorphism of complete lattices enjoying good properties (see (ii), (iii)).

Let C0(X) be the C∗-algebra of continuous functions vanishing at infinity
on a locally compact Hausdorff space X, and A its universal representation. The
set of all (respectively open, closed) subsets of X is denoted by P(X) (respec-
tively G(X), F (X)). The set of R-valued (respectively, [−∞, +∞[-valued) up-
per semicontinuous functions on X will be denoted by USC(X, R) (respectively,
USC(X, [−∞, +∞[)), and its R-valued bounded part by USC(X, R)b.

Let us recall some basic facts. Let M1 be the set of regular probability mea-
sures on X. For each µ ∈ M1, we define πµ : L∞(X, µ) → B(L2(X, µ)) by
(πµ( f )g)(t) = f (t)g(t) (where B(L2(X, µ)) denotes the set of bounded linear op-
erators on L2(X, µ)), and put π⊕ =

⊕
µ∈M1

πµ |⋂µ∈M1
L∞(X,µ). Then, A′′ is the strong

closure of π⊕(C0(X)) in B(
⊕

µ∈M1
L2(X, µ)), and π⊕( f ) is q-upper (respectively

q-lower) semicontinuous if and only if f is upper (respectively lower) semicontin-
uous; in particular, a projection p ∈ A′′ is closed (respectively open, compact) if
and only if p = π⊕(1Y) for some closed (respectively open, compact) set Y ⊂ X.

Moreover, Eπ⊕( f )
λ =

⊕
µ∈M1

E
πµ( f )
λ for each f ∈ ⋂

µ∈M1

L∞(X, µ) and each real λ. The

map ψG(X) : USC(X, R) → Sup(G(X), R) defined by ψG(X)( f )(G) = sup
t∈G

f (t) is

a bijection with converse map (ψG(X))−1(γ)(t) = inf{γ(G) : G ∈ G(X), t ∈ G}.
Since for all f1, f2 in USC(X, R), f1 6 f2 if and only if ψG(X)( f1) 6 ψG(X)( f2),
ψG(X) is a surjective isomorphism of complete lattices. Let φ : Sup(G(X), R) →
Sup(G, R) be the surjective isomorphism of complete lattices which is defined by
φ(γ)(π⊕(1G)) = γ(G).

PROPOSITION 4.1. Let A be commutative with spectrum X.
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(a) The map (ψG)−1 ◦ φ ◦ ψG(X) is the unique isomorphism of complete lattices Π′

from USC(X, R) into A′′G
R which extends π⊕|USC(X,R)b

and satisfies for each a > 0,
and each f ∈ USC(X, R) bounded from above,

(4.1) Π′( f ∨−a) = Π′( f ) ∨−a1,

and for each f ∈ USC(X, R) bounded from below,

(4.2) Π′( f ∧ a) = Π′( f ) ∧ a1.

(b) For each f and 1Y in
⋂

µ∈M1

L∞(X, µ), we have ψ ◦ π⊕( f )(π⊕(1Y)) = sup
t∈Y

f (t).

Proof. Let f and 1Y in
⋂

µ∈M1

L∞(X, µ), and suppose

λ0 = sup
t∈Y

f (t) > sup{λ ∈ σ(π⊕( f )) : ∀ε > 0, π⊕(1Y)Eπ⊕( f )
]λ−ε,λ+ε] 6= 0}.

Since f (t) ∈ σ(π⊕( f )) for all t ∈ X, we have λ0 ∈ σ(π⊕( f )), and so there
exists ε0 > 0 such that π⊕(1Y)Eπ⊕( f )

]λ0−ε0,λ0+ε0]
= 0. Since π⊕(1Y) 6 Eπ⊕( f )

λ0+ε for all

ε > 0, we have π⊕(1Y) 6 Eπ⊕( f )
λ0−ε0

. This implies µ(1Y) 6 µ(1Y∩{ f6λ0−ε0}) for all
µ ∈ M1, giving a contradiction if we take µ = δt0 the Dirac measure at t0 ∈ Y,
with λ0 − f (t0) < ε0. Suppose now

sup
t∈Y

f (t) < sup{λ ∈ σ(π⊕( f )) : ∀ε > 0, π⊕(1Y)Eπ⊕( f )
]λ−ε,λ+ε] 6= 0}.

There exists λ′ ∈ σ(π⊕( f )) such that sup
t∈Y

f (t) < λ′, and π⊕(1Y) 66 Eπ⊕( f )
λ′−ε for all

ε > 0. For all ε > 0, there exists h = {hµ : µ ∈ M1} ∈
⊕

µ∈M1

L2(X, µ) such that

〈h, π⊕(1Y)h〉>〈h, Eπ⊕( f )
λ′−ε h〉, and so 〈hµ′ , π⊕(1Y)hµ′〉L2(X,µ′)>〈hµ′ , Eπ⊕( f )

λ′−ε hµ′〉L2(X,µ′)
for some µ′ ∈ π1. Equivalently,

µ′(1Y|hµ′ |2) > µ′(1{ f6λ′−ε}|hµ′ |2),

which gives a contradiction with ε satisfying sup
t∈Y

f (t) < λ′ − ε. We then have

sup
t∈Y

f (t) = sup{λ ∈ σ(π⊕( f )) : ∀ε > 0, π⊕(1Y)Eπ⊕( f )
]λ−ε,λ+ε] 6= 0},

that is sup
t∈Y

f (t) = ψ ◦π⊕( f )(Π⊕(1Y)) by Lemma 2.2, and (b) holds. In particular,

for each f ∈ USC(X, R)b and each G ∈ G(X), we have

φ ◦ ψG(X)( f )(π⊕(1G)) = sup
t∈G

f (t) = ψ ◦ π⊕( f )(π⊕(1G)) = ψG ◦ π⊕( f )(Π⊕(1G))

(the last equality follows from Theorem 3.3), that is (ψG)−1 ◦ φ ◦ ψG(X)( f ) =
π⊕( f ) by Theorem 2.3, hence (ψG)−1 ◦φ ◦ψG(X) extends π⊕|USC(X,R)b

; it is clearly
an isomorphism of complete lattices, which moreover satisfies (4.1) and (4.2)
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since it is surjective with (ψG)−1 ◦ φ ◦ ψG(X)(a) = a1 for each real a. Let Π′ :
USC(X, R) −→ A′′G

R be an isomorphism of complete lattice (not necessarily sur-
jective) extending π⊕|USC(X,R)b

, and satisfying (4.1) and (4.2). In the rest of the
proof, and in absence of explicit mention, the meets and joins of extended q-upper
semicontinuous operators are taken in A′′G

R . Note that for each g ∈ USC(X, R)
bounded from above,

∧
a∈R+

π⊕(g ∨−a) =
∧

a∈R+

Π′(g) ∨−a1 = Π′(g)

�
Π′(USC(X,R))∧

a∈R+

Π′(g ∨−a) �
∧

a∈R+

Π′(g) ∨−a1 = Π′(g)

(the first equality follows from (4.1), and the second one from Corollary 2.4 (c)),
hence

(4.3)
∧

a∈R+

π⊕(g ∨−a) =
Π′(USC(X,R))∧

a∈R+

Π′(g ∨−a).

Note also that for each G ∈ G(X),

ψG
( ∧

a∈R+

π⊕(g ∨−a)
)
(π⊕(1G)) = inf

a∈R+
ψG(π⊕(g ∨−a))(π⊕(1G))(4.4)

= inf
a∈R+

sup
t∈G

(g ∨−a)(t) = sup
t∈G

g(t)

(the proof of the first equality is similar to the proof of Theorem 3.4: suppose

ψG
( ∧

a∈R+

π⊕(g∨−a)
)
(π⊕(1G)) < inf

a∈R+
ψG(π⊕(g∨−a))(π⊕(1G)), take the fam-

ily {π⊕(g ∨ −a) : a ∈ R+} in place of {xi : i ∈ I}, replace p by π⊕(1G), and
get by commutativity, π⊕(1G).

∧
a∈R+

Eπ⊕(g∨−a)
[s,+∞[ = 0, which implies π⊕(1G) 6

∨
a∈R+

Eπ⊕(g∨−a)
s = Eπ⊕(g∨s)

s and the contradiction. The second equality follows

from (b) and Theorem 3.3 (i)). Let f ∈ USC(X, R), and note that f =
∨

b∈R+

∧
a∈R+

(( f

∧b) ∨ −a) with ( f ∧ b) bounded from above. Since ψG ◦Π′ is sup-preserving as
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isomorphism of complete lattices, we get by (4.3),

ψG ◦Π′( f ) =
ψG◦Π′(USC(X,R))∨

b∈R+

ψG
( Π′(USC(X,R))∧

a∈R+

Π′(( f ∧ b) ∨−a)
)

=
ψG◦Π′(USC(X,R))∨

b∈R+

ψG
( ∧

a∈R+

π⊕(( f ∧ b) ∨−a)
)

>
∨

b∈R+

ψG
( ∧

a∈R+

π⊕(( f ∧ b) ∨−a)
)

,

and by (4.4) for each G ∈ G(X),

ψG ◦Π′( f )(π⊕(1G)) > sup
b∈R+

inf
a∈R+

sup
t∈G

(( f ∧ b) ∨−a)(t)(4.5)

= sup
b∈R+

sup
t∈G

( f ∧ b)(t)

= sup
t∈G

f (t) = (φ ◦ ψG(X)( f ))(π⊕(1G)).

On the other hand, for each real a > 0,

ψG ◦Π′( f ) 6 ψG ◦Π′( f ∨−a) 6 ψG
( ∨

b∈R+

Π′( f ∨−a) ∧ b1
)

= ψG
( ∨

b∈R+

π⊕(( f ∨−a) ∧ b)
)

=
∨

b∈R+

ψG ◦ π⊕(( f ∨−a) ∧ b)

(the second inequality follows from Corollary 2.4 (c), and the first equality from
(4.2)), which gives for each G ∈ G,

ψG ◦Π′( f )(π⊕(1G)) 6 inf
a∈R+

sup
b∈R+

sup
t∈G

(( f ∧ b) ∨−a)(t)(4.6)

= sup
t∈G

f (t) = (φ ◦ ψG(X)( f ))(π⊕(1G)).

By (4.5) and (4.6), Π′ = (ψG)−1 ◦ φ ◦ ψG(X), which proves the uniqueness, and (a)
holds.

The following theorem shows that RX
can be seen as a complete lattice

in A′′
R, containing A′′G

R as a complete lattice isomorphic to USC(X, R). In this
identification, the q-upper regularization coincides with the usual upper regu-
larization. By (4.11) and (4.12), the unbounded q-lower semicontinuous oper-
ators in the sense of [14] correspond to the ] − ∞, +∞]-valued lower semicon-
tinuous functions on X, and f is R-valued (respectively R-valued, bounded R-
valued) continuous if and only if Π( f ) is an extended (respectively extended
with σR(Π( f )) ⊂ R, bounded) q-continuous operator.
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THEOREM 4.2. Let A be commutative with spectrum X. The map Π : RX → A′′
R

defined by

(4.7) Π( f ) =
∧

a∈R

( ∨
λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1
)

satisfies the following properties:

(i) Π is an isomorphism of complete lattices, and for each f ∈ RX
and each real µ,

we have

EΠ( f )
[µ,+∞[ =

∧
λ<µ

∨
F⊂{ f>λ},F∈F (X)

π⊕(1F),(4.8)

EΠ( f )
]µ,+∞[ =

∨
λ>µ

∨
F⊂{ f>λ},F∈F (X)

π⊕(1F).

Moreover, for each real a,

(4.9) Π( f ∨ a) = Π( f ) ∨ a1 =
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1,

and

(4.10) Π( f ∧ a) = Π( f ) ∧ a1.

(ii) Π|⋂µ∈M1
L∞(X,µ) = π⊕.

(iii) Π|USC(X,R) = (ψG)−1 ◦ φ ◦ ψG(X). In particular, Π|USC(X,R) is an isomorphism

of complete lattices onto A′′G
R . Moreover,

(4.11) − f ∈ USC(X, R) ⇐⇒ −Π( f ) ∈ A′′G
R

and

(4.12) f ∈ USC(X, [−∞, +∞[) ⇐⇒ Π( f ) ∈ A′′G
[−∞,+∞[.

(iv) Π( f ) = Π( f ) for all f ∈ RX
.

(v) ψ ◦Π( f )(π⊕(1G)) = sup
t∈G

f (t) for all f ∈ RX
and all G ∈ G(X).

Proof. We first show that for each f ∈ RX
and each real a,

(4.13) Π( f ∨ a) =
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1.

Let a ∈ R, and suppose that for some real a′ > a,

ψ
( ∨

λ−a′∈R+

(λ− a′)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a′1
)

6> ψ
( ∨

λ−a∈R+

(λ− a)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a1
)

.
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By the sup-preserving property of ψ, and using Lemma 2.2 (e), we get a projection
p ∈ A′′\{0}, a real λ0 > a, and a closed set F0 ⊂ { f ∨ a > λ0} such that

sup
λ−a′∈R+

(λ− a′)
∨

F⊂{ f>λ},F∈F (X)

ψ(π⊕(1F))(p)(4.14)

< (λ0 − a)ψ(π⊕(1F0))(p) + a− a′.

Since ψ(π⊕(1F))(p) ∈ {0, 1} for any F ∈ F (X) by Lemma 2.2 (c), the L.H.S. in
(4.14) is positive, which implies ψ(π⊕(1F0))(p) = 1 and λ0 > a′ > a. Therefore,
F0 ⊂ { f > λ0}, and by taking λ = λ0 and F = F0 in (4.14) we get the contradic-
tion. By Theorem 2.3, we then have for each real a′ > a,

∨
λ−a′∈R+

(λ− a′)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a′1(4.15)

�
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a1,

hence

∨
λ−a′∈R+

(λ− a′)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a′1(4.16)

�
∨

λ−a′∈R+

(λ− a′)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a′1

�
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a1

�
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1

�
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a1

(where the second inequality follows from (4.15), and the last one from (4.15) with
a′ = a), and so

∧
a′>a

( ∨
λ−a′∈R+

(λ− a′)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a′1
)

(4.17)

=
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1.

On the other hand, for each real a′ 6 a, we have
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∨
λ−a′∈R+

(λ− a′)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a′1(4.18)

=
( ∨

a′6λ6a

(λ− a′)
∨

F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a′1
)

∨
( ∨

λ>a
(λ− a′)

∨
F⊂{ f∨a>λ},F∈F (X)

π⊕(1F) + a′1
)

= a1∨
( ∨

λ>a
(λ− a′)

∨
F⊂{ f>λ},F∈F (X)

π⊕(1F) + a′1
)

� a1∨
( ∨

λ>a
(λ− a)

∨
F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1
)

=
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1,

where the second equality follows by noting that { f ∨ a > λ} = X for a > λ and
{ f ∨ a > λ} = { f > λ} for λ > a. Then, (4.13) follows from (4.17) and (4.18). By
(4.13) we get EΠ( f∨a)

µ =
∧

λ>a

∧
F⊂{ f>λ},F∈F (X)

Eπ⊕(1F)
µ−a
λ−a

∧ E0
µ−a for each real µ, so that

(4.19) ∀µ < a, EΠ( f∨a)
µ = 0.

On the other hand,

EΠ( f )
µ =

∧
ν>µ

∨
a∈R

∧
λ>a

∧
F⊂{ f>λ},F∈F (X)

Eπ⊕(1F)
ν−a
λ−a

∧ E0
ν−a

=
∧

ν>µ

∨
a6ν

∧
λ>a

∧
F⊂{ f>λ},F∈F (X)

Eπ⊕(1F)
ν−a
λ−a

∧ E0
ν−a,

and since
∧

λ>a

∧
F⊂{ f>λ},F∈F (X)

Eπ⊕(1F)
ν−a
λ−a

∧ E0
ν−a is constant for all reals a and ν with

a 6 ν, we obtain

(4.20) ∀µ > a, EΠ( f )
µ =

∧
λ>a

∧
F⊂{ f>λ},F∈F (X)

Eπ⊕(1F)
µ−a
λ−a

= EΠ( f∨a)
µ .

Since EΠ( f )∨a1
µ = EΠ( f )

µ for µ > a and EΠ( f )∨a1
µ = 0 for µ < a, the first equality in

(4.9) follows from (4.19) and (4.20), and the second one from (4.13). Take µ = a in
(4.20) and get

(4.21) EΠ( f )
µ =

∧
λ>µ

∧
F⊂{ f>λ},F∈F (X)

1− π⊕(1F),
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which is equivalent to the second equality in (4.8). By (4.21) we have

EΠ( f )
]−∞,ν[ =

∨
ν′<ν

( ∧
ν′<λ<ν

∧
F⊂{ f>λ},F∈F (X)

1− π⊕(1F)
)

6
∧

F⊂{ f>ν},F∈F (X)

1− π⊕(1F) 6 EΠ( f )
ν ,

so that

EΠ( f )
]−∞,µ[ =

∨
ν<µ

EΠ( f )
]−∞,ν[ 6

∨
ν<µ

∧
F⊂{ f>ν},F∈F (X)

1− π⊕(1F) 6
∨

ν<µ

EΠ( f )
ν = EΠ( f )

]−∞,µ[,

which is equivalent to the first equality in (4.8). By (4.21) we get

(4.22) ∀µ > a, EΠ( f∧a)
µ = 1

and

∀µ < a, EΠ( f∧a)
µ =

∧
λ>µ

∧
F⊂{ f∧a>λ},F∈F (X)

1− π⊕(1F)(4.23)

=
∧

a>λ>µ

∧
F⊂{ f>λ},F∈F (X)

1− π⊕(1F) = EΠ( f )
µ .

Since EΠ( f )∧a1
µ = EΠ( f )

µ for µ < a and EΠ( f )∧a1
µ = 1 for µ > a, (4.10) follows from

(4.22) and (4.23). Let f and g in RX
. Suppose Π( f ) � Π(g) and f (x) > λ0 > g(x)

for some x ∈ X and some real λ0. Then, Π( f ∨ λ0)− λ01 � Π(g ∨ λ0)− λ01 by
(4.9), which implies ψ(Π( f ∨ λ0)− λ01) 6 ψ(Π(g ∨ λ0)− λ01) by Theorem 2.3,
and

ψ
( ∨

λ−λ0∈R+

(λ− λ0)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F)
)

6 ψ
( ∨

λ−λ0∈R+

(λ− λ0)
∨

F⊂{g>λ},F∈F (X)

π⊕(1F)
)

by (4.13) and Lemma 2.2 (e), that is for each projection p ∈ A′′,

sup
λ−λ0∈R+

(λ− λ0) sup
F⊂{ f>λ},F∈F (X)

ψ(π⊕(1F))(p)(4.24)

6 sup
λ−λ0∈R+

(λ− λ0) sup
F⊂{g>λ},F∈F (X)

ψ(π⊕(1F))(p).

Take p = π⊕(1{x}) in (4.24), and get the contradiction by considering in the L.H.S.
any λ ∈]λ0, f (x)[ and {x} ⊂ { f > λ} (indeed, ψ(p)(p) = 1 gives λ− λ0 > 0 in
the L.H.S., but ψ(π⊕(1F))(p) = sup

t∈X
1F∩{x}(t) = 0 for all F ⊂ {g > λ} and

all λ > λ0 by Proposition 4.1, which gives 0 in the R.H.S.). Therefore, Π( f ) �
Π(g) implies f 6 g, and since the converse implication clearly holds, Π is an
isomorphism of complete lattices and (i) holds.
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Since π⊕(1{ f>λ}) = Eπ⊕( f )
[λ,+∞[ for each f ∈ ⋂

µ∈M1

L∞(X, µ), we have for each

f ∈ USC(X, R)b and each real a 6 inf
t∈X

f (t),

Π( f ) =
∨

λ−a∈R+

(λ− a)
∨

F⊂{ f>λ},F∈F (X)

π⊕(1F) + a1

=
∨

λ−a∈R+

(λ− a)Eπ⊕( f )
[λ,+∞[ + a1 = π⊕( f ),

where the first equality follows from (4.13), and the last one from Proposition 4.1
by noting that f =

∨
λ−a∈R+

(λ− a)1{ f>λ} + a; this proves (ii).

Let f ∈ USC(X, R). For each real b, we have

Π( f ∧ b) = Π( f ) ∧ b1 =
∧

a∈R
((Π( f ) ∧ b1) ∨ a1)(4.25)

=
∧

a∈R
(Π(( f ∧ b) ∨ a)) =

∧
a∈R

π⊕(( f ∧ b) ∨ a),

where the first equality follows from (4.10), the second one from Corollary 2.4 (c),
the third one from (4.9) and (4.10), and the last one from (ii) since ( f ∧ b) ∨ a ∈
USC(X, R)b. Therefore, Π( f ∧ b) ∈ A′′G

R as the meet in A′′
R of a family of q-upper

semicontinuous operators. Since Π( f ) =
∨

b∈R
Π( f ∧ b) by (4.10) and Corollary 2.4

(c), and since

∀λ ∈ R, EΠ( f )
]−∞,λ[ =

∨
ν<λ

EΠ( f )
ν =

∨
ν<λ

EΠ( f∧λ)
ν =

∨
ν<λ

EΠ( f∧λ)
]−∞,ν[ ,

EΠ( f )
]−∞,λ[ is an open projection, hence Π( f ) ∈ A′′G

R . We then have shown that

Π|USC(X,R) is an isomorphism of complete lattices from USC(X, R) into A′′G
R ,

which extends π⊕|USC(X,R)b
, and satisfies (4.1) and (4.2); by Proposition 4.1,

Π|USC(X,R) = (ψG)−1 ◦ φ ◦ ψG(X) and the two first assertions of (iii) hold. Since
for each real a,∨

λ∈R
EΠ( f )

λ =
∨

λ∈R
EΠ( f∨a)

λ =
∨

λ∈R
EΠ( f∨a∧λ)

λ(4.26)

=
∨

λ∈R
Eπ⊕( f∨a∧λ)

λ =
∨

λ∈R
Π(1{ f∨a6λ})

=
∨

λ∈R
Π(1{ f6λ}) 6 Π(1⋃

λ∈R{ f6λ}) 6 Π(1X) = 1,

Π( f ) ∈ A′′G
[−∞,+∞[ implies

⋃
λ∈R

{ f 6 λ} = X; but the first inequality in (4.26) is in

fact an equality (otherwise, by Theorem 2.3, there is some real λ0 and some projec-
tion p ∈ A′′\{0} satisfying (ψ ◦Π)(1{ f6λ0})(p) > (ψ ◦Π)(1⋃

λ∈R{ f6λ})(p); since
Π(1{ f6λ0}) and Π(1⋃

λ∈R{ f6λ}) are projections by (ii), we get (ψ ◦Π)(1{ f6λ0})(p)
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= 1 that is p 6 Π(1{ f6λ0}), and (ψ ◦Π)(1⋃
λ∈R{ f6λ})(p) = 0 that is the contradic-

tion p ·Π(1⋃
λ∈R{ f6λ}) = 0), so that the converse implication holds, which gives

(4.12). Let − f ∈ USC(X, R). By (4.9), (4.10), (ii) and Corollary 2.4, we get

−Π( f ) =
∧

b∈R

∨
a∈R

−Π(( f ∧ b) ∨ a) =
∧

b∈R

∨
a∈R

Π((− f ∧−a) ∨−b) = Π(− f ),

which gives (4.11).
Let f ∈ RX

. Clearly, Π( f ) � Π( f ) � Π( f ), and by (i) and (iii) there exists
g ∈ USC(X, R) such that Π( f ) = Π(g) and f 6 g 6 f , hence g = f , and (iv)
holds.

We have for each f ∈ RX
and each G ∈ G(X),

ψ ◦Π( f )(π⊕(1G)) = ψ ◦Π( f )(π⊕(1G)) = ψG ◦Π( f )(π⊕(1G))

= ψG ◦Π( f )(π⊕(1G)) = sup
t∈G

f (t),

where the two first equalities follow from Theorem 3.3, the third one from (iv),
and the last one from (iii). Thus, (v) holds and the theorem is proved.

We recover in the following corollary the fact that the spectrum X of a com-
mutative von Neumann algebra is stonean, since this is equivalent to say that the
set of R-valued continuous functions on X is a complete lattice.

COROLLARY 4.3. Let A be a commutative W∗-algebra with spectrum X. For
each faithful representation π(A) as a von Neumann algebra, there is an isomorphism of
complete lattices from the set of R-valued continuous functions on X onto π(A)R.

Proof. Since π preserves the usual order, by commutativity π restricted to
the self-adjoint part of A is a poset isomorphism (with respect to the spectral
order). We then can identify (as lattices) the self-adjoint part of A with the one of
π(A). On the other hand, also by commutativity, A is a von Neumann algebra
acting on the universal Hilbert space. By definition, x ∈ AR if {Ex

λ : λ ∈ R} ⊂ A,
that is x ∈ AR if and only if x ∧ b1 ∨ −a1 ∈ A for all reals a and b, i.e. x is
extended q-continuous, and the result follows from Theorem 4.2 (note that in
general, x is extended q-upper (respectively q-lower) semicontinuous if and only
if (x ∧ b1) ∨ a1 is bounded q-upper (respectively q-lower) semicontinuous for all
reals a and b).

The following characterizations (i’)–(iii’) of the upper regularization map
are well known ([8], [16]). When A is commutative, they are recovered as partic-
ular cases of Theorem 3.3.

COROLLARY 4.4. Let A be commutative with spectrum X, f ∈ RX
and Y ⊂ X.

The properties (i)-(iii) of Theorem 3.3 with x = Π( f ) and p = Π(1Y) are respectively
equivalent to:
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(i’) f is the unique g ∈ USC(X, R) satisfying

(4.27) sup
t∈G

g(t) = sup
t∈G

f (t) f or all G ∈ G(X);

(ii’) f =
∨{g ∈ RX

: sup
t∈G

g(t) = sup
t∈G

f (t) f or all G ∈ G(X)};

(iii’) ψ(Π( f ))(Π(1Y)) = sup
t∈Y

f (t) = inf
G⊃Y,G∈G(X)

sup
t∈G

f (t).

Proof. By (iii) and (iv) of Theorem 4.2, (i) is equivalent to state that Π( f )
is the unique extended q-upper semicontinuous operator Π(g) (for some g ∈
USC(X, R)) satisfying

(4.28) ψG(Π(g))(π⊕(1G)) = ψ(Π( f ))(π⊕(1G)).

The L.H.S. and R.H.S. of (4.28) are respectively equal to sup
t∈G

g(t) by Theorem 4.2

(iii), and sup
t∈G

g(t) by Theorem 4.2 (v), which gives (4.27). Put Yf = {g ∈ RX
:

∀G ∈ G(X), sup
t∈G

g(t) = sup
t∈G

f (t)} and YΠ( f ) = {y ∈ A′′
R : ψ(y)|G = ψ(x)|G}.

Since y ∈ YΠ( f ) if and only if y ∈ YΠ( f ) by Theorem 3.3 (i), we have by Theorem

4.2 (iii),
∨

YΠ( f ) =
∨

(YΠ( f ) ∩Π(RX)). Moreover,
∨

YΠ( f ) ∈ YΠ( f ) ∩Π(RX) since∨
YΠ( f ) ∈ YΠ( f ), hence

(4.29)
∨

YΠ( f ) =
∨

YΠ( f ) =
∨Π(RX)

(YΠ( f ) ∩Π(RX)).

Then,

(4.30) Π( f ) = Π( f ) =
∨

YΠ( f ) =
∨Π(RX)

Π(Yf ) = Π(
∨

Yf ),

where the first equality follows from Theorem 4.2 (iv), the third one from (4.29)
and the equivalence Π(g) ∈ YΠ( f ) if and only if g ∈ Yf (given by Theorem 4.2
(v)), and the last one by Theorem 4.2 (i). Then, (4.30) is equivalent to f =

∨
Yf by

Theorem 4.2 (i), that is (ii) ⇔ (ii′). Note that

Π( f ) = Π
( ∨

b∈R

∧
a∈R

( f ∧ b) ∨ a
)

=
Π(USC(X,R))∨

b∈R
Π

( ∧
a∈R

( f ∧ b) ∨ a
)

>
∨

b∈R
Π

( ∧
a∈R

( f ∧ b) ∨ a
)

=
∨

b∈R

∧
a∈R

Π(( f ∧ b) ∨ a)

=
∨

b∈R

∧
a∈R

(Π( f ) ∧ b1) ∨ a1 = Π( f )
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(the third equality follows from Proposition 3.2, the fourth one from Theorem 4.2,
and the last one from Corollary 2.4); in particular,

(4.31)
Π(USC(X,R))∨

b∈R
Π

( ∧
a∈R

( f ∧ b) ∨ a
)

=
∨

b∈R

∧
a∈R

Π(( f ∧ b) ∨ a).

Moreover, for each F ∈ F (X), we have

ψ
( ∧

a∈R
Π(( f ∧ b) ∨ a)

)
(π⊕(1F)) = inf

a∈R
ψ ◦Π(( f ∧ b) ∨ a)(π⊕(1F))

= inf
a∈R

sup
t∈F

(( f ∧ b) ∨ a)(t) = sup
t∈F

f (t) ∧ b,(4.32)

where the first equality is proved as the first equality in (4.4), and the second one
follows from Proposition 4.1 (b). The L.H.S. of (iii) with p′ =

∨
F⊂Y,F∈F (X)

π⊕(1F) is

ψ(Π( f ))(p′) = ψ ◦Π( f )(p′) = sup
F⊂Y,F∈F (X)

ψ ◦Π( f )(π⊕(1F))

= sup
F⊂Y,F∈F (X)

ψ ◦Π
( ∨

b∈R

∧
a∈R

( f ∧ b) ∨ a
)
(π⊕(1F))

= sup
F⊂Y,F∈F (X)

ψ
( Π(USC(X,R))∨

b∈R
Π

( ∧
a∈R

( f ∧ b) ∨ a
))

(π⊕(1F))

= sup
F⊂Y,F∈F (X)

ψ
( ∨

b∈R

∧
a∈R

Π(( f ∧ b) ∨ a)
)
(π⊕(1F))

= sup
F⊂Y,F∈F (X)

sup
b∈R

ψ
( ∧

a∈R
Π(( f ∧ b) ∨ a)

)
(π⊕(1F)) = sup

t∈Y
f (t),

where the fifth equality follows from (4.31), and the last one from (4.32). The
R.H.S. of (iii) with p′ is

inf
q>p′ ,q∈G

ψ ◦Π( f )(q) = inf
π⊕(1G)>p′ ,G∈G(X)

ψ ◦Π( f )(π⊕(1G))

= inf
G⊃Y,G∈G(X)

ψ ◦Π( f )(π⊕(1G)) = inf
G⊃Y,G∈G(X)

sup
t∈G

f (t)

= inf
G⊃Y,G∈G(X)

sup
t∈G

f (t) = inf
G⊃Y,G∈G(X)

ψ ◦Π( f )(π⊕(1G))

= inf
q>Π(1Y),G∈G

ψ ◦Π( f )(q) = ψ(Π( f ))(Π(1Y)),

where the third and fifth equalities follow from Theorem 4.2 (v), and the fourth
one from (i’). Since the last equality is exactly (iii) with p = Π(1Y), all the expres-
sions appearing in (iii) and (iii’) are equal.

The commutative case of Theorem 3.4 is exactly the Dini-Cartan lemma, as
shows the following.
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COROLLARY 4.5. Let A be commutative with spectrum X, and ( fi)i∈I be a de-
creasing net in USC(X, R). The conclusion of Theorem 3.4 with xi = Π( fi) for all
i ∈ I, is equivalent to

(4.33) sup
t∈K

inf
i∈I

fi(t) = inf
i∈I

sup
t∈K

fi(t) for all compact K ⊂ X.

Proof. Note first that for each i ∈ I, Π( fi) is extended q-upper semicontin-
uous by Theorem 4.2. By commutativity, we have to show that for each compact
set K ⊂ X, (3.3) with p = π⊕(1K) is equivalent to (4.33). The L.H.S. of (3.3) with
p = π⊕(1K) is

ψ
( ∧

i∈I
Π( fi)

)
(π⊕(1K))=ψ

( A′′G
R∧

i∈I
Π( fi)

)
(π⊕(1K))=ψ

( Π(USC(X,R))∧
i∈I

Π( fi)
)
(π⊕(1K))

= ψ
(

Π
( ∧

i∈I
fi

))
(π⊕(1K)) = sup

t∈K
inf
i∈I

fi(t),

where the first equality follows from Proposition 3.2, the second and third equal-
ities follow from Theorem 4.2 (iii), and the last one from Corollary 4.4 (iii’). By
Corollary 4.4 (iii’), the R.H.S. of (3.3) with p = π⊕(1K) is inf

i∈I
ψ(Π( fi))(π⊕(1K)) =

inf
i∈I

sup
t∈K

fi(t).

5. AN APPLICATION TO NONCOMMUTATIVE LARGE DEVIATIONS

Let (µα) be a net of Radon probability measures on a locally compact Haus-
dorff space X, let (tα) be a net in ]0, +∞[ converging to 0. Recall that (µα) satisfies
a large deviation principle with powers (tα) if there exists a upper semicontinu-
ous function f on X such that

lim sup µα(F)tα 6 sup
x∈F

f (x) 6 sup
x∈G

f (x) 6 lim inf µα(G)tα

for all F ∈ F (X), G ∈ G(X) with F ⊂ G ([8], [10]). Such a principle implies that
for each x ∈ X with f (x) < 1, there exists an open set G containing x such that
µα(G) converges exponentially fast to 0, with the rate of convergence controlled
by − log f ; we call f the governing function.

Let (ωα) be a net of states on a C∗-algebra A. The following definition is
a noncommutative version of the above one: indeed, if A is commutative with
spectrum X, then (ωα) is a net of Radon probability measures on X, z = π⊕( f )
for some bounded upper semicontinuous function f , and for each p = π⊕(1Y)
with Y open or closed, we have by Proposition 4.1 (b),

ψ(z)(p) = ψ ◦ π⊕( f )(π⊕(1Y)) = sup
x∈Y

f (x).
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DEFINITION 5.1. We say that (ωα) satisfies a large deviation principle with
powers (tα) if there exists a q-upper semicontinuous operator z (called the govern-
ing operator) such that

(5.1) lim sup ωα(p)tα 6 ψ(z)(p) 6 ψ(z)(q) 6 lim inf ωα(q)tα

for all closed projections p, and all open projections q with p 6 q.

We refer to [7], where basic properties of classical large deviations have been
extended to the noncommutative context; in particular, we proved that a govern-
ing operator is uniquely determined.

The results of the preceding sections allow us to obtain equivalent defini-
tions without reference to semicontinuity; the following proposition is a noncom-
mutative version of Proposition 2.3 of [8].

PROPOSITION 5.2. The following statements are equivalent:
(i) (ωα) satisfies a large deviation principle with powers (tα).

(ii) There exists a sup-preserving map γ on the set of open projections such that for
each closed projection p, and each open projection q with p 6 q,

lim sup ωα(p)tα 6 γ(q) 6 lim inf ωα(q)tα .

(iii) There exists x ∈ A′′
[0,1] such that for each closed projection p, and each open

projection q with p 6 q,

(5.2) lim sup ωα(p)tα 6 ψ(x)(q) 6 lim inf ωα(q)tα .

If (i) holds, then the governing operator z is given by z =
∨{x ∈ A′′

[0,1] : x satis f ies
(5.2)}. If (ii) holds, then (i) holds with governing operator (ψG)−1(γ). If (iii) holds with
x, then (i) holds with governing operator x.

Proof. (i) ⇒ (ii) ⇒ (iii) is clear by Theorem 2.3 and Theorem 3.3 (i) and
(iii). If (iii) holds with x, then ψG(x)(q) = ψ(x)(q) = ψ(x)(q) for all q ∈ G by
Theorem 3.3 (i) and (iii), and since ψ(x)(p) = inf

q>p,q∈G
ψ(x)(q) by Theorem 3.3

(iii), we get (5.1) with z = x, i.e., (i) holds with governing operator x. The equiv-
alences and the last assertion are proved. Assume now that (i) holds, and put
z =

∨A′′
[0,1]{x ∈ A′′

[0,1] : x satisfies (5.2)}. Since {x ∈ A′′
[0,1] : x satisfies (5.2)}

is bounded and nonempty, we have z =
∨A′′

R{x ∈ A′′ : x satisfies (5.2)} by
Corollary 2.4 (a). Since ψ is a surjective isomorphism of complete lattices, it is
sup-preserving and so ψ(z) satisfies (5.2); hence ψ(z) satisfies also (5.2) by The-
orem 3.3 (i), which implies z = z, and (i) holds with governing operator z. If
(ii) holds, then by Theorem 2.3 and Theorem 3.3 (iii), (i) holds with governing
operator (ψG)−1(γ).
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