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ABSTRACT. Consider a Hilbert space obtained as the completion of the poly-
nomials C[z] in m-variables for which the monomials are orthogonal. If the
commuting weighted shifts defined by the coordinate functions are essen-
tially normal, then the same is true for their restrictions to invariant subspaces
spanned by monomials. This generalizes the result of Arveson [4] in which
the Hilbert space is the m-shift Hardy space H2

m. He establishes his result for
the case of finite multiplicity and shows the self-commutators lie in the Schat-
ten p-class for p > m. We establish our result at the same level of generality.
We also discuss the K-homology invariant defined in these cases.
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1. INTRODUCTION

The study of modules that are Hilbert spaces can be viewed as one approach
to multivariate operator theory. While the underlying algebra could be almost
anything, it is perhaps most natural to consider the polynomial ring C[z] or an
algebra of holomorphic functions. In the case of a function algebra, such modules
are called Hilbert modules and their study has been undertaken over the last
two decades (cf. [13], [8]). In this paper, we will use the terminology Hilbert
module to refer to any module that is a Hilbert space but we will keep track of
the hypotheses being assumed about the algebra.

A Hilbert moduleM is said to be essentially reductive (cf. [13]) if the opera-
tors {Mϕ} in L(M) defined by module multiplication by elements ϕ in the alge-
bra are all essentially normal, that is, the self-commutators [M∗ϕ, Mϕ] = M∗ϕ Mϕ −
Mϕ M∗ϕ are in K(M), the ideal of compact operators inM, for all ϕ in the algebra
A. (One could also refer to such Hilbert modules as “essentially normal.”) In
this case, there is a close relationship between the algebra A and the C∗-algebra,
J (M), generated by the collection {Mϕ : ϕ ∈ A}, particularly the quotient
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C(XM) = J (M)/K(M). In fact, the spectrum XM can be identified as a subset
of the maximal ideal space MA of the algebra A, if A is a Banach algebra (cf. Theo-
rem 1.6 of [10]). Moreover, the C∗-extension defined by J (M) yields an element
in the odd K-homology group K1(XM) of XM (cf. [7]) which is an invariant for
the Hilbert moduleM.

In the classical case of the Hardy and Bergman modules over the disk al-
gebra A(D), both modules are essentially reductive as are the corresponding
Hilbert modules for the Hardy and Bergman modules for the odd-dimensional
spheres ∂Bn and balls Bn. Moreover, in both cases the spectrum of the quotient
C∗-algebras is the sphere, the boundary of Bn, and the K-homology element is a
generator for the group K1(∂Bn) ∼= Z. However, for the polydisk Dn, n > 1, nei-
ther the Hardy nor the Bergman module is essentially reductive. More generally,
one obtains an essentially reductive Hilbert module for strongly pseudo-convex
domains in Cn, [6]. In a somewhat different direction, the m-shift Hardy space
H2

m, which is a Hilbert module over C[z], is essentially reductive [1].
Beyond the question of which Hilbert modules are essentially reductive, one

can also ask which submodules and quotient modules are essentially reductive.
In [11], Misra and I established by direct calculation that some quotient modules
of the Hardy module for the bidisk algebra are essentially reductive and some
are not. In this case, one can show that no nonzero submodule is essentially
reductive using the fact that the coordinate functions define a pair of commuting
isometries, both of infinite multiplicity. The question of essential reductivity for
submodules and quotient modules of a given Hilbert module M is more likely
to have an interesting answer, when M itself is essentially reductive. In this
note, we show that forM essentially reductive, either both a submodule N and
the corresponding quotient moduleM/N are essentially reductive or neither is.
Moreover, we extend this result, which concerns short exact sequences of Hilbert
modules, to longer resolutions of Hilbert modules.

In [4] Arveson showed that submodules of H2
m ⊗Ck, 1 6 k < ∞, in a certain

class are essentially reductive and raised a more general question. His question
concerned all submodules generated by homogeneous polynomials in C[z]⊗Ck,
1 6 k < ∞, and he established essential reductivity in case the submodule is gen-
erated by monomials. Further, Arveson has informed me that, based on a recent
result of Guo [18], the question is answered in the affirmative for the general case
when m = 2.

The action of the coordinate functions on H2
m ⊗ Ck can be seen to define

commuting, contractive weighted shifts of multiplicity k. Our principal result is
to extend Arveson’s theorem to the case of general commuting weighted shifts
so long as they define an essentially reductive Hilbert module over C[z]. Further,
we will show that our results extend to the p-summable context which is what
Arveson actually proves. Finally, we discuss the K-homology class defined by
this Hilbert module.
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Before we begin, we want to thank the referee for pointing out a gap in our
original proof in the p-summable case.

2. RESOLUTIONS AND ESSENTIAL REDUCTIVITY

We begin with the result relating the behavior of submodules and their re-
spective quotient modules for an essentially reductive module.

THEOREM 2.1. LetM be an essentially reductive Hilbert module over the algebra
A, N be a submodule ofM and Q =M/N , the corresponding quotient module. Then
N is essentially reductive if and only if Q is.

Proof. The result depends on a simple matrix calculation. For ϕ in A we con-
sider the matrix for Mϕ relative to the decomposition N ⊕N⊥ to obtain

(
A B
C D

)
.

Since N is invariant for Mϕ we have C = 0. Moreover, the action of ϕ on N
defines the operator A, while the action of ϕ on Q defines an operator unitarily
equivalent to D.

Then a simple calculation shows that the matrix for [M∗ϕ, Mϕ] relative to

M = N ⊕ N⊥ is
(

[A∗ ,A]−BB∗ A∗B−BD∗

B∗A−DB∗ [D∗ ,D]+B∗B

)
. Since M is essentially reductive, it

follows that [M∗ϕ, Mϕ] is compact and hence so are the operators [A∗, A] − BB∗

and [D∗, D] + B∗B. If N is essentially reductive, then [A∗, A] is compact and
hence BB∗ is compact. This implies B∗B is compact and that [D∗, D] is compact.
Since this is true for every ϕ in A, we see that Q is essentially reductive. The
argument that Q essentially reductive implies that N is, proceeds similarly.

The same argument shows the theorem holds if one uses p-reductive instead
of essentially reductive. (See Section 5 for the definition of p-reductive.)

Now recall that by a resolution of length one of the Hilbert module M0
over A, we mean that there are Hilbert modulesM1 andM2 and module maps

M1
X0−−−→M0 and M2

X1−−−→M1 such that range (X0) = M0, kernel (X1) = (0),
and range (X1) = kernel(X0) (cf. [12]). If X1 and X∗0 are isometries, then such
a resolution can be seen to be equivalent to M2 being unitarily equivalent to a
submodule ofM1 with quotient module unitarily equivalent toM0.

THEOREM 2.2. Consider a resolution of length one of the Hilbert moduleM0 over
the algebra A:

0←−M0
X0←−−−M1

X1←−−−M2 ←− 0.

IfM1 andM2 are essentially reductive and X∗0 is an isometry, thenM0 is essentially
reductive.
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Proof. We work at the level of C∗-algebras modulo the compacts. Fix an
element ϕ in A and let Mi be the operator on L(Mi) defined by module multipli-
cation by ϕ for i = 0, 1, 2. Moreover, let π denote the quotient maps L(Mi) −→
Q(Mi) = L(Mi)/K(Mi) and L(Mi,Mj)→ Q(Mi,Mj), for 0 6 i, j 6 2.

AssumingM1 is essentially reductive, we have that π(M1) is a normal ele-
ment ofQ(M1). IfM2 is essentially reductive, then π(M2) is a normal element of
Q(M2). Moreover, π(X1) intertwines π(M2) and π(M1), that is, π(M2)π(X1) =
π(X1)π(M1). Since X1 is one-to-one and has closed range, we can write X1 =
V1P1, where V1 is an isometry from M1 to M2 and P1 is a positive invertible
operator on M1. In view of the Fuglede Theorem, the intertwining relation for
π(X1) yields π(M2)π(V1) = π(V1)π(M1). If we decompose Q(M1) using the
projections p1 = π(V1)π(V1)∗ and 1− p1, we obtain a matrix for π(M1) of the
form

( a 0
0 d

)
as in the previous proof. Since π(M1) is normal, we see that d is nor-

mal. But π(X1) sets up a unitary equivalence between d and π(M0) and hence
π(M0) is normal. Since this is true for all ϕ in A, we see that M0 is essentially
reductive.

If we weaken the hypotheses by not requiring X∗0 to be an isometry, then
the previous proof fails. The Fuglede Theorem requires both of the operators
intertwined to be normal and hence we can’t replace the intertwining operator
by its partially isometric part. Of course, it would be enough to assume that
π(X0)∗ is an isometry.

We can extend these results to longer resolutions if we assume that we have
a strong resolution, that is, if the module maps are all partial isometries (cf. [12]).
(Actually the last module map need not be an isometry but the others do or at
least partial isometries modulo the compacts.)

THEOREM 2.3. Consider a strong resolution of finite length of the Hilbert mod-
uleM0

0←−M0
X0←−−−M1 ←− · · ·

Xn←−−−Mn+1 ←− 0.
If eachMi, 1 6 i 6 n + 1, is essentially reductive, then so isM0.

Proof. The proof is the same as above once one observes that at each stage
one not only concludes that modulo the compacts the operators defined by mod-
ule multiplication are diagonal but so also are the connecting module maps.

Extending these theorems to the p-reductive case would involve the consid-
eration of the Fuglede Theorem in that context.

3. COMMUTING WEIGHTED SHIFTS — SCALAR CASE

We now turn to the question of establishing the essential reductivity of sub-
modules of modules defined by multivariate weighted shifts. For a fixed pos-
itive integer m, let C[z] denote the complex polynomials in m-variables with
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z = (z1, . . . , zm). Let α be the multi-index α = (α1, α2, . . . , αm) with each αi a
non-negative integer, Am be the set of multi-indices, |α1| = α1 + · · · + αm, ei
the multi-index with 1 in the ith position and zero for all other entries, and Zα

the monomial zα1
1 zα2

2 · · · z
αm
m in C[z]. Let Λ = {λα}α∈Am be a set of weights,

0 < λα < ∞, and MΛ be the Hilbert space spanned by the orthogonal set
{Zα}α∈Am with ‖Zα‖MΛ

= λα. (This is the standard setup to define commut-
ing weighted shifts in which the monomials are orthogonal.)

First, we make two basic assumptions about the set of weights. First, we
assume that:

(∗) λα > λα+ei for α ∈ A and 1 6 i 6 m,
which ensures that each operator Zi defined by module multiplication by zi is
a contraction, 1 6 i 6 m. Therefore, MΛ is a Hilbert module over C[z]. (Ac-
tually, in almost all of what follows, the assumption that the Zi are bounded is
sufficient.) Moreover, one can show thatMΛ is a module for the algebra of func-
tions holomorphic on any fixed polydisk of radius greater than one, although it
is, in general, not a module over the polydisk algebra A(Dm). Further, we can
show that the quotient algebra J (MΛ)/C(MΛ), where C(MΛ) is the commuta-
tor ideal for J (MΛ), is isometrically isomorphic to C(XMΛ

) for some compact
subset XMΛ

of the closed unit polydisk clDm (cf. Theorem 1.6 of [10]).
Again we say that MΛ is essentially reductive if the operators in J (MΛ)

are essentially normal. Our second assumption about the weight set Λ is:
(∗∗) [Zi, Z∗j ] is compact for all i, j with 1 6 i, j 6 m.

It is enough to assume only that [Zi, Z∗i ] is compact for 1 6 i 6 m, since Fu-
glede’s Theorem shows that this assumption together with the fact that [Zi, Zj] =
0 for 1 6 i, j 6 m implies that the cross-commutators are also compact. We choose
this form for (∗∗) to maintain parallelism with the later assumptions regarding
p-summability.

In this case, since J (MΛ) is irreducible, the compact operators K(MΛ) on
MΛ are contained in J (MΛ), it follows that C(MΛ) = K(MΛ) and the quotient
algebra J (MΛ)/K(MΛ) ∼= C(XΛ) for some compact subset XΛ contained in
clDm (see Theorem 5.3).

For B a subset of Am, letMΛ(B) be the subspace ofMΛ spanned by {Zα}α∈B.
A subset B of Am determines a submoduleMΛ(B) if and only if B is shift invari-
ant which means that α in B implies α + ei is in B for 1 6 i 6 m. For each i,
1 6 i 6 m, and non-negative integer k, set Σk

i = {α ∈ Am : αi = k}. Then
MΛ(Σk

i ) is a reducing subspace for Zj, 1 6 j 6 m, j 6= i.
For α in Am let B(α) be the subset of Am consisting of all β satisfying βi > αi,

1 6 i 6 m. Observe that B(α) is a shift invariant subset of Am which is naturally
isomorphic to Am and {λβ : β ∈ B(α)} can be identified as a weight set for Am
using this identification.

We note that if the weight set Λ on Am satisfies (∗) and (∗∗), then so does
the weight set obtained by restricting Λ to B(α) ⊂ Am for α in Am with B(α)



122 RONALD G. DOUGLAS

identified with Am. Further, fix i and k, 1 6 i 6 m and 0 < k < ∞, and identify
the polynomials in C[z] that omit zi with the polynomials in the (m− 1)-variables
{zj}j 6=i. Then the module for Am−1 with the weight set obtained by restricting Λ

to Σk
i also satisfies (∗) and (∗∗).

We note that the weight set λα = α1!α2!···αm !
|α|! defines the m-shift Hardy mod-

ule H2
m and Arveson established (∗∗) in [1] while (∗) is straightforward.
In [4] Arveson showed in this case that all submodules generated by mono-

mials or, equivalently, those that are determined by a shift invariant subset of Am
(by Proposition 3.1 below), are essentially reductive. Our goal is to extend this re-
sult to the case of Hilbert modules defined by weighted shifts satisfying (∗) and
(∗∗). Actually, Arveson establishes his result for the finite direct sum of copies of
H2

m and showed that the self-commutators are in an appropriate Schatten p-class.
We will do the same.

The following result shows that the collection of submodules generated by
shift invariant subsets of Am, is the same as the collection of submodules gener-
ated by monomials.

PROPOSITION 3.1. A submodule of MΛ is generated by a set of monomials
{Zα}α∈C for C ⊂ Am if and only if it is of the form M(B) for some shift invariant
subset B of Am. Moreover, the generating set of monomials can be taken to be finite.

Proof. If S is generated by the set {Zα}α∈C, then let B be the shift invariant
subset of Am generated by C. Then {Zα}α∈B is contained in S . Hence,M(B) ⊂ S
and sinceM(B) contains {Zα}α∈C, we have equality. The converse proceeds in
the same manner. Note also the proof follows from the fact that B = {α ∈ Am :
Zα ∈ S}.

The argument that the set C can be taken to be finite proceeds either using
the finite basis result for C[z] or the geometry of B.

Before proceeding we need to identify a property of the weighted shifts
acting on MΛ which follows from (∗∗). In a preliminary version of this paper,
the conclusion of the following lemma was assumption (∗ ∗ ∗) but Ken Davidson
pointed out to me that it actually follows from (∗∗). We give his proof.

LEMMA 3.2. Let Λ be a weight set for Am, 1 6 m < ∞, satisfying (∗) and (∗∗).
If Xi is the edge operator fromMΛ(Σk

i ) toMΛ defined by the action of the operator Zi,
then X∗i Xi is a compact operator on MΛ(Σk

i ) for 1 6 i 6 m and 0 < k < ∞.

Proof. Fix i and consider k = 0. Let Xi,0 be the operator defined by Zi from
M(Σ0

i ) toMΛ. Then X∗i,0Xi,0 is equal to the restriction of [Z∗i , Zi] toM(Σ0
i ) since

Z∗i |M(Σ0
i )

= 0. Because [Z∗i , Zi] is compact, then so is X∗i,0Xi,0. Now if we consider

the case of Σ1
i , then the restriction of [Z∗i , Zi] toM(Σ1

i ), which is compact, is the
sum of a compact operator, since X∗i,0Xi,0 is compact, and X∗i,1Xi,1. Thus the latter
operator is compact and we can proceed inductively to complete the proof.
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Proposition 3.1 shows that submodules generated by monomials have a
geometric description, that is, are determined by shift invariant subsets of Am.
Our proofs are accomplished by decomposing the subset that determines the sub-
module into sets invariant for one or more of the shifts and then reducing the
compactness of the self-commutators to that of the operator acting on the entire
space together with the compactness of the edge operators. Similar arguments
allow us to conclude that the cross-commutators are also compact.

THEOREM 3.3. Let Λ be a weight set for Am, 1 6 m < ∞, satisfying (∗) and
(∗∗). If B is a shift invariant subset of Am, then the submoduleMΛ(B) is essentially
reductive.

Proof. We consider first the case m = 2 where the argument is more trans-
parent since we can identify the multi-indices α = (α1, α2) with the integral lat-
tice points in the quarter plane. We reduce the general case to that of a single
monomial. Let αi = inf{αi : (α1, α2) ∈ B} for i = 1, 2, α = (α1, α2), and let
M =MΛ(B), where B = B(α). Since B is shift invariant and contains all (α1, α2)
in B, it follows thatM containsMΛ(B). We claim thatM/MΛ(B) is finite di-
mensional and hence the essential reductivity of MΛ(B) is equivalent to that
ofM.

In this situation, the finite dimensionality of M/MΛ(B) is equivalent to
the cardinality of B\B being finite. To see that the latter holds, there must exist
nonnegative integers β1 and β2 such that (α1, β2) and (β1, α2) are in B. But then
B\B is contained in the set {(γ1, γ2) ∈ A2 : α1 6 γ1 6 β1, α2 6 γ2 6 β2}, which
is finite.

Now we must show that the restrictions of Z1 and Z2 toM are essentially
normal. Consider Z1. Now the self-commutator of Z1 onMΛ is the direct sum
of operators on the one-dimensional subspaces spanned by the monomials. The
same is true for the restriction Y1 of Z1 toMΛ(B). If we set B = B1 ∪ B2, where
B1 = {(γ1, γ2) ∈ A2 : α1 < γ1, α2 6 γ2} and B2 = {(γ1, γ2) ∈ A2 : α1 = γ1, α2 6
γ2}, then the restrictions of the self-commutators of Y1 and Z1 toMΛ(B1) agree
and hence the former is compact by (∗∗).

On MΛ(B2), the restrictions of the self-commutators of Y1 and Z1 agree
on MΛ if α1 = 0 and hence again are compact by (∗∗). If α1 > 0, then the
restriction of the self-commutator of Y1 toMΛ(B2) equals X∗1 X1, where X1 is the
edge operator defined fromMΛ(B2) toMΛ by the action of Z1, which is compact
by Lemma 3.2.

Now we repeat the argument for Z2 noting that the decomposition used for
B in this case is not the same as that used above. This completes the proof that
the self-commutators are compact for the case m = 2.

To conclude that the cross-commutator [Y∗1 , Y2] is compact, we can either
appeal to Fuglede’s Theorem or note that the preceding analysis can be applied.
In particular, [Y∗1 , Y2] takes a monomial Z(α1,α2) in the submodule to a multiple
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of Z(α1−1,α2+1) if the latter monomial is also in the submodule or to 0 other-
wise. Thus onMΛ(B1), we obtain a restriction of the cross-commutator [Z∗1 , Z2]
which is compact by (∗∗) or an edge operator onMΛ(B2) which is compact by
Lemma 3.2. Hence, if we know that the cross-commutators onMΛ and the edge
operators are compact, then the same is true for the restrictions Y1 and Y2 to the
submodule.

For m > 2 we will use induction and hence we assume the result holds for
all 1 6 m′ < m. Let Ym be the restriction of Zm to the submodule S generated
by {Zαi}. We show that we can reduce the question of the essential normal-
ity of Ym to the case in which all the αi

1 are constant. Repeating the argument,
now focusing on the second component, allows us to assume not only are the
αi

1 constant but also the αi
2. Finally, we reach the point in which all αi

j are con-
stant for j = 1, 2, . . . , m− 1. In this case we have to consider Ym on a submodule
S generated by {Zαi} with αi = (α1, α2, . . . , αm−1, αi

m) which equals M(B(α)),
where α = (α1, . . . , αm) with αm = inf{αi

m}. Thus we have reduced the proof
to the case of a submodule generated by a single monomial just as for the case
m = 2. The argument for showing Ym is essentially normal proceeds in the
same way as for the m = 2 case above, by decomposing B(α) into the two dis-
joint sets B1 = {(γ1, γ2, . . . , γm) ∈ Am : αj 6 γj, 1 6 j < m, αm < γm} and
B2 = {(γ1, γ2, . . . , γm) ∈ Am : αj 6 γj, 1 6 j < m, αm = γm}. The arguments for
the compactness of the two parts of the self-commutator of Ym are also the same
as those given above. Also, the proof of the compactness of the cross-commutator
[Y∗m, Yi] for 1 6 i 6 m− 1 proceeds in the same manner.

Now we return to the matter of reducing the general case of showing the
essential normality of the restriction Ym of Zm to a submodule of S generated by
the set {Zαi} to the case in which the αi

1 are all constant. If α1 is the maximum of
the set αi

1, then S can be written as the orthogonal direct sum of the submodule
S1 generated by {Z(α1,αi

2,...,αi
m)} and subspaces S1

γ, defined for 0 6 γ < α1, each of
which reduces Ym. Thus the self-commutator of Ym is the direct sum of the self-
commutator of Zm restricted to each of these summands. The self-commutator
of the restriction of Zm to the first summand is the case in which all the first
components are constant. To complete the reduction, we need to define the S1

γ

and show that the self-commutators of the restriction of Ym to each of them are
all compact.

For each i, 1 6 i 6 n, the submodule of MΛ generated by Zαi
has the

form M(B(αi)). The subspace S1
γ is spanned by the collection of monomials

Nγ
1 =

n⋃
i=1
{Zβ : β ∈ B(αi), β1 = γ}. The fact that S1

γ reduces Ym follows from

the fact that a monomial Zβ−em is in Nγ
1 , and hence in S1

γ, if and only if it is in
S . Now we can view Nγ

1 as a subset of all monomials that omit z1. After iden-
tifying this set with the polynomials in (m− 1)-variables, we obtain the weight
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set by restricting Λ. Then noting that it satisfies (∗) and (∗∗), we can apply the
induction hypothesis to conclude that the restriction of the self-commutator of
Ym to S1

γ is compact. Thus the restriction of the self-commutator of Ym to each
S1

γ is compact which completes the reduction and the proof that Ym is essentially
normal. Further, the argument for the cross-commutators proceeds as above for
[Y∗1 , Yi], 1 < i 6 m, except for S1

0 . Here, the argument also involves the fact
that the cross-commutators [Z∗1 , Zi] are compact as well as the compactness of the
edge operator for Z1 for the S1

γ, γ > 0, by Lemma 3.2. With the next step, the re-
duction to the case in which both the first and second components, αi

1 and αi
2, are

each all constant, we conclude that the cross-commutators [Y∗1 , Yi] and [Y∗2 , Yj] are
compact for 1 < i 6 m and 2 < j 6 m. Hence, when we have completed the re-
duction, we know that all cross-commutators [Y∗i , Yj] are compact for 1 6 i, j 6 m.

Finally, we can repeat the argument for the restriction of each of the coor-
dinate operators {Zi}16i6m−1. This also enables us to conclude that all cross-
commutators [Y∗i , Yj] are compact. This completes the proof.

4. COMMUTING WEIGHTED SHIFTS — FINITE MULTIPLICITY

We can extend the above result trivially to the case of higher multiplicity in
one elementary situation.

COROLLARY 4.1. Let Λ be a weight set for Am, m > 1, satisfying (∗) and (∗∗)
and 1 6 k < ∞. If B is a shift invariant subset of Am, then the submoduleMΛ(B)⊗Ck

ofMΛ⊗Ck is essentially reductive. Equivalently, every submodule generated by {Zα⊗
Ck : α ∈ C} for some subset C of Am is essentially reductive.

Proof. The result follows from the theorem sinceMΛ(B)⊗Ck is the direct
sum of finitely many copies ofMΛ(B) each of which reduces all of the Zi.

We now extend this result to general submodules ofMΛ ⊗Ck, 1 6 k < ∞,
generated by monomials. We begin with the case m = 2.

THEOREM 4.2. Let Λ be a weight set of A2 satisfying (∗) and (∗∗) and let 1 6

k < ∞. Then the submodule S generated by the set of monomials {Zαi ⊗ xi}n
i=1 for

{αi} ⊂ A2 and {xi} ⊂ Ck is essentially reductive.

Proof. We show that the restriction Y2 of Z2 to S is essentially normal, by
reducing to the case in which the αi

1 are all equal, where αi = (αi
1, αi

2).
This is the same argument used in the proof of Theorem 3.3 with one addi-

tional complication which arises from the multiplicity. If α1 is the maximum of
the set {αi

1}, then S can be written as the orthogonal direct sum of the submodule
S1 generated by {Z(α1,αi

2) ⊗ xi} and subspaces S1
γ, defined for 0 6 γ < α1, each

of which reduces Y2. Thus the self-commutator of Y2 is the direct sum of the self-
commutators of Z2 restricted to each of these summands. The self-commutator of
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the restriction of Z2 to the first summand is the reduction to the case in which all
indices (αi

1, αi
2) have constant first entries. To complete this reduction, we need to

define the S1
γ and show that the self-commutators of the restriction of Z2 to each

of them are all compact.
For each i, 1 6 i 6 n, the submodule of MΛ ⊗ Ck generated by Zαi ⊗ xi

has the formM(B(αi))⊗ (xi), where (xi) denotes the subspace of Ck generated
by the vector xi. The subspace S1

γ is spanned by the collection of monomials

Nγ
1 =

n⋃
i=1
{Zβ ⊗ xi : β ∈ B(αi), β1 = γ}. The fact that S1

γ reduces Y2 follows from

the fact that a monomial Zβ−e2 ⊗ xi is in Nγ
1 and hence in S1

γ if and only if it is
in S . For each 0 6 j, let Hγ

j be the subspace of Ck spanned by the xi for which

Z(γ,j) ⊗ xi is in Nγ
1 . Then {Hγ

j } is a strictly increasing sequence of subspaces

of Ck and there exists an increasing sequence 0 6 n1 < · · · < n` < ∞ such
that every Hγ

j is equal to one of the Hγ
ni and the ni are each chosen as small as

possible. Then we can express S1
γ as the direct sum of subspaces S1

γ(i), 1 6 i 6 `,
where S1

γ(i) is the tensor product of the span of the monomials {Zβ : β1 = γ,
β2 > ni} with the subspace Hγ

ni ∩ (Hγ
ni−1)

⊥ of Ck, where we set Hγ
n0 = (0). For

n1 = 0, the self-commutator of Y2 restricted to S1
γ(1) is a direct summand of the

self-commutator of Z2 ⊗ IHγ
n1

and hence is compact by (∗∗). For all ni > 0, the

restriction of the operator Z2 ⊗ IHγ
ni∩(Hγ

ni−1
)⊥ to S1

γ(i) is compact by Lemma 3.2

and hence the self-commutator is also compact.
Now let Y1 denote the restriction of Z1 to S and consider the cross-com-

mutator [Y∗1 , Y2] relative to the foregoing decomposition of S . For the first term
[Y∗1 , Y2] agrees with [Z∗1 , Z2] except for an edge operator. For all other summands,
the restriction of [Y∗1 , Y2] is compact because both terms involve a compact edge
operator. This completes the reduction.

Thus we have a submodule S generated by a set of monomials {Zαi ⊗ xi},
in which αi

1 = a1 for all i, 1 6 i 6 n. The remainder of the proof is similar
to what was done in the preceding paragraph. Again, S is generated by the

monomials N1 =
n⋃

i=1
{Zβ ⊗ xi : β ∈ B(αi)} and for each 0 6 j, we let Hj

be the subspace of Ck spanned by the xi for which Z(a1,j) ⊗ xi is in N1. Then
{Hj} is an increasing sequence of subspaces of Ck and there exists an increas-
ing sequence 0 6 n1 < n2 < · · · < n` < ∞ such that every Hj is equal to
one of the Hni and each ni is chosen as small as possible. Then we can ex-
press S as the direct sum of subspaces S(i), 1 6 i 6 `, where S(i) is the ten-
sor product M(B(a1, i)) ⊗ (Hni ∩ (Hni−1)

⊥), again with Hn0 = (0). The self-
commutator of the restriction of Z2 to these subspaces is compact by Corollary 4.1
since Hni ∩ (Hni−1)

⊥ is finite dimensional. The argument for cross-commutators
is similar. This completes the proof.
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We now extend this result to the case m > 2. While our argument is similar
to that used above, it requires not only more elaborate decompositions of the
subsets of Am but also induction on m.

THEOREM 4.3. Let Λ be a weight set for Am, 1 6 m < ∞, satisfying (∗) and
(∗∗) and let 1 6 k < ∞. Then the submodule S generated by the set of monomials
{Zαi ⊗ xi}n

i=1 for {αi} ⊂ Am and {xi} ⊂ Ck is essentially reductive.

Proof. Fix m and assume the result holds for all 1 6 m′ < m. The previous
result fulfills the induction hypothesis.

We want to first reduce the result to the case in which the first components
of the αi are all constant. Let α1 be the largest integer in the given set {αi

1}. First
we decompose S into the orthogonal direct sum of the submodule S1 spanned
by the set {Z(α1,αi

2,...,αi
m) ⊗ xi} and S ′1 = S ∩ (S⊥1 ), which reduces the restrictions

Y2, . . . , Ym of Z2, . . . , Zm, respectively, to S . To see this consider the collection of

monomials N1 =
n⋃

i=1
{Zβ ⊗ xi : β ∈ B(αi), αi

1 6 β1 < α1}. Then S ′1 is the span of

N1. Now we decompose S ′1 into the orthogonal direct sum of S ′1(γ) for 0 6 γ <

α1, where S ′1(γ) is the span of the monomials {Zβ ⊗ xi ∈ N1 : β1 = γ}. Each
subspace S ′1(γ) reduces the operators, Y2, . . . , Ym. Moreover, after identifying Σ

γ
1

with Am−1, we see that S ′1(γ) is a submodule ofMΛ
γ
1
⊗Ck to which the induction

hypothesis applies, where Λ
γ
1 is the weight set for Am−1 obtained by restricting

Λ to Σ
γ
1 . Therefore, the self-commutators of the restrictions of Z2, . . . , Zm to each

S ′1(γ) are compact. Hence, we can assume the first components of all the multi-
indices {αi} are the same. Again, this same decomposition can be used to show
that the cross-commutators [Y∗1 , Yi] for 1 < i 6 m are compact.

Now starting with such a set {Zαi ⊗ xi}, we can reduce the essential nor-
mality of Z3, . . . , Zm and the compactness of the cross-commutators [Y∗1 , Yi], 2 6
i 6 m and [Y∗2 , Yj], 3 6 j 6 m, to the case in which the first and second compo-
nents of the {αi} are each constant. Continuing we eventually reduce the essen-
tial normality of the restriction of Zm to S as well as the compactness of all cross-
commutators to the case in which all the {αi} are constant and then the result
follows from Corollary 4.1. Thus the restriction of Zm to S is essentially normal
and all cross-commutators are compact. By symmetry, we conclude that all the
cross-commutators [Y∗i , Yj], 1 6 i, j 6 m, are compact and hence S is essentially
reductive, which concludes the proof.

Using the geometry of Am and the finite dimension of Ck one can show
that every submodule S generated by a set of monomials {Zα ⊗ xα}α∈C, for C ⊂
Am, is finitely generated. Hence, we can extend Theorems 4.3 and 5.1 (below) to
submodules generated by arbitrary collections of monomials.
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5. p-SUMMABLE SELF COMMUTATORS

We next consider these results in the p-summable context. Let Cp denote the
Schatten p-class (cf. [17]). First, we modify condition (∗∗) as follows:

(∗∗)p the cross-commutator [Zi, Z∗j ] is in Cp for 1 6 i, j 6 m.

In [15], where the Berger-Shaw Theorem was generalized from single op-
erators to the context of Hilbert modules of Krull dimension one, Hilbert mod-
ules satisfying (∗∗)p were called p-reductive. For (∗∗) we pointed out that the
Fuglede Theorem allowed an apparent weakening in which only the self-com-
mutators are assumed to be compact. But this argument involves the Calkin al-
gebra. There is a generalization to the Schatten p-class of the Fuglede Theorem,
called the Fuglede-Weiss Theorem [19]. However, that result does not seem ade-
quate to reduce (∗∗)p to assuming p-summability only for the self-commutators.

Note that H2
m satisfies (∗∗)p when p > m. For a general weight set, (∗∗)

often holds for smaller p, since it is possible for some of the Zi to be compact
or Schatten q-class. (However, compare the remark at the end of the paragraph
following the proof of Corollary 6.2.)

If one examines the proofs of the previous four results, including the con-
structions in them, one sees that in the presence of the stronger hypothesis, one
can draw stronger conclusions.

THEOREM 5.1. Let Λ be a weight set for Am, 1 6 m < ∞, satisfying (∗) and
(∗∗)p and let 1 6 k < ∞. Then for the submodule S generated by the set of monomials
{Zα ⊗ xα}α∈C for C ⊂ Am and {xα} ⊂ Ck, the cross-commutators of the co-ordinate
functions and their adjoints lie in the Schatten p-class.

Actually, one can show the same holds for operators defined by functions
of the operators which are holomorphic on a polydisk of radius greater than one.

We omit the details of the proof of this theorem but they are precisely the
same as before where the condition of being compact is replaced throughout by
that of being in the Schatten p-class noting that Lemma 3.2 extends to this case.
This is true for both the self-commutators and the cross-commutators.

Actually, one can often draw sharper conclusions for the cross-commutators
of the operators defined by the action of the coordinate functions and their ad-
joints on the quotient moduleMΛ/S in the presence of a slightly stronger ver-
sion of (∗∗)p and a strengthened Lemma 3.2, which hold for example, for H2

m. We
will not attempt the maximum generality which would have to take into account
degeneracies in the module action. We will use (∗∗)p to denote the new assump-
tion for a weight set ΛM with the p tied to m. Before providing the statements,
however, we need some additional notation.

Let i = {i1, i2, . . . , i`} be a subset of {1, 2, . . . , m} so that i1 < i2 < · · · < i`,
[i] = `, Ic the complement of the {ij} in {1, . . . , m}, k = {k1, k2, . . . , k`} so that
k j > 0 for 1 6 j 6 `, and Σk

i = {α ∈ Am : αij = k j, 1 6 j 6 `}. (Note for ` = 1, we
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obtain simply the Σk
i introduced earlier.) Then MΛ(Σk

i ) is a reducing subspace for
Zp, p in Ic. Moreover, we can identify the polynomials in the (m− `)-variables,
Zp, for p in Ic with C[z] and obtain a weight set Λk

i by restricting ΛM. Our
strengthened assumption is:

(∗∗)p For every i and k, the commutators of the restriction of Z` and the
compression of Z∗n to M(Σk

i ) for `, n in Ic lies in the Schatten q-class
for q > m− [i].

LEMMA 5.2. Let Λ be a weight set for Am, 1 6 m < ∞, satisfing (∗) and (∗∗)p.
For every i and k, if Xp is the operator defined by the action of Zp fromMΛ(Σk

i ) toMΛ,
then X∗pXp lies in the Schatten q-class for q > m− [i].

Now recall that one can define the Hilbert-Samuel polynomial pm(z) (a
polynomial in one variable) for a Hilbert module M over C[z] so long as it is
finitely generated and the dimension ofM/[C0[z]M] is finite, where C0[z] is the
ideal of polynomials vanishing at 0 and [·] denotes the closure in M ([16], cf.
Theorem 4.2 of [2]). The order of pm(z) is said to be the dimension ofM.

By analyzing the decompositions used in the proofs of the preceding the-
orems, one can show that the dimension of a quotient module M⊗ Ck/S for
a submodule S generated by monomials is the same as the smallest [i], where
Σk

i ranges over the blocks used in the decompositions in the proofs. As a conse-
quence one can obtain the following result.

THEOREM 5.3. Let Λ be a weight set for Am, 1 6 m < ∞ satisfying (∗) and
(∗∗)p, and let 1 6 k < ∞. If S is a submodule of MΛ ⊗ Ck generated by a set of
monomials {Za ⊗ xα}α∈C for C ⊂ Am and {xα} ⊂ Ck, then the commutators of the
operators defined by the coordinate functions on the quotient moduleMΛ ⊗Ck/S and
their adjoints lie in the Schatten q-class for q > d, where d is the dimension ofMΛ ⊗
Ck/S .

Since, as we pointed out above, the weight set for H2
m satisfies conditions (∗)

and (∗∗)p for p > m, it seems likely that the stronger conclusion of this theorem
would hold for quotient modules H2

m/S for an arbitrary submodule S generated
by homogeneous polynomials, assuming that Arveson’s conjecture is valid.

6. K-HOMOLOGY CLASSES

LetMΛ be the Hilbert module over C[z] defined by a weight set Λ for Am
satisfying (∗) and (∗∗). As we pointed out earlier, since multiplication by the
coordinate functions is contractive by (∗),MΛ is a bounded Hilbert module over
the algebra A(Dm

r ) of functions holomorphic on a polydisk Dm
r in Cm of radius

r > 1. Again J (MΛ) denotes the C∗-algebra in L(MΛ) generated by IMΛ
, {Zi}

and the compact operators K(MΛ), and J (MΛ)/K(MΛ) denotes the quotient
algebra. By (∗∗), the quotient algebra is commutative and there exists a compact
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metric space XΛ such that J (MΛ)/K(MΛ) ∼= C(XΛ). Using ideas from the
proof of Theorem 1 in [10] one can show:

THEOREM 6.1. For Λ a weight set for Am satisfying (∗) and (∗∗), XΛ can be
identified as a subset of the closed polydisk clDm so that Zi corresponds to the restriction
of zi to XΛ.

Proof. One obtains for every r > 1 a homomorphism from A(Dm
r ) toJ (MΛ)

and then to J (MΛ)/K(MΛ). Thus we have a bounded homomorphism from
A(Dm

r ) to C(XΛ). Thus XΛ can be identified as a closed subset of clDm
r for r > 1.

But the identifications for r1, r2 > 1 must be consistent which implies XΛ ⊂ clDm,
which completes the proof.

The set XΛ is not an arbitrary one since it must be invariant under multipli-
cation by eiθ ≡ (eiθ1 , eiθ2 , . . . , eiθm) because multiplying the m-tuple (Z1, . . . , Zm)
by eiθ yields an m-tuple of operators which is unitarily equivalent to the original
one. In the case of the Hardy or Bergman module over Bm or the m-shift Hardy
module H2

m, XΛ is ∂Bm. If the (Z1, Z2, . . . , Zm) form a spherical contraction, (that
is, Z∗1 Z1 + · · ·+ Z∗mZm 6 I, then XΛ is contained in clBm. In general, it need not
equal ∂Bm.

COROLLARY 6.2. A weight set Λ for Am satisfying (∗) and (∗∗) determines a
canonical element [Λ] in K1(XΛ).

Proof. This follows from [7] since we have an extension 0 → K(MΛ) →
J (MΛ)→ C(XΛ)→ 0 by the Theorem 6.1.

This element is not interesting unless the ordinary homology of XΛ is non-
trivial. If XΛ is contractible, for example, the closed ball clDm or a point, then
K1(XΛ) ∼= (0) and there is no invariant. In fact, in this case, one can deform the
m-tuple of operators {Zi} to a commuting m-tuple of normal operators [7]. On the
other hand, if XΛ = ∂Bm, then K1(∂Bm) ∼= Z, and there is a non-zero invariant. In
particular, the invariant corresponds to −1, giving ∂Bm the standard orientation,
for Λ the weight sets for the Bergman, Hardy or m-shift Hardy modules for Bm.
If we considerMΛ ⊗Ck, then the K-homology element is multiplied by k. One
knows for extensions over ∂Bm, that the K-homology element is determined by
the index of the Koszul complex defined by a commuting m-tuple of generators
[5], [7] if such an m-tuple exists. In other cases, one must resort to different mea-
sures [9], [3]. Thus, in the case of H2

m, the K-homology invariant coincides with
the curvature invariant of Arveson [1]. Using the main result in [14], one can also
show if [Λ] 6= 0 and Λ satisfies (∗∗)p, then p > m.

If S is a submodule ofMΛ⊗Ck which is essentially reductive, then repeat-
ing the construction in the Theorem 6.1 yields a closed subset XS of XΛ for which
J (S)/K(S) ∼= C(XS ) and hence an element [S ] in K1(XS ) is defined. Similarly
the quotient module S⊥ =MΛ⊗Ck/S yields an element [S⊥] in K1(XS⊥). One
can show that XS ∪ XS⊥ = XΛ and that i1∗([S ]) + i2∗([S⊥]) = [Λ], where i1 and
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i2 are the inclusion maps of XS and XS⊥ into XΛ, respectively. If XΛ = ∂Bm and
[XΛ] 6= 0, then at least one of [XS ] and [XS⊥ ] is non-trivial and the correspond-
ing m-tuple of operators defined by {Zi} can not be perturbed to a commuting
m-tuple of normal operators. For k = 1, one might conjecture that [S⊥] = 0 in
this case unless S = (0).

For S a submodule of MΛ generated by monomials, that is, the case con-
sidered in this note, one can show that XS⊥ is contained in the common zero set
of the monomials generating it. If XΛ = ∂B, then i2∗[S⊥]. Hence, [S⊥] = 0. This
argument should work also for S generated by homogeneous polynomials once
one knows that S is essentially reductive.

One can use the decompositions introduced previously in Sections 3 and 4
to draw more conclusions about XS⊥ and [S⊥] for S generated by monomials.
Let Cm

deg denote all points in Cm with at least one coordinate zero and YΛ =
XΛ ∩Cm

deg. Then one can show

THEOREM 6.3. If S is a submodule of MΛ ⊗ Ck generated by the monomials
{Zα⊗ xα}α∈C for C ⊂ Am, where Λ is a weight set for Am satisfying (∗) and (∗∗) with
XΛ = ∂B, and such that the {xα} span Ck, then XS⊥ ⊆ YΛ. Hence, i2∗[S⊥] = 0 and
i1∗[S ] = [Λ].

Proof. This argument is closely related to the one sketched for Theorem 5.3.
One proceeds by obtaining decompositions for S⊥ analogous to those used in the
preceding proofs for S and then noting that the pieces essentially commute and
at least one of the operators Z1, . . . , Zm is compact for each piece.

If the {xi} do not span Ck, then it is possible for i2∗[S⊥] 6= 0. With a lit-
tle more effort, one can say more. Again one would expect the same result to
hold for quotient modules defined by submodules generated by homogeneous
polynomials if Arveson’s conjecture is valid.

THEOREM 6.4. Under the same hypotheses as in Theorem 6.3, i2∗[S⊥] = (k −
`)[Λ] and i1∗[S ] = `[Λ], where ` is the dimension of the subspace spanned by the {xα}
in Ck.

Note that without the assumption on XΛ it is possible for [Λ] = 0 in K1(XΛ).
Hence these equations might be vacuous. However, for the weight set for H2

m, we
obtain another expression for the curvature invariant introduced by Arveson.
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