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ABSTRACT. A continuous linear operator T : X → X is hypercyclic/super-
cyclic if there is a vector f ∈ X such that the orbit Orb(T, f ) = {Tn f }/respec-
tively the set of scalar-multiples of the orbit elements, forms a dense set. A
famous theorem, due to G. Godefroy & J. Shapiro, states that every non-scalar
convolution operator, on the space H of entire functions in d variables, is hy-
percyclic (and thus supercyclic). This motivates us to study cyclicity of opera-
tors on H outside the set of convolution operators. We establish large classes
of supercyclic and hypercyclic non-convolution operators.
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1. INTRODUCTION AND NOTATION

Let T = (Tn) be a sequence of continuous linear operators on a topologi-
cal vector space X. Let Orb(T, f ) ≡ {Tn f : n > 0} denote the orbit of f ∈ X
under T and by Orbl(T, f ) and Orbs(T, f ) we denote the linear hull respectively
the set of scalar multiples of the elements in Orb(T, f ). Recall that T is said to
be cyclic/supercyclic/hypercyclic if Orbl(T, f )/ Orbs(T, f )/ Orb(T, f ) is dense in X,
respectively, for some f ∈ X. (Thus hypercyclic implies supercyclic which, in
turn, implies cyclic.) The vector f is said to be of corresponding cyclic type (for
T). An operator T : X → X is cyclic (with cyclic vector f ) when T ≡ (Tn) is cyclic
(with cyclic vector f ), and analogously for super- and hypercyclicity. In the case
of a single operator we write, simply, Orb(T, f ) etc. A cyclic vector manifold for
T is a vector space M ⊆ X whose non-zero vectors are cyclic for T, supercyclic
and hypercyclic vector manifolds are defined in the same way. (A full account of
the significance of all these notions is given in [11] and we refer to [12] for a nice
overview of the theory of hypercyclicity.)
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We let d be a fixed arbitrary positive natural number and denote by H

the Fréchet space of entire functions in d variables, equipped with the compact-
open topology. Thus a generating family of semi-norms is obtained by ‖ f ‖n ≡
sup
|z|6n

| f (z)|, n ∈ N ≡ {0, 1, . . .}. (|z| ≡
√

∑ |zi|2.) In 1929 Birkhoff proved that,

in the case of one variable, every translation operator τa, a 6= 0, is hypercyclic on
H . (τa f (z) ≡ f (z + a).) MacLane obtained in 1952 the analogous result for the
differentiation operator D (see [11] for further references to these two classical
results). Note that both τa and D are convolution operators:

DEFINITION 1.1. The algebra of continuous linear operators on H is de-
noted by L . A convolution operator on H is an operator T ∈ L that commutes
with all translations τa. The set of convolution operators on H is denoted by C .

In 1991 Godefroy & Shapiro generalized Birkhoff’s and MacLane’s results
considerably. Indeed, we let Exp denote the algebra of exponential type func-
tions, i.e., the set of all ϕ ∈ H such that |ϕ(ξ)| 6 Mer|ξ| for some M, r > 0,
Theorem 5.1 and Proposition 5.2 in [11] contain the following (cf. Theorem 3.1 of
[16]):

PROPOSITION 1.2 (Godefroy, J. Shapiro). The mapping ϕ = ∑
α∈Nd

ϕαξα 7→

ϕ(D) ≡ ∑
α

ϕαDα (standard multi-index notation, see p. 139) is an algebra isomorphism

between Exp and C . Every non-scalar convolution operator ϕ(D) on H (d is arbitrary)
is hypercyclic. (Non-scalar means that ϕ is not a constant mapping.)

Their proof in [11], of the hypercyclicity, rests on the famous Hypercyclicity Cri-
terion, which we formulate in Proposition 2.12. Godefroy-Shapiro’s result moti-
vates us, and others [1], see also [4], [6], [8], to study cyclic properties of operators
outside C . The objective in this note is to establish supercyclic and hypercyclic
non-convolution operators on H , and we shall apply results from our study on
PDE-preserving operators [17]–[21]:

DEFINITION 1.3. An operator T ∈ L is PDE-preserving for a set P ⊆ Exp
if it maps ker ϕ(D) invariantly for all ϕ ∈ P. The set, and algebra, of PDE-
preserving operators for P is denoted by O(P). (Note that O(P) =

⋂
ϕ∈P

O(ϕ).)

Since the elements of C commute, C forms a commutative subalgebra of O(P)
for any set P. Consider the following result (see Theorem 2.4): An operator T is
PDE-preserving for a given ϕ 6= 0 if and only if T "almost commutes" with ϕ(D)
in the sense that ϕ(D)T = T(ϕ)ϕ(D) for some T(ϕ) ∈ L . In fact, by Malgrange’s
Theorem [14], ϕ(D) is surjective so T(ϕ) is unique and is called the derivative of
T ∈ O(ϕ) with respect to ϕ. The following is now elementary:
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THEOREM 1.4. Let 0 6= ϕ ∈ Exp and assume that T ∈ O(ϕ) is cyclic and that
f ∈ H is a corresponding cyclic vector. Then T(ϕ) is also cyclic and ϕ(D) f forms a
cyclic vector. The analogue holds for both super- and hypercyclicity.

Thus by studying PDE-preserving properties, and corresponding deriva-
tives, of operators of given cyclic type, it is possible to get new such operators.
Unfortunately, by commutativity, any derivative of any convolution operator T is
a new convolution operator (in fact, equal to T), so Theorem 1.4 does not provide
us with any non-convolution operators by starting out of operators T ∈ C . Thus,
to apply Theorem 1.4 in this way, we must first find a, say, hypercyclic opera-
tor outside C , and there are very few such examples in the literature. However,
we shall establish a set OS of supercyclic operators on H and a multiplicative
closed subset OH formed by hypercyclic operators, where OS \ C and OH \ C
are large, and we can apply Theorem 1.4 in the way that we have indicated. In
particular we have that OH ⊆ OS ⊆ O(H), where H denotes the set of homo-
geneous polynomials, so Theorem 1.4 can be applied on any T ∈ OS/OH and
ϕ = P ∈ H, and in this way we derive some "internal" structures of the set of
supercyclic/hypercyclic vectors for the operators in OS/OH.

An important concept, and tool, in the theory of cyclic phenomena is the
notion of backward shifts [11], [13]. A general theory for cyclic properties of
operators that commute with a so called generalized backward shift B, and thus
with any of its powers Bn, is developed in [11] (in particular, see Theorem 3.6).
Now, B = D is a generalized backward shift on H in the case of one variable
but unfortunately, in view of our purposes, an operator T ∈ L commutes with
D if and only if T ∈ C ([11], Proposittion 5.2). Thus the theory in [11] is not
applicable to obtain, say, hypercyclic operators outside C . Now, our result(s),
when d = 1, is based on the fact that, roughly, it is possible to extend their ideas
on backward shifts for operators that almost commute with any power of B, i.e.,
with any element of O({1, ξ, ξ2, . . .}) = O(H). When d > 1, there is no analogue
of the backward shift B = D. However, we can extend our one variable result(s)
by showing that, for any non-constant homogeneous polynomial P, P(D) may
serve as some sort of a backward shift. A key to this is results from the study of
so called Fischer decompositions and Fischer pairs, developed by H. Shapiro and
others [10], [15], [22]:

DEFINITION 1.5 (Fischer pair). A pair (T, S) of operators S : X → Y, T :
Y → X is said to form a Fischer pair for X when TS maps X bijectively.

(If (T, S) is a Fischer pair, then Y = ker T ⊕ Im S — a Fischer decomposition.
Conversely, if T is surjective and S is injective, such a decomposition of Y implies
(T, S) being a Fischer pair.) We apply the fact that (P(D), P∗) forms a Fischer
pair for H , where P∗ denotes the homogeneous polynomial obtained by conju-
gating the coefficients in P and P∗ : f 7→ P∗ f , see Proposition 2.10. (We show
also that even other Fischer pairs, i.e., not necessarily built up by homogeneous
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polynomials, provide us with alternative "backward shifts" in the same way, see
Remark 3.10 (i) and (iii) at the end.)

The paper is organized as follows: First we recall some fundamental results
from our study on PDE-preserving operators. Our main results are Theorems A,
B and C, which are exposed in Section 3. In Theorem A, we establish the class
OS ⊆ O(H) of supercyclic operators. Now, a characterization result for O(H)
shows that O(H) is formed by the operators of the form:

(1.1) Φ(D) f = ∑
n>0

Hn(ϕn(D) f ), Φ = (ϕn) ∈ S ,

where S denotes a set of sequences in Exp that satisfies a certain growth condition
(see the list of notations below or Definition 2.6), and Hn denotes the projection
on H onto the set Hn of n-homogeneous polynomials defined by f = ∑

m>0
fm 7→

fn. (See also Proposition 2.7, and note also that Φ(D) ∈ C if and only if Φ =
(ϕ, ϕ, . . .) for some ϕ ∈ Exp (Φ(D) = ϕ(D)).) Thus, any element of OS have the
explicit form (1.1), and OS is characterized by the corresponding subset SS ⊆ S ,
defined in Definition 3.2. (This explicit representation of our operators is, we
think, a strength of our results.)

Next, by applying Theorem 1.4 and the fact that OS ⊆ O(H), we prove in
Theorem B that OS is stable under certain operations and establish supercyclic
vector manifolds and invariant sets of supercyclic vectors, for any T ∈ OS.

Then we consider the more delicate problem — the existence of hypercyclic
non-convolution operators. Our results obtained so far motivate us to study if,
in particular, there are any such operators in OS. In Theorem C we establish
the multiplicative closed subset OH of OS formed by hypercyclic operators, and
prove an analogue of Theorem B for OH, and hence, in particular, how to obtain
hypercyclic vector manifolds for any T ∈ OH. In fact, OH ≡ {Φ(D) : Φ ∈ SH},
where SH ⊆ SS ⊆ S and

SH ≡
⋃

m>1

{(Pn) : {Pn} ⊆ Hm, c 6 ‖Pn‖1 6 CMn for some c, C, M > 0}.

1.1. LIST OF NOTATIONS.

H {Entire functions} — d variables.
Exp, P {Exponential type functions}, {Polynomials} — d variables.
Pn, Hn, H {P ∈ P of degree 6 n}, {n-homogeneous P ∈ P},

⋃
n>0

Hn.

L , C {continuous linear operators}, {convolution operators} (on H ).
O(P) The set of PDE-preserving operators for P, see Definition 1.3.
S The set of symbols (kernels) for L , see Definition 2.1.
S {(ϕn)n>0 : ϕn ∈ H , |ϕn(ξ)| 6 CMner|ξ|, n = 0, 1, . . .}.
SS, SH See Definition 3.2 and 3.6 respectively.
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OS, OH {Φ(D) : Φ ∈ SS}, {Φ(D) : Φ ∈ SH}.
τa, ea τa f (z) ≡ f (a + z), ea ≡ e〈·,a〉 where 〈z, ξ〉 ≡ ∑ ziξi – a ∈ Cd.
zα, Dα zα1

1 · · · zαd
d , Dα1

1 · · ·Dαd
d (Di ≡ ∂/∂zi) – α ∈ Nd.

Hn The projector H 3 f = ∑
m>0

fm 7→ fn ∈ Hn.

Φ(m) ≡ (ϕn+m)n>0 ∈ S where Φ = (ϕn) ∈ S .
ϕ(D) ≡ ∑

α
ϕαDα ∈ C where ϕ = ∑

α
ϕαξα ∈ Exp.

Φ(D) ≡ ∑
n>0

Hn ϕn(D) ∈ O(H) where Φ = (ϕn) ∈ S .

P(·, D) ≡ ∑
α,β

Pα,βzαDβ ∈ L where P(z, ξ) = ∑
α,β

Pα,βzαξβ ∈ S.

T(ϕ) The operator ∈ L such that: ϕ(D)T = T(ϕ)ϕ(D), T ∈ O(ϕ).
‖ · ‖n, ||| · |||n sup

|z|6n
| · | , sup

ξ∈Cd
| · |e−n|ξ| .

(P, Q), ‖P‖ ∑
α

PαQαα!,
√

(P, P) where P = ∑ Pαzα, Q = ∑ Qαzα ∈ P .

2. FUNDAMENTALS

For given n ∈ N, Expn denotes the Banach space of functions ϕ ∈ H such
that |||ϕ|||n ≡ sup

ξ∈Cd
|ϕ(ξ)|e−n|ξ| < ∞, equipped with the norm ||| · |||n thus defined.

Exp is given by
⋃

n>0
Expn, and we provide Exp with the corresponding inductive

locally convex topology. We put eξ ≡ e〈·,ξ〉 ∈ H , where 〈z, ξ〉 ≡ ∑ ziξi, and
recall that the Fourier-Borel transform F , defined by H ′ 3 λ 7→ Fλ(ξ) ≡ λ(eξ),
is a topological isomorphism between H ′ (strong topology) and Exp. (Thus,
H ′ ' Exp ' C .) Thus H and Exp form a dual pair by 〈 f , ϕ〉 ≡ F−1 ϕ( f ) (the
Martineau-duality), and it is convenient to note that the transpose of ϕ(D) ∈ C
is the multiplication operator ϕ : ψ 7→ ψϕ on Exp and, as a consequence of
Malgrange’s (existence) Theorem, ker ϕ(D)⊥ = Im ϕ = Exp · ϕ.

DEFINITION 2.1. S denotes the set of entire mappings P = P(z, ξ), in 2d
variables (z, ξ) ∈ Cd ×Cd, with the following property: For every n > 0 there are
m = mn, M = Mn > 0 such that ‖P(·, ξ)‖n 6 Mem|ξ| (thus P(z, ·) ∈ Exp).

We consider Exp as a subset of S by ϕ(z, ξ) = ϕ(ξ), ϕ ∈ Exp, and have the
following Kernel-Theorem for L :

PROPOSITION 2.2. T 7→ P(z, ξ) ≡ e−〈z,ξ〉Teξ(z) defines a bijection between L
and S. P is called the symbol for T, we write T = P(·, D) and have that T f (z) =
〈 f , P(z, ·)ez〉 = ∑

α,β
Pα,βzαDβ f (convergence in H ) where P(z, ξ) = ∑

α,β
Pα,βzαξβ. The

set of convolution operators, C , corresponds to the symbol-set Exp ⊆ S, and ϕ(D) =
ϕ(·, D), ϕ ∈ Exp.
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Proof. Let T ∈ L . We must prove that P(z, ξ) ≡ e−〈z,ξ〉Teξ(z) ∈ S. Clearly,
P(·, ξ) ∈ H and from Teξ(z) = tTez(ξ), P(z, ·) ∈ H . By Hartogs Theorem, P is
entire on Cd ×Cd and it remains to prove that P is bounded as required. First we
note that Cd 3 z 7→ ez ∈ Exp is continuous and thus so is Cd 3 z 7→ P(z, ·) ∈ Exp.
Hence {P(z, ·) : |z| 6 n} forms a bounded set in Exp for any n > 0. Now, one can
prove Lemma 1 of [21] that a set in Exp is bounded if and only if it is contained
and bounded in some Expm and hence, P ∈ S. Conversely, let P ∈ S and define
T f (z) ≡ 〈 f , P(z, ·)ez〉. It is easily checked that T ∈ L and e−〈z,ξ〉Teξ(z) = P(z, ξ).
Thus, the map L 3 T 7→ e−〈z,ξ〉Teξ(z) ∈ S is onto and since {eξ : ξ ∈ Cd} forms
a total set in H , it is one-to-one.

Next, formally we have that 〈 f , P(z, ·)ez〉 = ∑
α,β

Pα,βzαDβ f , and that the iden-

tity indeed follows by noting that the series converges absolutely in H , which is
easily checked by virtue of Cauchy’s Estimates.

The last part follows by Proposition 1.2.

Thus every operator in L can be written as an infinite type of differential
operator with variable coefficients, and the elements of C are those with constant
coefficients (see also Chapter 6 of [2]).

A main result in our study of PDE-preserving operators is Theorem 2.4 that
follows. The technical part in our proof is the following lemma and division
property for S (L ):

LEMMA 2.3. Let 0 6= ϕ ∈ Exp, P ∈ S and assume P(z, ξ) = ϕ(ξ)Q(z, ξ) where
Q(z, ·) ∈ Exp for all z ∈ Cd. Then Q ∈ S.

Proof. See Lemma 2 of [21].

THEOREM 2.4 (Characterization Theorem). Let ϕ ∈ Exp and T = P(·, D) ∈
L . Then the following are equivalent:

(i)T is PDE-preserving for ϕ;
(ii) ϕ(D)T = Sϕ(D) for some S ∈ L ;

(iii) ϕ|ϕ(ξ + D)P(·, ξ)(z) in S, i.e., ϕ(ξ + D)P(·, ξ)(z) = ϕ(ξ)Q(z, ξ) for some
Q ∈ S.
(ϕ(ξ + D) ≡ (τξ ϕ)(D) ∈ C .) If ϕ 6= 0 the operator S is unique and is called the
derivative of T ∈ O(ϕ) with respect to ϕ and is denoted by T(ϕ).

Proof. We may assume ϕ 6= 0 and note that the uniqueness of S follows
by the surjectivity of ϕ(D). The equivalence between (ii) and (iii) follows by the
observation ϕ(D)Teξ(z) = ϕ(D)P(·, ξ)eξ(z) = e〈z,ξ〉ϕ(ξ + D)P(·, ξ)(z). Since (ii)
obviously implies (i), it remains to prove that if T is PDE-preserving for ϕ, then
ϕ|R in S where R(z, ξ) ≡ ϕ(D)Teξ(z) (∈ S). For fixed z ∈ Cd let λz( f ) ≡
ϕ(D)T f (z). Then λz ∈ H ′ and Fλz(ξ) = R(z, ξ). We prove that Fλz ∈ Im ϕ =
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ker ϕ(D)⊥. But if f ∈ ker ϕ(D), then

〈 f ,Fλz〉 = λz( f ) = ϕ(D)T f (z) = 0

since T ∈ O(ϕ). Thus, for every z ∈ Cd there is a unique Q(z, ·) ∈ Exp such that
R(z, ξ) = ϕ(ξ)Q(z, ξ), ξ ∈ Cd, and Lemma 2.3 completes the proof.

Let P denote the algebra of (complex) polynomials in d variables and let
Pn denote the vector space of polynomials in P of degree at most n. Recall that
Hn denotes the set, and vector space, of n-homogeneous polynomials in P and
H denotes the set

⋃
n>0

Hn of all homogeneous polynomials. (P0 = H0 ≡ C.)

LEMMA 2.5. If T ∈ O(H), then T maps every Pn invariantly. If d = 1 the
converse holds true, i.e., T ∈ O(H) if and only if T ∈ L and maps every Pn invariantly.

Proof. Let n > 0 and P ∈ Pn. We must prove that TP ∈ Pn. By Taylor’s
Formula, f ∈ Pn if and only if Q(D) f = 0 for all Q ∈ Hn+1. So, for any such Q,
Q(D)P = 0 and hence, Q(D)TP = 0 since T ∈ O(Q). The converse part, when
d = 1, follows by the observation ker Dn+1 = Pn.

DEFINITION 2.6. S denotes the set of sequences Φ = (ϕn) = (ϕ0, . . .) in
Exp such that |||ϕn|||m 6 RMn, n = 0, 1, . . ., for some R, M, m > 0.

Hn denotes the projector in H onto Hn defined by f = ∑ fm 7→ fn, where
∑ fm is the power series expansion of f ∈ H . We have the following one-to-one
correspondence between O(H) and S :

PROPOSITION 2.7. O(H) is formed by the operators of the form Φ(D) f ≡
∑

n>0
Hn(ϕn(D) f ), where Φ = (ϕn) ∈ S and is unique. If P ∈ Hm, Φ(D)(P) =

Φ(m)(D) ∈ O(H) where Φ(m) ≡ (ϕn+m) ∈ S . (Thus the derivative only depends on
m, not on P.)

Proof. A proof of the first part can be found in [17], see also [20] (in fact,
the result is there extended to infinite-dimensional holomorphy). We prove the
claim about the derivative. We note that, for any m-homogeneous polynomial P,
P(D)Hn = Hn−mP(D) if n > m and P(D)Hn = 0 otherwise. Thus,

P(D)Φ(D) = ∑
n>0

P(D)Hn ϕn(D) = ∑
n>m

Hn−mP(D)ϕn(D) = Φ(m)(D)P(D)

since P(D) and ϕn(D) commute.

EXAMPLE 2.8. With ϕn = 1 if n 6 m and ϕn = 0 otherwise, Φ(D) is the mth
Taylor projector, i.e. the operator obtained by mapping a function into its Taylor
polynomial of order m at the origin. The Euler operator 〈·, D〉 ≡ z1D1 + · · ·+ zdDd,
i.e. the operator with symbol 〈z, ξ〉 ∈ S, belongs to O(H). Indeed, for any power
m > 1, 〈·, D〉m = Φ(D) where Φ = (ϕn = nm).
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We equip S with the algebra structure induced by O(H) so that (ΦΨ)(D) =
Φ(D)Ψ(D). One can then prove Theorem 6 of [17] that if (ξn) = ΦΨ in S , then

(2.1) ξn =
∞

∑
i=0

Hi(ϕn)ψn+i, Φ = (ϕn), Ψ = (ψn).

An element ϕ ∈ Exp is said to be non-degenerate if ϕ(0) 6= 0, and a se-
quence Φ = (ϕn) in Exp is non-degenerate if all the elements ϕn are. From (2.1)
we deduce that the product ΦΨ of any non-degenerate sequences Φ and Ψ in S
is again non-degenerate (ξn(0) = ϕn(0)ψn(0)).

LEMMA 2.9. Let Φ = (ϕn) ∈ S be non-degenerate. Then Φ(D) maps every Pn
isomorphically (cf. Lemma 2.5). Thus, the restriction of Φ(D) to P is an isomorphism.

Proof. Φ(D) is surjective on P0 = C for Φ(D)1 = ϕ0(0) 6= 0. Next we note
that if |α| ≡ ∑ αi = m > 1, then:

(∗) Φ(D)zα = ϕm(0)zα + (lower degree terms).
Assume Φ(D) is surjective on every Pm, m 6 n − 1 and let P ∈ Pn. By (∗) we
may find a Qn ∈ Hn such that Φ(D)Qn − P ∈ Pn−1 and hence, by the inductive
hypothesis, Φ(D)Qn−1 = Φ(D)Qn − P for some Q ∈ Pn−1. Thus Φ(D) maps
Pn onto Pn for all n. To prove that Φ(D) is one-to-one on Pn, it is clearly enough
to prove that Φ(D) is injective on P , which is obvious in view of (∗).

For proofs of the following we refer to [22], the latter part is Fischer’s clas-
sical Theorem from [10]:

PROPOSITION 2.10 (H. Shapiro, Fischer). For any homogeneous polynomial
P 6= 0, (P(D), P∗) forms a Fischer pair for H , where P∗ is the homogeneous poly-
nomial obtained by conjugating the coefficients in P and P∗ : f 7→ P∗ f . Moreover,
P∗Hn ⊆ Hn+m and P(D)Hn+m ⊆ Hn if P ∈ Hm, and (P(D), P∗) forms in this way
a Fischer pair for Hn for any n > 0.

In view of our purposes, we need estimates:

LEMMA 2.11. For given dimension d, there is a constant k = k(d) such that for
any P ∈ Hm \ {0} and Q ∈ Hn, ‖P∗(P(D)P∗)−1Q‖1 6 kn‖Q‖1/m!‖P‖1. (Recall
that ‖ · ‖1 ≡ sup

|z|61
| · | and |z| ≡

√
∑ |zi|2.)

Proof. Consider the inner-product (P, Q) ≡ ∑
α

PαQαα! on P , where α! ≡

∏ αi!, P = ∑
α

Pαzα and the coefficients Qα are defined analogously. By ‖ · ‖ we

denote the corresponding (Fischer) norm. The key is to note that P∗ is the Hilbert-
adjoint of P(D) : Hn+m → Hn, P ∈ Hm, with respect to the inner-products
induced by (·, ·). Indeed, let f ∈ Hn and put g ≡ (P(D)P∗)−1 f ∈ Hn. Then,
with A ≡ P∗(P(D)P∗)−1, P∗g = A f and Cauchy–Schwarz Inequality gives

‖ f ‖‖g‖ = ‖P(D)P∗g‖‖g‖ > (P(D)P∗g, g) = ‖P∗g‖2 > ‖P‖‖A f ‖‖g‖,
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since ‖P∗‖ = ‖P‖ and, by the formula in the proof of Lemma 4 of [22], ‖P∗g‖ >
‖P∗‖‖g‖. Thus the operator norm of A : (Hn, ‖ · ‖) → (Hn+m, ‖ · ‖) is not greater
than 1/‖P‖ and we only have to translate all this to the sup-norm ‖ · ‖1. To do so
we refer to p. 519 in [22], where the arguments show that

‖Q‖1 6
‖Q‖√

n!
6 (n + 1)d/2dn/2‖Q‖1

for any Q ∈ Hn. (However, they are there dealing with the supremum norm over
polydiscs and, in the right inequality, we have used that sup

maxi |zi |61
|Q| 6 dn/2‖Q‖1

if Q ∈ Hn.) Now, there is a constant k = k(d) such that kn > (n + 1)d/2dn/2 for
all n > 0. From ‖AQ‖ 6 ‖Q‖/‖P‖ a straight forward computation gives the
lemma.

Finally we formulate the Fréchet space version of Corollary 1.4 of [11]:

PROPOSITION 2.12 (Godefroy, J. Shapiro). Let X be a separable Fréchet space
and T = (Tn) a sequence of continuous linear operators on X. Assume there are dense
subsets Z, Y ⊆ X (not necessarily subspaces) and a sequence of maps S = (Sn : Y → X)
(not necessarily continuous) such that:

(i) Tnz → 0 for all z ∈ Z;
(ii) Sny → 0 for all y ∈ Y;

(iii) TnSny = y for all y ∈ Y.
Then T is hypercyclic.

3. THE MAIN RESULTS

We are now ready to prove our first main result — Theorem A. We shall
first prove the statement in the case of one variable, where the proof is based on
the theory of backward shifts. (An alternative proof can be obtained by applying
Corollary 3.3 of [3].)

THEOREM A (one variable). Let Φ = (ϕn) ∈ S be a sequence such that ϕn =
ξmψn, i.e. Φ(D) = Ψ(D)Dm, for some m > 1 and non-degenerate Ψ = (ψn) ∈ S .
Then Φ(D) is supercyclic.

Proof. Let en ≡ zn/n! denote the monomial basis vectors in P and define
the "forward shift" A : P → P by: Aen ≡ en+1 and then extended linearly.
Then BA is the identity on P where B ≡ D (backward shift). We can find a non-
degenerate sequence Φ0 = (φn) ∈ S such that Φ(D) = BmΦ0(D) = Φ

(m)
0 (D)Bm

(i.e. Φ
(m)
0 = Ψ). Indeed, let φn, n = 0, . . . , m − 1, be arbitrary non-degenerate

elements in Exp and put φn ≡ ψn−m for n > m. Then Φ0 ≡ (φn) is non-degenerate
and Φ

(m)
0 = Ψ. From this point we apply the technique of Godefroy and Shapiro

in the proof of Theorem 3.6.b of [11] (however, they are dealing with Banach
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spaces and we must complement with some arguments). Let Φ−1
0 (D) denote the

inverse of Φ0(D) as a mapping P → P (Lemma 2.9) and put C ≡ Φ−1
0 (D)Am

so that (∗) Φ(D)C = Bm Am = IdP . C maps Pn into Pn+m and, with notation
as in [11], we let σ(n) denote the operator norm of this restriction of C. Here we
assume that every finite-dimensional space Pn is equipped with the norm |P|n ≡
n
∑
0
‖Hi(P)‖1. Now, Cn maps Pk into Pk+nm with norm 6 σ(k + (n− 1)m)n ≡ σk,n

([11], p. 246). Let rn ≡ n!σn,n and put Tn ≡ rnΦ(D)n. Then Tn ∈ L and it suffices
to prove that T ≡ (Tn) is hypercyclic. We shall apply Proposition 2.12. Define
Sn ≡ r−1

n Cn : P → P . Then with Z = Y = P , Tn → 0 pointwise on Z, since
m > 1, and TnSn = IdY in view of (∗). (In fact, TnP = 0 for all n sufficiently large
if P ∈ P .) Thus, by virtue of Proposition 2.12, we only have to prove that Sn → 0
pointwise on P . But if 0 6= P ∈ Pk and n > k,

|SnP|k+nm
|P|k

6 r−1
n σk,n 6 r−1

n σn,n =
1
n!

,

since σ is increasing. Hence, for any given semi-norm ‖ · ‖ν (ν > 1),

‖SnP‖ν 6
k+nm

∑
i=0

νi‖Hi(SnP)‖1 6 νk+nm|SnP|k+nm 6
νk+nm|P|k

n!
→ 0,

as n → ∞.

The following example shows that some of the operators in Theorem A are
in fact hypercyclic, and we shall pursue this later (Theorem C).

EXAMPLE 3.1. Aron and Markose proved recently [1] that, in the case of
one variable, Tλ, Tλ f (z) ≡ f ′(λz), is a hypercyclic operator for any λ ∈ C with
|λ| > 1. They also discuss hypercyclicity of Tλ:a ≡ Tλτa : f 7→ f ′(λz + a) (see
below). Note that T1:a = Dτa ∈ C and, in fact, Tλ:a ∈ C if and only if λ =
1. We note now that, for arbitrary λ and a, Tλ:a = Φ(D) ∈ O(H) where Φ =
(ϕn(ξ) = ξe〈a,ξ〉λn). Thus, for any λ 6= 0, Tλ:a belongs to the class of operators in
Theorem A and is thus supercyclic. However, assume |λ| > 1 so that Tλ = Tλ:0

is hypercyclic. By Theorem 1.4, T(P)
λ also forms a hypercyclic operator for any

P = ξm ∈ H. We deduce that T(P)
λ = λmTλ so λmTλ is a hypercyclic operator,

and moreover, P(D) f = f (m) is a hypercyclic vector for any such vector f for
Tλ. A simple argument [1] shows that Tλ:a is hypercyclic for any root of unity λ,
λm = 1. We note that, for such λ, Tλ:a ∈ O(P) for any P = ∑

i
aizi ∈ P such that

m|i whenever i, ai 6= 0. However, T(P)
λ:a = Tλ:a so this does not provide us with

any new hypercyclic operator. On the other hand, Theorem 1.4 gives that P(D)
maps the set of hypercyclic vectors for Tλ:a invariantly.

Finally, an interesting phenomenon is that Tλ (and presumably Tλ:a) is not
hypercyclic if |λ| < 1 ([1], Proposition 14), but we know that Tλ is supercyclic for
any λ 6= 0.
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Let us note that Theorem A covers some facts we already know. We know
that ϕ(D) is hypercyclic, and thus supercyclic, for any non-constant ϕ ∈ Exp.
In particular, if ϕ(0) = 0, ϕ(ξ) = ξmψ(ξ) for some unique m > 0 and non-
degenerate ψ ∈ Exp and now, ϕ(D) = ψ(D)Dm = Ψ(D)Dm where Ψ ≡ (ψ, ψ, . . .).
Thus the class of operators in Theorem A above contains all T = ϕ(D) ∈ C such
that ϕ(0) = 0, i.e., T1 = 0.

Next we shall extend Theorem A to an arbitrary number of variables d.

DEFINITION 3.2. SS denotes the set of sequences Φ ∈ S of the form Φ =
(ψnPn) where Ψ = (ψn) is a non-degenerate sequence in Exp and {Pn} ⊆ Hm \
{0} for some m > 1. OS denotes the corresponding class of operators Φ(D),
Φ ∈ SS.

It is convenient to clarify the following. Let Ψ = (ψn) be a non-degenerate
sequence in Exp and let 0 6= Pn, P ∈ Hm where m > 1, then:

(i) If Ψ ∈ S and ‖Pn‖1 6 MRn ∀n, then Φ ≡ (ψnPn) ∈ SS;
(ii) Φ ≡ (ψnP) ∈ SS if and only if Ψ ∈ S ;

(iii) (Pn) ∈ S if and only if ‖Pn‖1 6 MRn ∀n.

(Implication (i) is elementary and, by Cauchy’s Estimates, a sequence (ϕn) in Exp
belongs to S if and only if ‖Hi(ϕn)‖1 6 MRnri/i! for some r, R, M > 0, hence
equivalence (iii), and the one in (ii), is an easy consequence of the following: If
P ∈ Hn and Q ∈ Hm, then ‖P‖1‖Q‖1 6 (2e)n+m‖PQ‖1 ([9], p. 72).) In particular,
equivalence (ii) implies that when d = 1 then OS is precisely the class of operators
in Theorem A above, that we thus extend by:

THEOREM A. Every operator Φ(D) ∈ OS is supercyclic. Thus, in particular, any
operator Φ(D) = Ψ(D)P(D), where Ψ ∈ S is non-degenerate and 0 6= P ∈ Hm,
m > 1, is supercyclic.

Proof. Let us first prove the special case, i.e., assume all the homogeneous
Pn in Φ are equal to some P ∈ Hm so that Φ(D) = Ψ(D)P(D), Ψ ∈ S . First of
all we note that Φ(D)nP = 0 for all n sufficiently large if P ∈ P , since m > 1.
Next, as in the one variable proof, we can find a non-degenerate Φ0 ∈ S such
that Φ

(m)
0 = Ψ and thus Φ(D) = P(D)Φ0(D) = Φ

(m)
0 (D)P(D). Next, P(D)P∗ is a

bijection on H and P(D)P∗ maps Pn into Pn isomorphically (Proposition 2.10).
Thus, if (P(D)P∗)−1 denotes the inverse of the restriction of P(D)P∗ to P , A ≡
P∗(P(D)P∗)−1 : P → P maps Pn into Pn+m. Now, Φ−1

0 (D) : P → P exists
by Lemma 2.9 and with C ≡ Φ−1

0 (D)A : P → P , Φ(D)C = IdP and CPn ⊆
Pn+m. From this point the arguments in the proof above for d = 1 prove the
theorem for this particular case.

Next consider the general case, i.e. Φ = (ψnPn) where Pn ∈ Hm. Again,
as a starting point we conclude that Φ(D)nP = 0 for large n if P ∈ P . We
define B : P → P by BQ = ∑

n>m
Pn−m(D)Qn where Q = ∑ Qn, Qn ∈ Hn.
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Let Φ0 = (φn) be a non-degenerate sequence in Exp with Φ
(m)
0 = Ψ. Since Ψ

may not be in S , it is possible that Φ0 /∈ S , however, Φ0(D) = ∑
n>0

Hnφn(D) is a

well-defined map on P , and we claim that Φ(D) = BΦ0(D) on P . Indeed,

BΦ0(D) = ∑
n>m

Pn−m(D)Hnφn(D) = ∑
n>m

Hn−mPn−m(D)φn(D) = Φ(D)

since φn = ψn−m for n > m. Moreover, from the proof of Lemma 2.9, it is clear that
Φ0(D)−1 : P → P exists. By Proposition 2.10, we can define a map A : P → P
by AQ = ∑ P∗n (Pn(D)P∗n )−1Qn where Qn ≡ HnQ. We deduce that BA = IdP

so with C ≡ Φ−1
0 (D)A : P → P , Φ(D)C = IdP and, again, from this point the

arguments in the one variable proof complete the proof.

Let O∗
S denote the set of operators Φ(D) = Ψ(D)P(D) in Theorem A, i.e.

where Ψ ∈ S is non-degenerate and 0 6= P ∈ Hm, m > 0. By S∗S we denote the
corresponding set of sequences Φ = (Pψn) = PΨ in S . Note that in the case of
one variable, O∗

S = OS.

THEOREM B. Assume Φ(D) ∈ OS (Φ = (ϕn) ∈ SS). Then:

(i) Φ(m)(D) ∈ OS for any m > 0, and conversely.
(ii) For any m > 0 there is a Ψ(D) ∈ OS such that Ψ(m)(D) = Φ(D).

(iii) For any Ψ ∈ S∗S or non-degenerate Ψ ∈ S , Φ(D)Ψ(D) ∈ OS.

O∗
S forms a multiplicative closed subset of OS and is stable in the sense of (i)–(iii). For

any set A ⊆ S ×H such that P 6= 0, Ψ(m) = Φ if P ∈ Hm, for all (Ψ, P) ∈ A:

(3.1) IA ≡
⋃
A
{P(D) f : f supercyclic for Ψ(D)}

forms an invariant set (under Φ(D)) of supercyclic vectors for Φ(D). In particular, for
any m > 1 there is a vector f ∈ H such that

Mm ≡ {P(D) f : P ∈ Hm}

forms an (m+d−1
d−1 )-dimensional (i.e. ' Hm) supercyclic vector manifold for Φ(D).

Proof. Property (i) is elementary and so is property (ii). Indeed, let m > 0,
then Ψ(m) = Φ and Ψ = (ψn) ∈ SS where ψn+m ≡ ϕnPn if n > 0 and ψn ≡ Pnφn,
n < m, where φn ∈ Exp are arbitrary non-degenerate elements. Property (iii)
follows by formula (2.1). For assume Ψ = (ψnQ) ∈ S∗S and let (ξn) ≡ ΦΨ. Then
(2.1) gives that ξn = PnQ ∑

i>m
Hi−m(ϕn)ψi+n = PnQφn if Pn ∈ Hm. Rn ≡ PnQ are

all homogeneous of the same degree > 0 and every φn is non-degenerate. Thus
OSO∗

S ⊆ OS and the other property in (iii) follows in the same way.
That (3.1) is formed by supercyclic vectors follows by Theorem 1.4. We must

prove that IA is invariant. So let P(D) f ∈ IA, (Ψ, P) ∈ A. Then Φ(D)P(D) f =
P(D)Ψ(D) f . Since f is supercyclic for Ψ(D), it is elementary that Ψ(D) f also
forms a supercyclic vector for Ψ(D), hence Φ(D)P(D) f ∈ IA.
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In particular, given m, then, in view of property (ii), there is a Ψ ∈ SS with
Ψ(m) = Φ and by Theorem A we can find a supercyclic vector f for Ψ(D). So
from (3.1), {P(D) f : 0 6= P ∈ Hm} is formed by supercyclic vectors for Φ(D)
and we deduce that Hm 3 P 7→ P(D) f ∈ Mm defines a linear isomorphism `.
Indeed, P(D) f 6= 0 for all P 6= 0, for otherwise 0 would be a supercyclic vector,
so ` is one-to-one and hence a bijection.

EXAMPLE 3.3. Fix m and Ψ ∈ SS such that Ψ(m) = Φ ∈ SS. Then, with A ≡
{(Ψ, P) : 0 6= P ∈ Hm}, we obtain the invariant set IA =

⋃
P∈Hm\{0}

P(D)SC(Ψ) of

supercyclic vectors for Φ(D). Here SC(Ψ) denotes the set of supercyclic vectors
for Ψ(D).

REMARK 3.4. Note that the arguments in the proof concerning the invariant
set IA hold more generally: Let S ∈ L and let A = {(T, ϕ)} be any family of
pairs (T, ϕ) ∈ L ×Exp such that ϕ 6= 0, T ∈ O(ϕ) and T(ϕ) = S. Then

⋃
A

ϕ(D){ f :

f supercyclic for T} (possibly empty) forms an invariant set of supercyclic vectors
for S. The analogue holds for hypercyclicity (but not for cyclicity, cf. p. 235 in [11]).

EXAMPLE 3.5. The example of Aron and Markose (Example 3.1) is easily
extended to d variables. Indeed, let λ ∈ Cd and consider the affine map Λ : z 7→
λ · z ≡ (λizi). (We assume a = 0.) Define MΛ f ≡ f (λ · z). Then we claim that
if |λi| > 1 for all i, T ≡ MΛDα (i.e. T f (z) = f (α)(λ · z)) is hypercyclic for any
α 6= 0. (The proof runs parallel to that of Theorem 13 in [1].) Now, if all λi are
equal, λi = λ, but where λ is arbitrary, we have that T = Φ(D) ∈ O(H) where
Φ = (ϕn = ξαλn). Thus, if |λ| > 1, T is a hypercyclic operator in O∗

S ⊆ OS and
is outside C if λ 6= 1 (since then Φ is not a constant sequence). If λi not all are
equal, it follows that T /∈ O(H) and consequently T /∈ OS, so if also |λi| > 1 for
all i, T is a hypercyclic non-convolution operator outside OS.

Example 3.5 shows that there are examples of hypercyclic non-convolution
operators in OS and O∗

S also when d > 1, we now extend this fact.

DEFINITION 3.6. SH denotes the set of sequences (Pn) ∈ S such that {Pn}
⊆ Hm \ {0} for some m > 1 and ‖Pn‖1 > c for some c > 0. (Recall that (Pn) ∈ S
is equivalent to ‖Pn‖1 6 CMn).) OH denotes the corresponding class of operators
Φ(D), Φ ∈ SH.

It is clear that SH ⊆ SS, and accordingly OH ⊆ OS, and now:

THEOREM C. The following hold for OH:
(i) The elements of OH are hypercyclic.

(ii) OH is multiplicative closed and satisfies the analogue of (i)–(ii) in Theorem B.
(iii) For any T ∈ OH, invariant sets of hypercyclic vectors for T are obtained analogous

to (3.1) and, in particular, for every m > 1 there is an f ∈ H such that Mm = {P(D) f :
P ∈ Hm} forms an (m+d−1

d−1 )-dimensional hypercyclic vector manifold for T.
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Proof. We prove that any T = Φ(D) ∈ OH is hypercyclic and intend to
apply Proposition 2.12 with Z = Y = P . We define, as in the proof of Theorem A,
A : P → P by A ≡ ∑

n>0
AnHn, where An ≡ P∗n (Pn(D)P∗n )−1 and Φ = (Pn). Then

Φ(D)A = IdP and, if {Pn} ⊆ Hm,

AnQ = ∑
i>0

Ai+m(n−1) · · · Ai+m AiQi, Qi ≡ HiQ ∈ Hi,

and thus, by Lemma 2.11,

‖AnQ‖r 6 ∑
i>0

ri+nm‖Ai+m(n−1) · · · AiQi‖1

6 ∑
i>0

ri+nm k(d)n

‖Pi‖1 · · · ‖Pi+m(n−1)‖1

‖Qi‖1

m!n

6
rnmc−nk(d)n

m!n ∑
i>0

ri‖Qi‖1 → 0

as n → ∞. So Sn ≡ An → 0 pointwise on Y, TnSn = IdY and, since m > 0,
Tn → 0 pointwise on Z = P . Thus T is hypercyclic by Proposition 2.12.

That the analogues of (i) and (ii) in Theorem B hold true for OH is ele-
mentary and we prove that OH is multiplicative closed. But, by formula (2.1),
(Pn)(Qn) = (PnQn+m) if Pn ∈ Hm for all n, hence OH is stable under multiplica-
tion.

The arguments in the last part of the proof of Theorem B prove (iii).

REMARK 3.7. It is well known, see [5], [7], that every hypercyclic opera-
tor on a real or complex locally convex space, has a dense invariant hypercyclic
vector manifold. Accordingly, any T ∈ OH admits such a hypercyclic vector
manifold. (The existence of dense invariant supercyclic vector manifolds, for su-
percyclic operators (like any T ∈ OS), is more delicate.)

REMARK 3.8. SH is a special class of sequences Φ = (ψnPn) ∈ SS where
we can choose ψn = 1 for all n. Thus, it is a natural question to ask: For what
sequences Ψ = (ψn) and (Pn), where Ψ is non-degenerate and {Pn} ⊆ Hm \ {0}
for some m > 1, do we have that Φ = (ψnPn) ∈ SS and Φ(D) is hypercyclic?

In particular, if Φ = (ϕn) is a sequence of scalars such that: (b) 0 < c 6
|ϕn| 6 CRn, then Φ ∈ S and Φ(D)P(D) (∈ OH) is hypercyclic for any non-
constant P ∈ H. (Pn = ϕnP for all n in Theorem C.) In the case of one variable,
every Hn is one dimensional and every element of OH can be factorized to this
form Φ(D)P(D) (cf. O∗

S = OS).

EXAMPLE 3.9. Consider the Euler operator 〈·, D〉 ∈ O(H). We recall from
Example 2.8 that 〈·, D〉m = Φ(D) where Φ = (ϕn = nm). Thus Φ satisfies the
bound condition (b) above except when n = 0 (ϕ0 = 0). But if we add a se-
quence (c, 0, . . .), c 6= 0, to Φ we obtain a sequence satisfying (b) and conclude:
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For any m > 1, c 6= 0 and non-constant P ∈ H, (〈·, D〉m + cδ0)P(D) is hypercyclic.
(δ0( f ) ≡ f (0) = H0 f .)

Further, any derivative Φ(n)(D) of 〈·, D〉m corresponds in S to a sequence
Φ(n) of constants satisfying (b) and hence: P(D)〈·, D〉m is hypercyclic for any
m > 1 and non-constant P ∈ H. Thus, for example, if d = 1 then f 7→ D(zD f ) =
z f ′′(z) + f ′(z) forms a hypercyclic operator.

Note that with |λ| > 1 and Φ = (ϕn ≡ λn), T ≡ Φ(D)Dα ∈ OH if α 6= 0.
In fact, T is precisely the hypercyclic operator in Example 3.5 with λi = λ for all
i. In particular, if d = 1 and α = 1, our result that T is hypercyclic is that of Aron
and Markose, saying that Tλ is hypercyclic provided |λ| > 1 (Example 3.1).

REMARK 3.10. (i) We note that the example due to Aron and Markose, and
all our examples so far, of cyclic type operators T outside C degenerates in the
sense that T1 = 0. Thus, the question is if there is any, say, hypercyclic T ∈ L \C
with T1 6= 0. The answer is affirmative, and we illustrate this by, once again,
showing how Fischer pairs provide us with alternative "backward shifts". (For
simplicity we let d = 1, and since the arguments run parallel to those in the proof
of Theorem A, we shall be quite brief.)

Proposition 2.10 admits the following generalization: (P(D)− c, P∗) forms
a Fischer pair for H , for any constant c and homogeneous P ∈ H \ {0, c} ([22],
Theorem 3).

Let P ≡ ξ, then P(D)− c = D− c and P∗ = P. Put En ≡ ker(D− c)n+1, i.e.,
En = Pnec = Pnecz (finite-dimensional). Then E ≡ ⋃

n>0
En is dense in H and

an operator T is PDE-preserving for E ≡ {1, ξ − c, (ξ − c)2, . . .} if and only if it
maps every En invariantly (cf. Lemma 2.5). It is now easy to prove that P(·, D) ∈
O(E) if and only if Pc(·, D) ∈ O(H) where Pc ≡ P(z, ξ + c) ∈ S. From this and
Proposition 2.7 we deduce the following. Let En denote the map En ≡ ecHne−c,
i.e. En f ≡ (D − c)n f (0)znec/n! ∈ En. Then Φ 7→ Φ[D] ≡ ∑

n>0
En ϕn(D) defines a

one-to-one correspondence between S and O(E) and Φ[D](P) = Φ(n)[D] if P =
(ξ − c)n. If Φ is non-degenerate at c, i.e., ϕn(c) 6= 0 for all n, then Φ[D] maps
every En isomorphically. We obtain: Every operator T of the form Φ[D](D − c)m

is supercyclic if Φ is non-degenerate at c and m > 1. Indeed, (D − c)En+1 ⊆ En
so TnE = 0 for large n if E ∈ E . Further, there is a factorization T = (D −
c)mΦ

(m)
0 [D] where Φ0 ∈ S is non-degenerate at c. (P(D) − c)P∗ maps every

En isomorphically and we put A ≡ P∗[(P(D) − c)P∗]−1 : E → E . Thus with
C ≡ Φ−1

0 [D]Am : E → E , TC = IdE and we deduce that there is a sequence
r = (rn) such that T = (Tn ≡ rnTn) is hypercyclic, hence T is supercyclic. In
particular we note that T1 6= 0 for a suitable Φ (see below for a concrete example),
on the other hand, Tec = 0. In the same way, with smaller modifications of the
proof of Theorem C we obtain: Φ[D](D − c)m is hypercyclic for any scalar sequence
Φ = (ϕn) that satisfies the bound condition (b) (thus Φ is non-degenerate at c).
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With Φ = (ϕn = n + 1) and m = 1 we obtain the hypercyclic operator: T =
zD2 − 2czD + c2z + D − c, which with c = 0 reduces to the operator in the latter
part of Example 3.9 and T1 6= 0 if c 6= 0.

(ii) We suggest a study on to what degree the converse of Theorem 1.4 holds: Is
every, say, hypercyclic S ∈ L the derivative, T(ϕ), of some hypercyclic T ∈ O(ϕ)?
(Note that this is true for any S in C \C and in OH.) Or even stronger, are there
ϕ and T ∈ O(ϕ) such that T(ϕ) = S and such that every hypercyclic vector g for
S is of the form ϕ(D) f for some hypercyclic vector f for T? (This is, as far as we
know, an open problem even for S ∈ C \C.)

(iii) Our technique, based on Fischer pairs, should work for other spaces and,
in particular, for other power series spaces. Indeed, Fischer decompositions have
also been studied for: Exp, germs of analytic functions, the entire ring of formal
power series etc. [15], [22]. This is interesting in view of the fact that these spaces
do not in general admit backward shifts. In particular, Fischer splittings have
been studied for entire function spaces in an infinite number of variables [18]
and we believe that some of the results in this note are extendible to infinite-
dimensional holomorphy in this way. (Cf. [16] where an infinite-dimensional
analogue of Godefroy-Shapiro’s Theorem (Proposition 1.2) is obtained.)
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