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ABSTRACT. Let A and B0 be separable C∗-algebras with B0 stable and con-
taining a full projection. Let X be a compact, finite-dimensional topological
space. We show that if τ̂ : A → M(C(X)⊗ B0) is a unital, trivial extension
such that τ̂x is absorbing for every x ∈ X then τ̂ is absorbing. This general-
izes a theorem by Pimnser, Popa, and Voiculescu. The main technical tool is
a proposition showing that, under suitable conditions, a deformation of prop-
erly infinite projections is a properly infinite projection.
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1. INTRODUCTION

Absorbing extensions are fundamental in both BDF-extension theory and
KK-theory ([11],[2], Section 15.12), as well as having applications in the K-theoretic
side of the classification program [8], [15] for C∗-algebras. In Kasparov’s KK-
theory, the key step was the construction of a specific absorbing trivial extension.
In the cited papers by Lin and by Dadarlat and Eilers, it is again an absorbing
trivial extension that plays an important role. The terms used in this introduction
are defined at the start of the next section.

We determine when an extension of a stable C∗-algebra is absorbing. An
early result in this direction is that of Pimsner, Popa and Voiculescu:

THEOREM 1.1 ([20]). Let X be a separable, finite dimensional, compact, and Haus-
dorff topological space. Let B = C(X)⊗K, and let A be a separable, stable C∗-algebra.
Let τ : A → M(B)/B be an essential extension of B by A. Suppose that τ is homo-
geneous — that is, the map from A to the canonical quotient M(K)/K of M(B)/B
corresponding to each point of X is injective. Then τ is absorbing.

We shall obtain a generalization of this theorem, for the special case of trivial
extensions. It can be shown by means of an example that the finite-dimensional
condition in the above theorem is necessary. In our theorem, the algebra K is
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replaced by a more general algebra B0 of the form B′ ⊗ K stable, where B′ is
separable and unital. This is not a very restrictive condition, since by Brown’s
isomorphism theorem, any stable separable algebra containing a full projection is
in fact of this form. Clearly, such algebras have approximate units of projections
(in Rørdam’s terminology, are σp-unital), where the approximate units are of the
form 1⊗ kii for a suitable approximate unit (kii) ofK. This property (plus stability
and separability) is the only property of B0 that we need. We shall therefore prove
our theorems in this slighly more general setting. Naturally, we need an appro-
priate generalization of the homogenity condition, thus we shall assume that our
given extension is such that the pointwise restrictions to a fibre are absorbing. We
shall show that:

THEOREM 1.2. Let B0 be a stable, separable C∗-algebra with an approximate unit
consisting of full projections. Let A be unital and separable. Let X be a compact, second-
countable, and finite-dimensional topological space.

Consider an extension τ̂ : A →M(C(X)⊗ B0). If τ̂ is trivial and unital and τ̂x
is absorbing at every point x ∈ X, then τ̂ is absorbing.

Our result will be obtained as a corollary of the following interesting result
on deformation of projections. This result says, roughly speaking, that a strictly
continuous family of properly infinite projections is, under suitable conditions,
properly infinite.

THEOREM 1.3. Let B be a separable, σp-unital, and stable C∗-algebra. Let X be
a paracompact and finite-dimensional topological space. If P ∈ M(B ⊗ C(X)) is such
that for each x ∈ X, the projections Px and 1− Px are both properly infinite and full in
M(B), then P and 1− P are properly infinite and full in M(B⊗ C(X)).

Theorem 1.2 could be viewed as a B-coefficient version of the original PPV
theorem (Theorem 1.1), rather in the spirit of the Miščenko-Fomenko index the-
orem [18]. It is possible that one could prove our result along the same lines as
the original theorem. However the proof in terms of a deformation of projections
result seems shorter, and the deformation result is of independent interest.

2. PRELIMINARIES

Recall that the multiplier algebra M(A) of a C∗-algebra A is the largest
algebra inside which A is an essential closed two sided ideal. (Essential ideals are
sometimes instead termed large ideals, a term borrowed from ring theory.)

DEFINITION 2.1. A semisplit extension of A by B is a completely positive map
τ̂ : A →M(C(X)⊗ B0) from A to M(B) that happens to be a ∗-homomorphism
modulo B. If it is a ∗-homomorphism into the multipliers, we say the extension is
trivial.
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There is an addition operation on extensions if B is stable. An extension,
trivial or not, is said to be absorbing if it is unitarily equivalent to its sum with
an arbitrary trivial extension (it is understood that either both extensions are
unital or both extensions are nonunital). We are interested in the special case
B := C(X)⊗ B0. In this case, we denote the maps obtained by evaluation of an
extension at a point x ∈ X by τ̂x : A →M(B), for x ∈ X.

The general theory of absorbing extensions is discussed further in [2], [9],
[24]. Trivial absorbing extensions are of particular interest, since they play a fun-
damental role in Kasparov’s absorbing extension picture of KK-theory (see Propo-
sition 15.12.2 of [2]).

2.1. PREPARATORY LEMMAS AND PROPOSITIONS. We now give some lemmas
and propositions that will be needed in the proof of the main result. First, the
Raeburn-Thompson version [22] of the Kasparov stabilization theorem:

LEMMA 2.2. Let E be a Hilbert B-module that is generated, as a B-module, by
some countable subset of M(E). If we denote the standard Hilbert B-module by HB,
then E⊕HB is unitarily equivalent to HB.

It is interesting that in Proposition 2.3, we can avoid assuming that the C∗-
algebra B is σ-unital.

PROPOSITION 2.3. Let B be a stable C∗-algebra. Let ` be a nonzero positive ele-
ment of M(B). The hereditary subalgebra M(B) generated by `B` is isomorphic to a
hereditary subalgebra generated by a multiplier projection P. Moreover, if ` is a norm-full
element of M(B) then P is also a norm-full element of M(B).

Proof. The closed right ideal E := `B is, if we take B to act in the natural
way from the right, a Hilbert B-module with inner product 〈a, b〉 := a∗b, and is
countably generated in the Raeburn-Thomsen sense (that is, by multipliers) by
(`1/n)∞

n=1. Thus, by the Raeburn-Thomsen version of the Kasparov stabilization
theorem, there is a unitary U in L(E ⊕HB,HB) implementing an isomorphism
of E⊕HB and HB .

Let P be the projection of E ⊕ HB onto the first factor, E. The projection
T := UPU∗ ∈ L(HB) has image isomorphic (by a unitary equivalence) to E, and
thus by the definition of the compact operators on a Hilbert module,

K(THB) ∼= K(`B).

Now, however, recalling the definition of the compact operators on a Hilbert
module, we see thatK(`B) is generated by elements of the form `b1b∗2`∗ = `b1b∗2`,
where the bi are in B. Hence, TK(HB)T ∼= `B`. However, T is in L(HB) =
M(B⊗ K), and K(HB) = B⊗ K.

Finally, suppose that ` is a norm-full element of M(B). Then

L(`B,HB)L(HB, `B ⊇ L(B,HB)`2L(HB, B) = L(B,HB)L(B)`2L(B)L(HB, B).
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But since `2 is norm-full in M(B), we must have that L(B)`2L(B) = L(B).
Hence,

L(B,HB)L(B)`2L(B)L(HB, B) = L(B,HB)L(HB, B),

and since B is stable, the latter must be equal to L(HB), and L(`B,HB)L(HB, `B)
= L(HB). The other cases, such as L(`B)L(HB, `B) = L(HB, `B) are similar but

simpler, so we see that P =
(

1 0
0 0

)
is norm-full in L(`B⊕HB).

Hence, T must be norm-full in the multipliers if ` is.

It seems surprising that there is a close connection between the basically
topological absorption property of an extension and the algebraic property of
stability, as shown by (iii) and (iv) of the following proposition. We say that
an extension is full if the image does not nontrivially intersect any ideal of the
multiplier algebra.

PROPOSITION 2.4. The following properties of a full trivial extension are equiva-
lent:

(i) The extension is absorbing.
(ii) For every positive element c of the extension algebra that is not in the canonical

ideal B, there is an approximation property: given b ∈ B+, there exists r ∈ B such that
b is approximated by r∗cr. If b and c/B have norm one, then r can be chosen to be in the
unit ball.

(iii) For every positive element c of the extension algebra, cBc contains a stable full
subalgebra.

(iv) There exists a splitting map s : A →M(B) such that for every positive, nonzero
a ∈ A, the hereditary subalgebra s(a)Bs(a) is a full, stable subalgebra of B.

Proof. The equivalence of (i), (ii) and (iii) is from [9]. We here outline the
proof of equivalence with (iv). First showing that (iv) implies (ii), we thus have
c + bc where the positive element c comes from the image of the splitting map of
the extension, and we want to find an r making r∗(c + bc)r − bb small in norm.
It is sufficient to find an r making r∗(c3 + cbcc)r − bb small in norm. Let us use
the functional calculus to slightly perturb c to some c′ that acts as the unit on

c′′ ∈ C∗(c). Since c′′ is full, there are elements bi such that
N
∑
1

b∗i c′′bi is close in

norm to bb. It can be shown by a trick involving square roots in a matrix algebra
that one can in fact obtain this symmetrical form involving bi and b∗i . Since c′′Bc′′
is stable, we can find a corresponding sequence of orthogonal partial isometries

(vi). Define r :=
N
∑
1

vi+M(c′′)1/2bi, where M is chosen large enough to insure that

r∗cbccr is small in norm. (One technical remark: to see that v∗i bvi goes to zero for b
in cBc, and not just for b in c′Bc′, notice that by Cohen’s theorem, vi can be written
as f (c′)v′i f (c′), so that then vi is a strict limit of the form f (c′)bk f (c′) for some
bounded sequence (bk) ⊂ c′Bc′. Since b has the form g(c)b′g(c), and f (c′)g(c)
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is close in norm to f (c′)h(c′) for a suitable function h, it follows that v∗i bvi will
go to zero because the v∗i h(c′)b′h(c′)vi do.) Since r∗c3r is approximately equal to
r∗(c′)3r = r∗r ≈ bb, we see that r∗(c3 + cbcc)r is approximately bb.

Conversely, we show that (i) implies (iv). If τ is absorbing and trivial, it
is unitarily equivalent (in the sense sometimes termed “strong equivalence”) to
the trivial extension defined by the infinite repeat τ∞ = δ∞(τ) := ∑ viτv∗i where
the vi generate a copy of O∞. Thus, the extension algebra C of τ is isomorphic
to δ∞(C), and the isomorphism restricts to a unitary equivalence on B (see p. 67
of [26]). One can check using the Hjelmborg-Rørdam stability criterion [14] that
δ∞(c)Bδ∞(c) is stable for all c not in B, so that elements of the splitting map τ∞
generate stable hereditary subalgebras in B. We compose with the isomorphism
to obtain a splitting map s for the given extension such that the algebras generated
are stable as claimed.

LEMMA 2.5. (i) If p and q are projections in the multipliers of a stable C∗-algebra,
with q Murray-von Neumann equivalent to 1, and p > q, then p is Murray-von Neu-
mann equivalent to 1.

(ii) if PBP is a full stable subalgebra of a stable C∗-algebra B, where P is a multiplier
projection (in the multipliers of B), then P is Murray-von Neumann equivalent to 1.

Proof. The first of these lemmas is due to Mingo [17]. To establish the second
lemma, notice that under this hypothesis, PBP is a full stable subalgebra of B,
and hence by Brown’s theorem is isomorphic to B. As pointed out by Brown [3],
at least in the case of a corner, the isomorphism is moreover implemented by an
isometry v in the multipliers of B, so that Adv : B → PBP is an isomorphism.
Taking the strict limit b1/n → 1M(B) for some strictly positive element b of B, we
see that, as expected, vv∗ = P, and hence P is equivalent to 1.

Now suppose that A is a unital C∗-algebra and B is a separable stable C∗-
algebra such that τ : A → M(B)/B is a unital, absorbing extension of B by A.
Let ρ : A → M(B)/B be a unital, trivial extension (for example, Kasparov’s
extension) such that for every nonzero positive a ∈ A, ρ(a) is a norm-full element
in M(B)/B. Since B is stable, let S1, S2 be isometries in M(B) such that S1S∗1 +
S2S∗2 = 1. Then since τ is absorbing, we must have that S1τS∗1 + S2ρS∗2 is unitarily
equvalent to τ, by a multiplier unitary. We simplify the notation by suppressing
the unitary, as it only alters the choice of isometry. Cutting down by S2S∗2 , we
have S2ρS∗2 = S2S∗2τS2S∗2 . Noting that the ideal generated by a positive element
is preserved by Murry-von Neumann equivalence, (to see this, notice that x∗x
and (x∗x)2 generate the same ideal, but (x∗x)2 = x∗xx∗x will generate an ideal
contained in the one generated by xx∗; reversing the rôle of x and x∗, we see that
xx∗ and x∗x generate the same ideal, as claimed), we see that the left hand side
is norm-full in the corona for all nonzero positive a ∈ A. From this it follows that
for every nonzero, positive a ∈ A, τ(a) is a norm-full element of M(B)/B.
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We claim that in fact, every element of the extension algebra of τ that is
not in the canonical ideal is norm-full in the multipliers. To see this, let a be
a nonzero, positive element of A. Continuing from the previous paragraph,
since S2ρ(a)(S2)∗ is norm-full in M(B)/B, we can choose multiplier elements

x1, x2, . . . , xn, y1, y2, . . . , yn such that
n
∑

i=1
γ(xi)S2ρ(a)(S2)∗γ(yi) is within ε of the

unit of M(B)/B, where γ is the natural quotient map. Hence,
n
∑

i=1
γ(xi)S2(S2)∗

τ(a)S2(S2)∗γ(yi) is within ε of the unit of M(B)/B. Now let c be any positive
lift of τ(a) to a positive element of M(B). Then there is an element b ∈ B such

that
n
∑

i=1
xiS2(S2)∗cS2(S2)∗yi + b is within ε of 1M(B). Now let S be an isometry

in M(B), obtained from the stability of B, such that S∗bS has norm less than ε.

Hence
n
∑

i=1
S∗xiS2(S2)∗cS2(S2)∗yiS is within 2ε of 1, the unit of M(B). But since ε

is arbitrary, we must have that c is a norm-full element of M(B). Hence, if c is a
positive element of the extension algebra of τ, then c must be norm-full in M(B).

Thus we have shown that an absorbing extension must be norm-full in quite
a strong sense.

Recall that a projection P in a unital C∗-algebra C is called a halving projection
if P and 1− P are both Murray-von Neumann equivalent to the unit of C.

PROPOSITION 2.6. Let B be a separable and stable C∗-algebra. A trivial extension
τ is absorbing if and only if for every positive nonzero a ∈ A, τ̂(a) generates B as an
ideal, and the projection P associated by Proposition 2.3 with τ̂(a)Bτ̂(a) is a halving
projection.

Proof. Let a be a nonzero positive element of A, and P the projection for
τ̂(a)Bτ̂(a) defined by Proposition 2.3. Supposing that this projection is a halving
projection, we then have that the projection is Murray-von Neumann equivalent
to 1. Hence, PBP is isomorphic to B and therefore is stable. Hence, the alge-
bra τ̂(a)Bτ̂(a) ∼= PBP is stable. From this, the fullness of τ̂(a)Bτ̂(a) in B, and
Proposition 2.4, we have that τ is absorbing.

For the converse direction, if we assume that τ̂ is absorbing, we have, by
Proposition 2.4, that τ̂(a)Bτ̂(a) is stable and full in B. Hence, PBP is a stable sub-
algebra of B. Now since τ̂ is absorbing, by the remarks preceding this proof,
τ̂(a) is a norm-full element of M(B), and the projection P coming from Proposi-
tion 2.3 is a norm-full element ofM(B). Hence, PBP is a stable, full subalgebra of
B. Hence, by clause (ii) of Lemma 2.1, P is Murray-von Neumann equivalent to
1M(B). Recall, from the proof of Proposition 2.3, that P is unitarily equivalent to
a projection Q in L(τ̂(a)B⊕HB) ∼= M(B) such that Q is the projection onto the
space τ̂(a)B. Hence, 1− P is unitarily equivalent (via the same unitary) to 1−Q,
which is the projection onto the space HB. It follows from the stability of K(HB)
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that (1− P)B(1− P) is stable and moreover 1− P is norm-full in the multipliers
for much the same reasons that P is.

By Lemma 2.1(ii), then 1− P is Murray-von Neumann equivalent to the unit
of M(B) and P is therefore a halving projection in M(B).

3. PROOF OF THEOREM 1.3

We now come to the central part of the proof of the main result. We now
prove that:

THEOREM 3.1. Let B0 be a σp-unital and stable C∗-algebra. Let X be a compact,
finite-dimensional topological space. If P ∈ M(B0 ⊗ C(X)) is such that Px and 1− Px
are both equivalent to 1M(B0) for each x ∈ X, then P and 1− P are both equivalent to
1M(B0⊗C(X)).

It is easy to check that in the multipliers of a stable C∗-algebra, a projection is
Murray-von Neumann equivalent to 1 if and only if it is full and properly infinite,
hence the above theorem is equivalent to Theorem 1.3.

Throughout this section, B0 will be a σ-unital, stable C∗-algebra with an
approximate unit consisting of projections.

Recall, we are considering an extension τ̂ : A →M(C(X)⊗ B0), with X be-
ing a finite-dimensional paracompact topological space, such that the strictly con-
tinuous family of extensions obtained by pointwise evaluation, τ̂x : A →M(B0)
is absorbing at every point x ∈ X. We shall prove that τ̂(a)(C(X)⊗ B0)τ̂(a). is
stable and full in C(X) ⊗ B0 if the algebras obtained by evaluation at a point,
τ̂x(a)B0τ̂x(a), are all stable and full in B0.

This will then imply that the given extension τ̂ was in fact absorbing.
Following Proposition 2.3, there is a projection P ∈ M(C(X) ⊗ B0) such that
τ̂(a)(C(X)⊗ B0)τ̂(a) ∼= P(C(X) ⊗ B0)P, and we shall prove that P is a halving
projection at every point x ∈ X. More precisely, P is a strictly continuous map
P : X →M(B0) from X into the halving projections of M(B0), and the key step
in the proof of the main theorem will then be to show that this family of halving
projections is globally a halving projection: that is, that P is a halving projection
in M(C(X)⊗ B0).

Now fix a halving projection H ∈ M(B0). LetP denote the set of all halving
projections in the multipliers of B0, and let W denote the set of all partial isome-
tries v ∈ M(B0) with initial projection being a halving projection and range pro-
jection H. Give both P and W the relative topologies from the strict topology of
M(B0) (note that P and W need not be closed in the strict topology). Define a
map FH : W → P by the adjoint action v 7→ v∗Hv. FH is continuous (with respect
to the relative strict topologies). If this map had a continuous section, that is, if
there was a strictly continuous map s : P → W such that FH ◦ s(q) = q, then
we would be able to compose s with P : X → P and obtain a strictly continuous
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family of partial isometries that would implement an equivalence of P with H.
Regarding H as a trivial constant family of halving projections, this would then
show that P was globally a halving projection in M(C(X)⊗ B0), as desired. Un-
fortunately, there is no such section s, in general, but there is one if we restrict
to suitable subsets of P , which is where we use the finite dimension of the base
space X. We now establish a lemma needed for this procedure.

LEMMA 3.2. The adjoint map FH : W → P takes open sets to open sets (with
respect to the relative strict topologies), and the inverse image of a point, F−1

H (p), is
nonempty, closed, and contractible, for any given halving projection p ∈ P .

Proof. We first prove the inverse image is nonempty and closed. Fix a halv-
ing projection p ∈ P . Then the inverse image F−1

H (p) consists of all partial
isometries v ∈ M(B0) with initial projection p and range projection H. The in-
verse image F−1

H (p) is, from the strict continuity of the map FH , a strictly closed
subset of M(B0). Since both p and H are halving projections, the set F−1

H (p) is
nonempty. We now show that F−1

H (p) is contractible in the (relative) strict topol-
ogy. Let w be an element of F−1

H (p). The map given by v 7→ vw∗ is a homeo-
morphism (in the relative strict topology) from F−1

H (p) onto the partial isometries
in M(B0) with both initial and range projections being H. The latter topolog-
ical space is homeomorphic (in the strict topology) to the set of all unitaries in
HM(B0)H = M(HB0H). But since H is a halving projection, HB0H is a sta-
ble C∗-algebra, and the set of unitaries in M(HB0H) is contractible in the strict
topology (see, for example, 2.M of [26]). Hence, F−1

H (p) is contractible in the strict
topology.

To show that the map FH is open, we will in fact show that a certain exten-
sion of FH is open. Let V denote the set of all b ∈ M(B0) such that b∗Hb is a
halving projection in M(B0) and Hbb∗H = H, and give V the relative topology
from the strict topology on M(B0). Note that W is a subspace of V . Extend FH
to a map F̃H : V → P in the natural way — that is, given b in V , the map F̃H
takes b to b∗Hb. F̃H is continuous in the (relative) strict topology. In the appen-
dix, we prove that F̃H is open in the (relative) strict topology. Now we show that
FH is an open map in the (relative) strict topology. So let G

′
be an open set (in

the strict topology) in M(B0) such that G
′ ∩W is nonempty. Let v ∈ G

′ ∩W
and let p = FH(v) = v∗Hv, so that p is a halving projection. Since G

′
is open, let

c1, c2, . . . , cn be positive elements in M(B0), each with norm less than or equal to
one, and let ε > 0 be a real number such that the open set G

′
1 ⊂M(B0) consisting

of all elements d with ‖dci − vci‖ < 5ε and ‖cid − civ‖ < 5ε, for 1 6 i 6 n, is
contained inside G′.

Then G
′
1 is contained inside G

′
. The set G

′
1 is an open neighbourhood of v,

and is also a subset of G
′
. For simplicity, let us assume that ε is strictly less than
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1/5. Now let G
′
2 be the open subset of G

′
1 which consists of all elements d in

M(B0) such that:
(i) ‖dci − vci‖ < ε/1000,

(ii) ‖cid− civ‖ < ε/1000, and
(iii) ‖ci(1− H)d‖ = ‖ci(1− H)d− ci(1− H)v‖ < ε/1000, for 1 6 i 6 n.

By the openness of F̃H in the relative strict topology, F̃H(G
′
2 ∩ V) is an open

neighbourhood of p = FH(v) in P in the relative strict topology. We will show
that F̃H(G

′
2 ∩ V) is contained in the image FH(G

′
1 ∩W).

Suppose that d ∈ G
′
2 ∩ V . Then Hd is a partial isometry with range projec-

tion H and initial projection being a halving projection, say q. Hence, F̃H(d) =
FH(Hd) = q. Since d ∈ G

′
2, it follows that ‖Hdci − vci‖ < ε/1000 and ‖ci Hd −

civ‖ < ε/500. In particular, Hd is a partial isometry contained in G
′
1 ∩W . But

since d was arbitrary, F̃H(G
′
2 ∩V) is contained inside FH(G

′
1 ∩W) ⊆ FH(G

′ ∩W).
Since v, G

′
were arbitrary, the original adjoint action map FH must be an open

map in the relative strict topologies.

We need the Michael selection theorem, which is where we use the finite-
dimensionality from our hypotheses. Let X, Y be topological spaces. Let 2Y be
the set of all subsets of Y.

DEFINITION 3.3. Recall that a set-valued map S : X → 2Y is said to be lower
semicontinuous, if for every x0 ∈ X, for every open set G ⊆ Y, either S(x0) ∩ G is
empty or there is an open neighbourhood N of x0 such that S(x)∩G is nonempty
for every x ∈ N.

The Michael selection theorem stated as explicitly as possible is:

THEOREM 3.4 ([16]). Let X be a paracompact finite dimensional topological space.
Let Y be a complete metric space and let S be a set-valued lower semicontinuous map from
X to closed subsets of Y. Let L denote the range {S(x) : x ∈ X} of S. Then, if for some
m > n we have:

(i) S(x) is m-connected;
(ii) each L ∈ L has the property that every point x ∈ L has an arbitrarily small

neighbourhood V(x) such that πm(L′ ∩V(x)) = {e} for every L′ ∈ L;
then there exists a continuous map s from X to Y such that s(x) is in S(x) for all x ∈ X.

In the statement, πm is the mth homotopy group, defined by πm(Z) :=
[Sm, Z].

We shall eventually apply the theorem to the map of the form F−1
H (P(x)),

where P is a strictly continuous map from X to the halving projections, and FH is
the map from the previous lemma.

Proof of Theorem 1.2. Let τ̂(A) → M(C(X)⊗ B0) be the given trivial exten-
sion that is absorbing at each point.
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Now let a ∈ A be a nonzero, positive element. Let P be the projection in
Proposition 2.3 associated with τ̂(a)B0τ̂(a).

For each x ∈ X, let πx : C(X)⊗ B0 → B0 be the surjective ∗-homomorphism
obtained by point evaluation at the point x. Let π′′

x : M(C(X)⊗ B0) → M(B0)
be the unique strictly continuous extension of πx. For each x ∈ X, let a(x) :=
π′′

x (τ̂(a)) = τ̂x(a) and let P(x) := π′′
x (P). Then both a and P both naturally give

strictly continuous maps from X into M(B0) (see [1]).
By the pointwise absorption property of the given extension, the hereditary

subalgebra a(x)B0a(x) is a full and stable subalgebra of B0 for every x ∈ X. Thus,
by the argument of Proposition 2.6, the projection P(x) associated a(x)B0a(x) is
a halving projection in M(B0) for each x ∈ X.

Let Y be the closed ball in M(B0) of elements with norm less than or equal
to two. Since Y is convex and norm-closed, the Hahn-Banach theorem implies
that Y is closed in the weak-∗ topology, and a fortiori is closed in the weak topol-
ogy.

Moreover, since Y is a bounded subset of M(B0), the strict topology on Y is
metrizable. Let 2Y be the set of all subsets of Y. Let S : X → 2Y be the set-valued
map defined by S(x) := F−1

H (P(x)) for every x ∈ X.
We now show that S is lower semicontinuous. Suppose that G ⊆ M(B0) is

an open set in the strict topology. Suppose that x0 ∈ X is a point such that S(x0)∩
G = S(x0) ∩ Y ∩ G ∩W is nonempty. By Lemma 3.2, FH(G ∩ Y ∩W) is an open
neighbourhood of P(x0) in P (in the (relative) strict topology). By the continuity
of P, there is an open neighbourhood N of x0 such that P(x) ∈ FH(G ∩ Y ∩W)
for ever x ∈ N. So for all x ∈ N, S(x) = F−1

H (P(x)) has nonempty intersection
with G ∩Y. Since x0 and G were arbitrary, S is lower semi-continuous.

We next show that properties (i) and (ii) needed by the Michael selection
theorem hold. Lemma 3.2 shows that S(x) is contractible, hence m-connected for
all m, as needed for property (i). To check property (ii), it is enough to find an
arbitrarily small V(u) such that F−1(P(x)) ∩ V(u) is contractible (or empty). We
begin by showing that in the unitary group of the multipliers of a stable algebra,
there is a plentiful supply of contractible neighbourhoods. Consider M(B0 ⊗K).
As in 2.M of [26] one can define a strictly continuous family of isometries Vt ∈
B(L2[0, 1]), for t ∈ (0, 1], by

Vt( f )(s) :=
{

t−1/2 · f (s/t) when s 6 t,
0 otherwise.

Since VtV∗
t → 0 as t → 0, and since multiplication is strictly continuous on norm-

bounded subsets, it follows from Vt = VtV∗
t Vt that Vt goes to zero strictly as t →

0. There is a natural way to embed B(H) in M(B0 ⊗K), by the tensor product.
Define G : [0, 1]×U (M(B0 ⊗K)) → U (M(B0 ⊗K)) by

u 7→ (1⊗Vt)u(1⊗V∗
t ) + 1− (1⊗VtV∗

t ).
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This is a contraction of U onto {1} that keeps the point {1} fixed. Recall that
on bounded subsets the strict topology is given by a norm of the form |||x||| :=
‖xb‖ + ‖x∗b‖ where b is strictly positive in B ⊗ K. Since B0 is unital, we may
as well choose b to be of the special form 1 ⊗ k. (It is even possible to choose k
so that ‖V∗

t k‖ is monotone decreasing.) Thus, Gt will also give a contraction of
Nr(1) ∩ U , actually for all r. Since the unitaries are a group, we may replace 1 by
any other unitary. Thus, we have the required contractible neighbourhoods. We
can use them to construct an arbitrarily small V(u) having contractible “fibres” —
more precisely, such that each element of the family of disjoint sets x 7→ V(u) ∩
F−1(P(x)) is either empty or is one of the above neighbourhoods.

Applying the selection theorem, let s : X → W be a continuous selection
such that s(x) is an element of S(x) for all x ∈ X. Then s is a partial isometry
in M(B0) with initial projection P and range projection H. Hence, since H is a
halving projection, P is Murray-von Neumann equivalent to the unit of M(B0).
Hence, PB0P is stable, and therefore τ̂(a)(C(X)⊗ B0)τ̂(a) is stable. But from our
previous arguments, τ̂(a)(C(X)⊗ B0)τ̂(a) is also full. Hence, by Proposition 2.4,
the trivial extension τ̂ is absorbing.

4. APPENDIX A: PROOF OF THE OPENNESS OF A CERTAIN MAP F̃H .

Let H be some given halving projection in M(B0). Let V denote the set of
all b ∈ M(B0) such that b∗Hb is a halving projection in M(B0) and Hbb∗H = H.
Give V the relative topology inherited from the strict topology on M(B0). The
strictly continuous map F̃H : V → P is then defined to be the map that takes
b ∈ V to b∗Hb.

We are to show that F̃H is an open map (in the (relative) strict topology).

Proof. Suppose then that G is an open subset of M(B0) such that G ∩ V is
nonempty (so that G ∩ V is a nonempty open subset of V). Let b be an element
of G ∩ V , and let p be the halving projection F̃H(b) := b∗Hb. Let c1, c2, . . . , cn be
positive elements of B0, each with norm less than or equal to one, and let ε > 0
be a real number such that the following hold:

(i) The open set G1 ⊂ M(B0) that consists of all elements d ∈ M(B0) with
‖dci − bci‖ < 3ε and ‖cid− cib‖ < 3ε, for 1 6 i 6 n, is contained inside G.

(ii) The number ε is strictly less than one.
Let δ > 0 be a positive real number that is strictly less than ε. We will

further specify δ later, without introducing a circular argument. Since H is a
halving projection in M(B0), HB0H, by fullness, stability, and Brown’s theorem
[3], is isomorphic to B0. Hence, HB0H has an approximate unit consisting of
projections. Therefore,

(i) Let e be a projection in HB0H such that ci H is within δ/10000 of cie, for
1 6 i 6 n.
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(ii) Let G2(δ) be the open subset of G1 consisting of all elements d ∈ M(B0)
such that ‖dci − bci‖ < δ/1000, ‖cid − cib‖ < δ/1000, and ‖ed − eb‖ < δ/1000,
for all i with 1 6 i 6 n.

Since p is a halving projection inM(B0), pB0 p is again isomorphic to B0 and
has an approximate unit of projections. Hence, let f be a projection in pB0 p such
that:

(i) pci is within δ/100000 of f ci,
(ii) ci H is within δ/100000 of ci Hb f b∗H, and

(iii) e is within δ/100000 of eHb f b∗H, for 1 6 i 6 n.
(To see the last claim, recall that Hb is a partial isometry with initial projection p
and range projection H.) Now since Hb f b∗H is a projection in B0, and by clause
(i) of Lemma 2.1, we have that H − Hb f b∗H is a halving projection.

(i) Let H0 and H1 be orthogonal halving projections in M(B0) such that we
have a (orthogonal) decomposition H − Hb f b∗H = H0 ⊕ H1.

(ii) Let V be a partial isometry with initial projection H − Hb f b∗H and range
projection H0.

(iii) Let b
′

:= Vb + Hb f b∗Hb + (1− H)b.
By our construction, b

′ ∈ G2(δ). (Note that Vb = VHb and that Hb is a partial
isometry.) Moreover, Hb

′
is a partial isometry with initial projection p and range

projection H0 ⊕ Hb f b∗H a subprojection of H. Now let W be a partial isome-
try in M(B0) with initial projection H1 and range projection 1− p. Let U(δ) =
W + b∗H(V∗ + Hb f b∗H). Then U(δ) is a partial isometry in M(B0) with initial
projection H and range projection 1M(B0). Moreover, U(δ)b

′
= U(δ)Hb

′
= p.

Now let O be an strictly open subset of M(B0) consisting of all elements d
such that:

(i) ‖dci −U(δ)bci‖ < δ/10000,
(ii) ‖ciU(δ)∗d− ciU(δ)∗U(δ)b‖ < δ/10000, and

(iii) ‖eU(δ)∗d− eU(δ)∗U(δ)b‖ < δ/10000, for 1 6 i 6 n.
The set O is an open neighbourhood of U(δ)b. Now suppose that d is an element
of O. Let d

′
:= U(δ)∗d + (1−U(δ)∗U(δ))b. Then U(δ)d

′
= d. Also,

(i) ‖cid
′ − cib‖ < δ/10000,

(ii) ‖ed
′ − eb‖ < δ/10000, and

(iii) ‖d
′
ci − bci‖ < δ/10000, for 1 6 i 6 n.

Hence, d
′

is in G2(δ) and therefore is in U(δ)G2(δ). Since d is arbitrary, O is an
open set contained in U(δ)G2(δ). By our construction, p = U(δ)b

′
is contained

inside O, so that U(δ)G2(δ) contains an open neighbourhood of p in the strict
topology in M(B0).

We now proceed to show that (U(δ)G2(δ)) ∩P is contained in the image
F̃H(G ∩ V) for δ sufficiently small (and nonzero). Suppose that g is an element
of G2(δ) such that U(δ)g = U(δ)Hg is a halving projection, say, q. Then Hg is a
partial isometry with initial projection q and range projection contained inside H
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(and hence, by Lemma 2.1(i) the range projection is also a halving projection). We
need to replace g with an element whose range projection is all of H. Since g is an
element of G2(δ), ‖eg − eb‖ < δ/1000. Now eb is a partial isometry with range
projection e. Also, we specified that ci H is within δ/10000 of cie, for 1 6 i 6 n.
Hence, there is a projection h contained inside Hgg∗H (the range projection of
Hg) such that h is close to e (in norm). In particular, there is a nonincreasing
function k defined on the real numbers (or at least in a suitable neighbourhood
of zero) with k(0) = 0 and k continuous at 0 such that ci H is within k(δ) of cih,
for 1 6 i 6 n. Moreover, the function k should be independent of g. Note that
since e ∈ HB0H, h ∈ (Hgg∗H)B0(Hgg∗H). Since q is a halving projection, qB0q
is isomorphic to B0. Therefore, let r be a projection contained in qB0q such that:

(i) Hgqci is within δ/1000 of Hgrci, for 1 6 i 6 n, and
(ii) h is within δ/1000 of hHgrg∗H.

Hence, ci H is within 5k(δ) + δ/100 of ci Hgrr∗gH, for all i with 1 6 i 6 n.
Now by Lemma 2.1(i), we have that since r is in B0, the projections H −

Hgrg∗H and Hgg∗H − Hgrg∗H are both halving projections in M(B0). So let
T be a partial isometry in M(B0), with initial projection Hgg∗H − Hgrg∗H and
range projection H − Hgrg∗H. Let g

′
be the element of M(B0) given by g

′
=

Tg +(Hgrg∗H)g +(1−H)g. Then Hg
′
is a partial isometry with initial projection

q and range projection H. In particular, g
′

is an element of V . Now g
′
ci is within

δ/100 of gci, and cig
′

is within 20k(δ) + δ of cig, for 1 6 i 6 n. Let δ0 be a
strictly positive real number such that 20k(δ0) + δ0 < ε/100. Then, if δ < δ0 then
g
′ ∈ G1 ⊆ G. In particular, g

′ ∈ G ∩ V .
From the arbitrariness of g, and from the above arguments, we see that for

δ < δ0, (U(δ)G2(δ)) ∩ P contains an open neighbourhood of p = F̃H(b) (in the
relative strict topology) and (U(δ)G2(δ)) ∩P is in the image F̃H(G ∩ V). But b, G
were arbitrary. Hence, F̃H is an open map (in the (relative) strict topology).
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