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ABSTRACT. Let aij ∈ C1
b(RN), i, j = 1, . . . , N be uniformly elliptic, and let

b ∈ C1(RN), V ∈ C(RN). If div b
p 6 V, then we construct a unique minimal

positive semigroup generated by a restriction of the operator A defined by the
expression

Au =
N

∑
i,j=1

Di(aijDju)−
N

∑
i=1

biDiu−Vu

on Lp(RN) with maximal domain. We give a criterion for C∞
c (RN) to be a core

and we give conditions on V and b which imply that the semigroup is given
by kernels allowing an upper Gaussian bound. By a specific example we show
that our criteria are close to optimal.
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1. INTRODUCTION

Schrödinger operators of the form ∆−V with V ∈ L1
loc(R

N) and their asso-
ciated semigroups in Lp(RN) have been studied for many properties, see e.g. the
most motivating survey article by B. Simon [29]. On the other hand elliptic opera-
tors and their associated semigroups are quite well known in the case of bounded
coefficients, see for example Davies’ monograph [9] and also the survey [4].

In this article we consider the operator

(1.1) A :=
N

∑
i,j=1

Di(aijDj)−
N

∑
i=1

biDi −V

under the following standing hypotheses, which we shall keep in the whole pa-
per: aij, bi, V : RN → R, with aij ∈ C1

b(RN), bi ∈ C1(RN), V ∈ C(RN). Moreover,
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the matrix (aij) is assumed to be uniformly elliptic, i.e.,

(1.2)
N

∑
i,j=1

aij(x)ξiξ j > ν|ξ|2, ν > 0, ∀ x, ξ ∈ RN .

Notice that neither the drift b = (b1, . . . , bN) nor the potential V are assumed to be
bounded, but the unboundedness of the first order coefficients bi can be balanced
by the potential V assuming

(1.3)
div b

p
6 V.

Let us denote by Ap,max the operator A endowed with its maximal domain

Dp,max := {u ∈ Lp(RN) ∩W2,p
loc (RN) : Au ∈ Lp(RN)}, 1 < p < ∞,(1.4)

D1,max := {u ∈ L1(RN) ∩W1,1
loc (R

N) : Au ∈ L1(RN)}.(1.5)

We study under which conditions there is a unique restriction Ap of the opera-
tor Ap,max which generates a minimal positive C0 semigroup in Lp(RN), where
1 6 p < ∞. In general, there may be other extensions generating larger positive
semigroups, but we give uniqueness criteria which imply that C∞

c (RN) is a core
of the generator. We also investigate when the operator Ap has compact resol-
vent and give a criterion on the growth of b with respect to V which implies that
the semigroup has a kernel which has an upper Gaussian bound. Such Gaussian
bound has many interesting consequences, in particular, analyticity of the semi-
group in L1(RN). This analyticity had been proved before under slightly more
restrictive conditions by a completely different method in [24] which, however,
allows to characterize the domain, see also [7] for more general results and [28]
for a detailed analysis for p = 2. Gaussian estimates imply also that the spectrum
of the generator is independent of p ∈ [1, ∞[. This property, among others, has
also been studied by Liskevich, Sobol and Vogt in [19] and Sobol and Vogt in [30].
In the last section we consider the examples

Au(x) = u′′(x)− x3u′(x)− c|x|γu(x),

on Lp(R), which show that our criteria are close to optimal. For instance, we
show that for γ > 6 the semigroup has Gaussian estimates, but for 2 < γ < 6 a
semigroup is obtained which is not holomorphic in Lp(RN) for 1 6 p < ∞.

We refrain from taking less regular coefficients aij in order to avoid technical
complications which hide the basic ideas. This allows us in particular to use a
very simple technique, introduced in [6], based on the Beurling-Deny criteria and
Davies’ trick, to prove Gaussian estimates.
Notation. For x ∈ RN , |x| denotes the euclidean norm, and B$ = {x ∈ RN : |x| <
$} the open ball with radius $ > 0. For every function u we denote by u+ and u−

the positive and negative parts, i.e., u+ = max{u, 0} and u− = max{−u, 0}. The
spaces Lp(Ω), 1 6 p 6 ∞, are endowed with the usual norm ‖ · ‖Lp(Ω) denoted
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also by ‖ · ‖p when Ω = RN . The Sobolev space Wk,p(Ω) is the set of all the
measurable functions in the open set Ω ⊂ RN which have weak derivatives p-
summable in Ω up to order k, endowed with the usual norm ‖ · ‖Wk,p(Ω), denoted

by ‖ · ‖k,p when Ω = RN . We set u ∈ Wk,p
loc (Ω) if ϕu ∈ Wk,p(Ω) for every ϕ ∈

C∞
c (Ω). We denote by Cb(RN) the space of bounded and continuous functions

on RN , endowed with the sup norm ‖ · ‖∞. By C1
b(RN) we denote the space of all

bounded continuously differentiable functions on RN with bounded derivative.
If L is a closed operator in a Banach space X, we denote by σ(L) and ρ(L)

the spectrum and the resolvent set of L. The resolvent operator is denoted by
R(λ, L). We say that an operator L on Lp is resolvent positive if there exists λ0 ∈ R
such that [λ0, ∞[⊂ ρ(L) and R(λ, L) f > 0 for λ > λ0, whenever f ∈ Lp, f > 0.

2. PRELIMINARY RESULTS

In this section we collect some results needed for the whole paper. For sim-
plicity, we denote by A0 the differential operator

A0 :=
N

∑
i,j=1

Di(aijDj).

In order to construct a semigroup associated with A we need the following lem-
mas.

LEMMA 2.1. Let u ∈ W2,p(B$), 1 < p < ∞ and let η ∈ W1,∞(B$). Then

(p− 1)
∫
B$

η|u|p−2χ{u 6=0}
N

∑
i,j=1

aijDiuDju +
∫
B$

u|u|p−2
N

∑
i,j=1

aijDiuDjη

=
∫

∂B$

u|u|p−2η
N

∑
i,j=1

aijDiuνjdσ−
∫
B$

η(A0u)u|u|p−2,

where ν = (ν1, . . . , νN) is the outward normal to ∂B$ and dσ is the surface measure. In
particular, if u ∈ W1,p

0 (B$), taking η ≡ 1 we get∫
B$

(A0u)u|u|p−2 6 0,
∫
B$

(A0u)sign u 6 0.

Proof. Even though the above equality looks obvious (formally), it is ele-
mentary only if p > 2, whereas a (non-trivial) argument is needed for 1 < p < 2
to avoid the singularities of |u|p−2 at the points where u vanishes. We refer to [25]
for the details. Concerning the last inequality, note that u ∈ W2,r(B$) ∩W1,r

0 (B$)



188 WOLFGANG ARENDT, GIORGIO METAFUNE AND DIEGO PALLARA

for all 1 < r < p and therefore∫
B$

(A0u)u|u|r−2 6 0.

Letting r → 1 we obtain the claim.

LEMMA 2.2. Let u ∈ W2,p(B$), 1 6 p < ∞ and assume that u 6 0 on ∂B$ in
the sense of traces. Then∫

B$

(A0u)(u+)p−1 6 0 for 1 < p < ∞,
∫
B$

(A0u)χ{u>0} 6 0 for p = 1.

Proof. Let us first take p > 1 and u ∈ C2(B$). Let hn ∈ C1
b(R) be such that

hn(t) = 0 for t 6 0, h′n > 0, hn 6 hn+1 and hn(t) → (t+)p−1 as n → ∞ for
t 6 max

B$

u. Then (with the same notation as in the Lemma 2.1)

∫
B$

(A0u)hn(u) = −
∫

{u>0}

h′n(u)
N

∑
i,j=1

aijDiuDju +
∫

∂B$

hn(u)
N

∑
i,j=1

aijDiuνjdσ

6
∫

∂B$

hn(u)
N

∑
i,j=1

aijDiuνjdσ.

Letting n → ∞ we deduce∫
B$

(A0u)(u+)p−1 6
∫

∂B$

(u+)p−1
N

∑
i,j=1

aijDiuνjdσ.

The above equality extends by density to every u ∈ W2,p(B$), since both sides
are continuous with respect to the topology of W2,p(B$). For p > 1 the claim then
follows because u+ = 0 on ∂B$. For p = 1, one proceeds similarly, approximating
the characteristic function of [0, +∞[ instead of (t+)p−1.

Some regularity properties of the semigroup generated by A in L1(RN) de-
pend on interior L1-estimates as stated in Proposition 2.4. Since we have not been
able to find a reference for them, we provide a proof inspired by Theorem 7.1.1
of [18].

LEMMA 2.3. There exist constants C, ε0 > 0 such that for every u ∈ C∞
c (RN)

and ε 6 ε0

‖∇u‖1 6 ε‖A0u‖1 + (C/ε)‖u‖1.

Proof. Let φ ∈ C∞
c , ‖φ‖∞ 6 1 and for λ > 0 consider v ∈ Cb(RN) ∩

W2,p(RN) for every p < ∞ such that λv − A0v = φ, see Theorem 3.1.2 of [20].
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Since λ‖v‖∞ 6 1, it follows from Proposition 3.1.11 of [20] that λ1/2‖∇v‖∞ 6 C,
with C independent of λ. For u ∈ C∞

c (RN) we have∫
RN

Dkuφ =
∫

RN

Dku(λv− A0v) =
∫

RN

v(λ− A0)Dku

=
∫

RN

vDk(λu− A0u) +
∫

RN

v(Dk A0u− A0Dku)

= −
∫

RN

Dkv(λu− A0u)−
∫

RN

∑
i,j

(Dkaij)DivDju

6 C1λ−1/2(‖λu− A0u‖1 + ‖∇u‖1).

It follows that

‖∇u‖1 6 C1(λ1/2‖u‖1 + λ−1/2‖A0u‖1 + λ−1/2‖∇u‖1)

and the lemma easily follows taking ε = C1λ−1/2.

PROPOSITION 2.4. Let $ > 0 be fixed. Then there exists a constant C > 0 such
that for every u ∈ W2,1

loc (R
N) the following inequality holds

‖u‖W1,1(B$) 6 C(‖Au‖L1(B2$) + ‖u‖L1(B2$)).

Proof. Since aij ∈ C1
b(RN) and the coefficients b and V are locally bounded,

Lemma 2.3 provides constants ε0, C > 0 such that for every v ∈ W2,1(RN) with
compact support in B2$ the following inequality holds for every 0 < ε < ε0

(2.1) ‖v‖1,1 6 ε‖Av‖1 + Cε−1‖v‖1.

Let $n = $
n
∑

j=0
2−j so that $0 = $, lim

n→∞
$n = 2$ and consider ηn ∈ C∞

c (B$n+1) such

that η = 1 on B$n , |∇ηn| 6 L2n, |D2ηn| 6 L4n with L independent of n. Applying
(2.1) to v = ηnu we obtain for a suitable C1 > 1 depending on L, ρ,

‖ηnu‖1,1 6 ε‖A(ηnu)‖1 + Cε−1‖ηnu‖1

6 ε(‖Au‖L1(B2$) + C14n‖u‖W1,1(B$n+1 )) + Cε−1‖u‖L1(B2$)

6 C1ε(‖Au‖L1(B2$) + 4n‖ηn+1u‖1,1) + Cε−1‖u‖L1(B2$).

Setting ε = γC−1
1 4−n we get

‖ηnu‖1,1 6 γ(‖Au‖L1(B2$) + ‖ηn+1u‖1,1) + C24nγ−1‖u‖L1(B2$).

Taking γ = 1/8, multiplying the inequalities above by γn and summing over n
we obtain

∞

∑
n=0

γn‖ηnu‖1,1 6 C3‖Au‖L1(B2$) +
∞

∑
n=0

γn+1‖ηn+1u‖1,1 + C4‖u‖L1(B2$)
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(the convergence of the series is easily verified). Subtracting the terms γn‖ηnu‖1,1,
n > 1, that are present in both sides, we complete the proof.

We also need the following local regularity result for distributional solutions
of elliptic equations. The following lemma is well-known and its proof is given
here only for the sake of completeness. We refer the reader to [1], where much
more general situations are treated, and also to [2] for the case q = 2.

LEMMA 2.5. Let 1 < q < ∞ and f , w ∈ Lq
loc(R

N) be such that

(2.2)
∫

RN

Aφ w =
∫

RN

f φ

for every φ ∈ C∞
c (RN). Then w ∈ W2,q

loc (R
N).

Proof. Let us fix $ > 0. Since aij ∈ C1
b(RN) and b and V are locally bounded,

there exists C > 0 such that∣∣∣ ∫
RN

(λφ− Bφ)w
∣∣∣ 6 C‖φ‖1,q′

for every φ ∈ C∞
c (RN) with support contained in B2$. Here B = ∑

ij
aijDij and

λ > 0 is fixed in such a way that λ − B is invertible from W2,q′(RN) to Lq′(RN),
see Chapter 9 of [14]. Let η ∈ C∞

c (RN) be such that η = 1 on B$, η = 0 outside
B2$. It is easily checked that v = ηw satisfies∣∣∣ ∫

RN

(λφ− Bφ)v
∣∣∣ 6 C1‖φ‖1,q′

for every φ ∈ C∞
c (RN). Set now φ = D−hψ := |h|−1(ψ(· − h) − ψ(·)). Using

the standard properties of difference quotients and the fact that the coefficients
aij have bounded derivatives we get∣∣∣ ∫

RN

(λψ− Bψ)Dhv
∣∣∣ 6 C2‖ψ‖2,q′

for every ψ ∈ C∞
c (RN) and then, by density, for every ψ ∈ W2,q′(RN). We

now choose ψ ∈ W2,q′(RN) such that λψ − Bψ = Dhv|Dhv|q−2 and ‖ψ‖2,q′ 6

C3‖D−hv‖q−1
q to obtain ∫

RN

|Dhv|q 6 C4

with C4 independent of h. The boundedness of the difference quotients Dhv im-
plies that v ∈ W1,q(RN), that is w ∈ W1,q

loc (R
N).
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Next we consider A0 instead of B and observe that λ− A0 is invertible from
W2,p(RN) to Lp(RN) for every λ > 0 and 1 < p < ∞. From (2.2) it easily follows
that ∫

RN

A0φ w =
∫

RN

f1φ

for every φ ∈ C∞
c (RN) and with f1 = f − div (bw) + Vw ∈ Lq

loc(R
N). Inserting

ηφ instead of φ in the above identity, a straightforward computation then shows
that

(2.3)
∫

RN

(λφ− A0φ)v =
∫

RN

gφ

for every φ ∈ C∞
c (RN), where g = λv − η f1 + wA0η − 2 ∑

i,j
Dj(aijwDiη) belongs

to Lq(RN). Let u ∈ W2,q(RN) be such that λu − A0u = g. Then (2.3) is satisfied
with u instead of v and we have only to prove that u = v. Set z = u− v. Then

(2.4)
∫

RN

(λφ− A0φ)z = 0

for every φ ∈ W2,q′(RN), by density. Since λ− A0 is surjective from W2,q′(RN) to
Lq′(RN) we infer z = 0.

3. CONSTRUCTION OF THE SEMIGROUP

Now we construct a positive semigroup on Lp(RN) whose generator is a
restriction of Ap,max.

THEOREM 3.1. Let 1 < p < ∞ and assume that

(3.1) p−1div b(x) 6 V(x) ∀ x ∈ RN .

Then, there exists a unique resolvent positive operator Ap ⊂ Ap,max which is minimal
among the resolvent positive restrictions of Ap,max , i.e., if Bp ⊂ Ap,max is resolvent
positive, then R(λ, Bp) > R(λ, Ap) for λ > 0.

Proof. Take f ∈ Lp(RN) and consider the Dirichlet problem in Lp(B$)

(3.2)
{

λu− Au = f in B$,
u = 0 on ∂B$.

According to Theorem 9.15 in [14], a unique solution u$ exists in W2,p(B$) ∩
W1,p

0 (B$) for λ > 0. Let us multiply the above equation by u$|u$|p−2 and in-
tegrate over B$. Since∫

B$

b · ∇u$u$|u$|p−2 = p−1
∫
B$

b · ∇|u$|p = −p−1
∫
B$

(div b)|u$|p,



192 WOLFGANG ARENDT, GIORGIO METAFUNE AND DIEGO PALLARA

from Lemma 2.1 it easily follows that∫
B$

((λ + V − p−1div b)|u$|p + (p− 1)ν|u$|p−2|∇u$|2χ{u$ 6=0})

6
∫
B$

| f ||u$|p−1(3.3)

and therefore λ‖u$‖p 6 ‖ f ‖p.
In order to show that u$ 6 0 if f 6 0 in B$ we multiply the equation

λu$ − Au$ = f

by (u+
$ )p−1 and integrate over B$. Since∫

B$

b · ∇u$(u+
$ )p−1 = p−1

∫
B$

b · ∇(u+
$ )p = −p−1

∫
B$

(div b)(u+
$ )p,

from Lemma 2.2 it follows that∫
B$

(λ + V − p−1div b)(u+
$ )p 6

∫
B$

f (u+
$ )p−1 6 0

and hence u$ 6 0.
To show the convergence of u$ as $ → ∞, we may assume that f > 0. In this

case, 0 6 u$ 6 ur in B$ for every r > $. In fact, the function v = u$ − ur belongs
to W2,p(B$), is negative on ∂B$ in the sense of traces, and satisfies λv− Av = 0 on
B$. Multiplying this equation by (v+)p−1, integrating on B$ and using Lemma 2.2
it follows that v 6 0.

This shows that the functions u$ increase pointwise with $, hence we may
define a function u = lim

$→∞
u$. The Beppo Levi theorem implies that λ‖u‖p 6

‖ f ‖p and hence u$ converges to u in Lp(RN). Let us fix two radii $1 6 $2 and use
the interior Lp-estimate ([14], Theorem 9.11)

‖u‖W2,p(B$1 ) 6 C[‖λu− Au‖Lp(B$2 ) + ‖u‖Lp(B$2 )].

Applying it to the differences u$ − ur with $, r > $2, we deduce that the family

(u$) converges to u in W2,p
loc (RN) and therefore u ∈ Dp,max(A) and λu− Au = f .

We can now define an operator Ap = (A, Dp) with Dp ⊂ Dp,max(A) such
that, for every λ > 0, λ − A is bijective from Dp onto Lp(RN). Setting A$ :=
(A, W2,p(B$) ∩ W1,p

0 (B$)) the functions u$ are given by u$ = R(λ, A$) f . Let
us define a family of bounded operators (R(λ))λ>0 on Lp(RN) by the formula
R(λ) f = lim

$→∞
R(λ, A$) f . Clearly ‖λR(λ)‖ 6 1 and R(λ) f > 0 if f > 0. More-

over, R(λ) f ∈ Dp,max(A) and (λ − A)R(λ) f = f . Let us verify that the family
(R(λ))λ>0 satisfies the resolvent identity R(λ)− R(µ) = (µ− λ)R(λ)R(µ). Since
this is true for the families (R(λ, A$))λ>0, it is sufficient to show that, for every
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f ∈ Lp(RN), R(λ)R(µ) f = lim
$→∞

R(λ, A$)R(µ, A$) f . We may assume that f > 0.

Then R(λ)R(µ) f > lim sup
$→∞

R(λ, A$)R(µ, A$) f . Conversely, for every fixed $1 we

have

lim inf
$→∞

R(λ, A$)R(µ, A$) f > lim inf
$→∞

R(λ, A$1)R(µ, A$) f = R(λ, A$1)R(µ) f

and hence, letting $1 → ∞, lim inf
$→∞

R(λ, A$)R(µ, A$) f > R(λ)R(µ) f .

Since (λ − A)R(λ) f = f , the operators R(λ) are injective, and therefore
there exists an operator Ap = (A, Dp), Dp ⊂ Dp,max(A), such that R(λ) is the
resolvent of Ap (see Chapter III, Proposition 4.6 of [13]).

Finally, let us show the minimality of u = R(λ) f , f > 0, among the positive
solutions of the equation λw − Aw = f in Dp,max(A). Let w be such a solution
and consider the difference v = u$ − w in B$. With the same argument used to
prove the monotonicity of the net (u$) it follows that v 6 0, that is u$ 6 w in B$.
Letting $ → ∞ we obtain u 6 w.

In the sequel we write Ap for (A, Dp).
Let us point out a simple consequence of our construction for 1 < p 6 2

which is probably false, in general, for p > 2.

COROLLARY 3.2. Assume that the hypotheses of Theorem 3.1 hold for 1 < p 6 2.
Then Dp ⊂ W1,p(RN).

Proof. From (3.3) it follows that∫
B$

|u$|p−2|∇u$|2χ{u$ 6=0} 6 C‖ f ‖p
p.

Letting $ → ∞ we deduce from Fatou’s lemma∫
RN

|u|p−2|∇u|2χ{u 6=0} 6 C‖ f ‖p
p

and then, using Hölder’s inequality, we obtain∫
RN

|∇u|p 6
( ∫

RN

|u|p−2|∇u|2χ{u 6=0}

)p/2( ∫
RN

|u|p
)1−p/2

6 C1‖ f ‖p
p.

We can now prove generation in Lp(RN) for 1 < p < ∞.

THEOREM 3.3. Under the hypotheses of Theorem 3.1, the operator Ap generates
a positive and contractive semigroup Tp. Moreover, if condition (3.1) holds with q 6= p
in place of p, so that there exists also the semigroup Tq, then Tp f = Tq f for every
f ∈ Lp(RN) ∩ Lq(RN).

Proof. Let u ∈ C∞
c (RN), f = λu − Au. If B$ contains the support of u the

function u$ constructed in the proof of Theorem 3.1 coincides with u. Letting
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$ → ∞ it follows that u = R(λ, Ap) f and hence C∞
c (RN) ⊂ Dp and Dp is dense

in Lp(RN).
The first statement is now an immediate consequence of the Lumer-Phillips

Theorem and of the positivity of the resolvent of Ap.
Concerning the second statement, we simply notice that for f ∈ Lp(RN) ∩

Lq(RN), the functions u$ are independent of p, q, hence R(λ, Ap) f = R(λ, Aq) f
and the claim follows.

REMARK 3.4. Notice that if the potential V is nonnegative and condition
(3.1) holds, the analogous one, with q > p, holds as well. As a consequence, the
semigroups Tq exist for every q > p and are consistent. Moreover, they are also
contractive with respect to the sup-norm.

Let us now deal with generation in L1(RN). Consider the operator A1,max
on L1(RN) defined by A1,maxu = Au with domain D(A1,max) given by (1.5).

THEOREM 3.5. Assume that div b(x) 6 V(x) for every x ∈ RN . Then there is
a unique minimal resolvent positive operator A1 ⊂ A1,max in the same sense as Theo-
rem 3.1. Moreover, A1 generates a positive contraction semigroup T1 in L1(RN). Its
domain D1 satisfies C∞

c (RN) ⊂ D1 ⊂ D1,max ∩ D(V − div b), where

D(V − div b) = {u ∈ L1(RN) : (V − div b)u ∈ L1(RN)}.

Proof. We proceed as in the proof of Theorem 3.1. Let f ∈ C∞
c (RN) and

consider the Dirichlet problem in L2(B$){
λu− Au = f in B$,
u = 0 on ∂B$.

According to Theorem 9.15 of [14], a unique solution u$ exists in W2,2(B$) ∩
W1,2

0 (B$) for λ > 0. Let us multiply the above equation by sign u$ and integrate
over B$. Since ∫

B$

b · ∇u$sign u$ =
∫
B$

b · ∇|u$| = −
∫
B$

(div b)|u$|,

from Lemma 2.1 it follows that

(3.4)
∫
B$

(λ + V − div b)|u$| 6
∫
B$

| f |.

In particular, for λ > 0, λ‖u$‖1 6 ‖ f ‖1.
Setting A$ := (A, W2,2(B$) ∩W1,2

0 (B$)), the functions u$ are given by u$ =
R(λ, A$) f and (3.4) shows that the operators R(λ, A$) can be continuously ex-
tended to bounded operators R$(λ) on L1(B$) satisfying ‖λR$(λ) f ‖1 6 ‖ f ‖1. As
in Theorem 3.1, one shows that R(λ) f := lim

$→∞
R$(λ) f exists in L1(RN), ‖λR(λ) f ‖1

6 ‖ f ‖1 and the family (R(λ))λ>0 satisfies the resolvent identity.
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Moreover, R(λ) f ∈ D(V − div b), letting $ → ∞ in (3.4), and R(λ) f ∈
W1,1

loc (R
N), by Proposition 2.4.

In order to complete the proof, we have to show that R(λ) has dense range
and is injective. As in Theorem 3.3 one shows that the range of R(λ) contains
C∞

c (RN) and that R(λ) f = u if u ∈ C∞
c (RN) and λu − Au = f . This proves

the required density. For f in the range of R(λ) one has lim
λ→+∞

λR(λ) f = f in

L1(RN) by the resolvent identity. It follows from the density of the range that
lim

λ→+∞
λR(λ) f = f for all f ∈ L1(RN). Since the kernel of R(λ) is independent

of λ we conclude that R(λ) is injective for all λ > 0. Consequently, there exists
an operator A1 such that (0, ∞) ⊂ ρ(A1) and R(λ, A1) = R(λ) for all λ > 0.
It follows from the Hille-Yosida theorem that A1 generates a C0-semigroup T1
which is positive since R(λ, A1) > 0.

It remains to prove the minimality. Let B ⊂ A1,max be resolvent positive
and let λ0 > 0 be such that [λ0, ∞) ⊂ ρ(B). For λ > λ0 and f ∈ C∞

c (RN) we
consider u = R(λ, A1) f , v = R(λ, B) f . Then v ∈ W1,1

loc (R
N) (hence in Lq

loc(R
N)

for some q > 1), v > 0 and λv − Av = f in D′(RN). It follows applying it-
eratively Lemma 2.5 that v ∈ W2,p

loc (RN) for all 1 < p < ∞. In particular,
v is continuous. Since u = lim

$→∞
u$, it suffices to prove that u$ 6 v, where

u$ ∈ W2,2(B$) ∩W1,2
0 (B$), λu$ − Au$ = f . Let w = u$ − v ∈ W2,2(B$) ∩ C(B$).

Then w 6 0 on ∂B$ and λw− Aw = 0 in B$. Hence

λ
∫
B$

wφ +
∫
B$

N

∑
i,j=1

aijDiwDjφ +
∫
B$

N

∑
j=1

bjDjwφ +
∫
B$

Vwφ = 0

for all φ ∈ W1,2
0 (B$). Observe that w+ ∈ W1,2

0 (B$), hence taking φ = w+ we
conclude that

λ
∫
B$

(w+)2 +
∫
B$

N

∑
i,j=1

aijDiw+Djw+ +
∫
B$

N

∑
j=1

bjDjw+w+ +
∫
B$

V(w+)2 = 0.

Since∫
B$

N

∑
j=1

bjDjw+w+ =
1
2

∫
B$

N

∑
j=1

bjDj(w+)2 = −1
2

∫
B$

(w+)2
N

∑
j=1

Djbj 6
∫
B$

V(w+)2,

we obtain from (1.2) that

λ
∫
B$

(w+)2 + ν
∫
B$

|∇w+|2 6 0.

This implies that w+ = 0.

In Theorems 3.1 and 3.5 we have constructed the resolvent of Ap as the limit
of R(λ, A$) for $ → ∞. In a suitable sense, the same convergence also holds for
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the semigroups generated by A$, as we explain in the next result, where we use
the notation introduced in the proof of Theorem 3.1.

PROPOSITION 3.6. Let 1 6 p < ∞. Assume that div b
p 6 V. For every $ > 0, let

(Tp,$(t))t>0 be the semigroup generated by A$ in Lp(B$). For every f ∈ Lp(RN) let us
define T̃p,$(·) f : [0, +∞[→ Lp(RN) setting

T̃p,$(t) f =
{

Tp,$(t) f in B$,
0 otherwise.

Then, T̃p,$(t) f → Tp(t) f as $ → ∞, uniformly on compact sets of [0, +∞[.

Proof. By density, and since the semigroups (Tp,$(t))t>0, (Tp(t))t>0 are con-
tractive, we may assume that f ∈ C∞

c (RN). Let us take a sequence $n going to
+∞; the statement will follow from the arbitrariness of the sequence. Since the
Laplace transform of T̃p,$n(·) f is given by

g$n(λ) =
{

R(λ, A$n) f in B$,
0 otherwise,

and the sequence (g$n) is pointwise convergent for λ > 0 to R(λ, Ap) f , by Theo-
rems 3.3, 3.5, the claim follows from Theorem 1.7.5 in [5] if we verify that for every
t0 > 0, the sequence (T̃p,$n(t0) f ) is equicontinuous. Take n so that the support of
f is contained in B$n , and notice that for 0 6 t0 < t < ∞ we have

T̃p,$n(t) f − T̃p,$n(t0) f =
t∫

t0

T̃p,$n(s)A f ds,

whence
‖T̃p,$n(t)− T̃p,$n(t0)‖p 6 |t− t0|‖A f ‖p

and the equicontinuity follows.

We can describe the semigroup Tp by a minimality property.

COROLLARY 3.7. Let 1 6 p < ∞. Let B ⊂ Ap,max be the generator of a positive
C0-semigroup S on Lp(RN). Then Tp(t) 6 S(t) for all t > 0.

Proof. Since B generates a positive C0-semigroup, B is resolvent positive. It
follows from Theorem 3.1 that for large λ, R(λ, Ap) 6 R(λ, B). Consequently,

Tp(t) f = lim
n→∞

(
I − t

n
Ap

)−n
f 6 lim

n→∞

(
I − t

n
B
)−n

f = S(t)

for all 0 6 f ∈ Lp(RN), t > 0.

In the following result we investigate the compactness of the resolvent of Ap.

THEOREM 3.8. Let 1 6 p < ∞ and assume that

(3.5) lim
|x|→∞

(V(x)− p−1div b(x)) = +∞;
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then the resolvent operator R(λ, Ap) is compact in Lp(RN).

Proof. We keep the notation introduced in the proof of Theorem 3.1 and
write u = R(λ, Ap) f = lim

$→∞
u$. Letting $ → ∞ in (3.3) and using the inequality

λ‖u‖p 6 ‖ f ‖p, we deduce∫
RN

(V − p−1div b)|u|p 6
‖ f ‖p

λp−1 .

By the assumption, given ε > 0, we can choose $ > 0 such that, for every f ∈
Lp(RN) with ‖ f ‖p 6 1, ∫

RN\B$

|R(λ, Ap) f |p 6 εp.

The interior estimate

‖R(λ, Ap) f ‖W1,p(B$) 6 C(‖ f ‖p + ‖R(λ, Ap) f ‖p) 6 C(1 + λ−1)‖ f ‖p

(which follows as in the proof of Theorem 3.1 for p > 1 and from Lemma 2.5
for p = 1) and the compactness of the embedding of W1,p(B$) into Lp(B$) imply
that the family {R(λ, Ap) f , ‖ f ‖p 6 1} is relatively compact in Lp(B$). Let
{g1, . . . , gk} be an ε-net for this family in Lp(B$). Then it is immediate to check
that the same functions, extended to 0 outside B$, are a 2ε-net in Lp(RN).

4. UNIQUENESS

In this section we investigate uniqueness in Lp(RN) for 1 6 p < ∞. The
results are based upon the existence of suitable control functions for the drift
term (see (4.1) and Theorem 4.3 below). There is a wide literature on uniqueness
of diffusion operators, i.e., when V = 0. We refer the reader to [11], see also [10],
for a discussion of several notions of uniqueness in Lp, 1 < p < ∞ , and related
results which are valid also in the case of singular coefficients. We refer also the
reader to [31] for uniqueness in L1. The question of uniqueness is well understood
in the case of Schrödinger operators, see e.g. [12], [16], [17]. However, we are not
aware of results dealing with the general second order operator, even in the case
of smooth (unbounded) coefficients.

Our first result is in the same line as in Chapter 2.c of [10].

THEOREM 4.1. Let 1 < p < ∞ and suppose that condition (3.1) holds. Assume
that there is a positive function z ∈ C2(RN) such that z(x) → +∞ as |x| → ∞,
|∇z| 6 c(1 + z) and

(4.1) b · ∇z 6 c(1 + z)(1 + (V − p−1div b)α),

for suitable constants c > 0, 0 6 α < 1. Then C∞
c (RN) is a core for Ap.
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Proof. Since C∞
c (RN) is contained in Dp and Ap has non-empty resolvent

set, it suffices to show that (λ− Ap)C∞
c (RN) is dense in Lp(RN) for λ sufficiently

large.
Let q be such that 1/p + 1/q = 1 and w ∈ Lq(RN) such that∫

RN

(λφ− Aφ)w = 0

for every φ ∈ C∞
c (RN). By Lemma 2.5, w ∈ W2,q

loc (R
N) and hence λw− A∗w = 0,

where

(4.2) A∗ :=
N

∑
i,j=1

Di(aijDj) +
N

∑
i=1

biDi − (V − div b)

is the formal adjoint of A.
Let g ∈ C∞(0, +∞) be such that 0 6 g 6 1, g(r) = 1 for r 6 1, g(r) = 0 for

r > 2, g′ 6 0 and define ηn ∈ C∞
c (RN) by ηn(x) = g(z(x)/n). Multiplying the

identity λw − A∗w = 0 by ηs
nw|w|q−2, with s > 2, and integrating by parts, we

obtain from Lemma 2.1

(4.3)
∫

RN

((λ + V − p−1div b)|w|qηs
n + ν(q− 1)ηs

n|w|q−1|∇w|2) = I1 + I2

where

|I1| =
∣∣∣ ∫
RN

sηs−1
n |w|q−2w

N

∑
i,j=1

aijDiwDjηn

∣∣∣ 6 sK
∫

RN

ηs−1
n |w|q−1|∇w||∇ηn| ,

I2 = − s
q

∫
RN

ηs−1
n |w|qb · ∇ηn ,

and K = N2 max
i,j

‖aij‖∞. Observe that

∇ηn(x) = n−1g′(z(x)/n))∇z(x)χ{n6z62n}

hence |∇ηn| 6 C for a suitable C > 0, independent of n, since |∇z| 6 c(1 + z).
By Hölder’s inequality and since s > 2 we get

|I1| 6 CKs
( ∫
{n6z62n}

|w|q
)1/2( ∫

RN

η2s−2
n |w|q−2|∇w|2χ{w 6=0}

)1/2

6 εCKs
∫

RN

ηs
n|w|q−2|∇w|2χ{w 6=0} +

CKs
4ε

∫
{n6z62n}

|w|q.
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As regards I2 we have

I2 = − s
q

∫
{n6z62n}

ηs−1
n |w|qn−1g′(z(x)/n)b · ∇z

6 C1s
∫

{n6z62n}

ηs−1
n n−1(1 + z)|w|q(V − p−1div b)α

6 C2s
∫

{n6z62n}

ηs−1
n |w|q(V − p−1div b)α

and Hölder’s inequality with r = α−1 and r′ = r/(r− 1) yields

I2 6 C2s
∫

{n6z62n}

ηs−1
n |w|q/r′ |w|q/r(V − p−1div b)α

6 C2s
( ∫
{n6z62n}

|w|q
)1/r′( ∫

RN

η
r(s−1)
n |w|q(V − p−1div b)

)1/r
.

Fixing s > 2 such that r(s− 1) > s we obtain from (4.3) and for every ε > 0∫
RN

((λ + V − p−1div b)ηs
n|w|q + (ν(q− 1)− εCKs)ηs

n|w|q−2|∇w|2χ{w 6=0})

6 Cε

∫
{n6z62n}

|w|q + ε
∫

RN

ηs
n|w|q(V − p−1div b).

Taking ε small enough we deduce

λ
∫

RN

|w|qηs
n 6 C

∫
{n6z62n}

|w|q

and, letting n → ∞, w = 0.

To deal with uniqueness in L1(RN) we need the following maximum prin-
ciple.

PROPOSITION 4.2. Assume that the potential V for the operator A defined in
(1.1) is nonnegative and that there exists a positive function z ∈ C2(RN \ B$) for some
$ > 0 such that z(x) → +∞ as |x| → ∞ and Az 6 λz for some λ > 0. If w ∈
Cb(RN) ∩W2,q

loc (R
N) for all q < ∞ and λw = Aw, then w = 0.

Proof. Let us show that w 6 0. A similar argument shows that w > 0, hence
w = 0.

For |x| > $ we consider the function wε = w− εz. Since λwε − Awε 6 0 and
V > 0, using e.g. Lemma 3.2 of [21] it is readily seen that the function wε cannot
have a positive maximum for |x| > $, and hence wε(x) 6 max

|x|=$
w+

ε 6 max
|x|=$

w+ for
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|x| > $. Letting ε → 0 we obtain w(x) 6 max
|x|=$

w+ for |x| > $. The same argument

applies directly to w for |x| 6 $ and yields w(x) 6 max
|x|=$

w+ for |x| 6 $, hence for

every x ∈ RN . Since w cannot have a positive maximum, w+(x) = 0 for |x| = $,
hence w 6 0.

The following is our uniqueness result in L1(RN).

THEOREM 4.3. Let A∗ be as in (4.2) and assume that div b 6 V and that there
exists a positive function z ∈ C2(RN \ B$) for some $ > 0 such that z(x) → +∞ as
|x| → ∞ and A∗z 6 λz for some λ > 0. Then C∞

c (RN) is a core for A1.

Proof. We proceed as in the proof of Theorem 4.1 and show that for λ suffi-
ciently large (λ− A1)C∞

c (RN) is dense in L1(RN).
Let w ∈ L∞(RN) be such that∫

RN

(λφ− Aφ)w = 0

for every φ ∈ C∞
c (RN). By Lemma 2.5, w ∈ W2,q

loc (R
N) for every q < ∞ and then

w is a bounded solution of the equation λw − A∗w = 0, where A∗ is the formal
adjoint of A defined in (4.2).

From Proposition 4.2, applied to A∗, we infer that w = 0 and the proof is
complete.

REMARK 4.4. Let us point out some explicit examples of the hypotheses in
Theorems 4.1 and 4.3. For instance, if z(x) = 1 + |x|2, then condition (4.1) reads

b(x) · x 6 c(1 + |x|2)(1 + (V − p−1div b)α).

Analogously, plugging z(x) = log |x| in A∗ and imposing that A∗z(x) 6 λz(x)
for large |x| and λ, we obtain the condition

(4.4) b(x) · x 6 c(1 + |x|2)(1 + (V − div b)).

A slightly better condition can be found plugging z(x) = log |x| (|x| > 1) in
Theorems 4.1, 4.3. In fact one obtains

b(x) · x 6 c(1 + |x|2 log |x|)(1 + (V − p−1div b)α)

for some α < 1 if 1 < p < ∞ and

b(x) · x 6 c(1 + |x|2 log |x|)(1 + (V − div b))

if p = 1.
Further results and comments on uniqueness in Cb(RN) can be found in [21].
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5. GAUSSIAN ESTIMATES

In this section we show that under suitable conditions on the coefficients
the semigroup generated by A admits a Gaussian estimate.

DEFINITION 5.1. A positive semigroup T on Lp(RN) admits a Gaussian esti-
mate if there exists a measurable kernel kt : RN ×RN → R+ satisfying

kt(x, y) 6 ct−N/2eωte−b|x−y|2/t

(t > 0) for some c > 0, b > 0, ω ∈ R such that

(T(t) f )(x) =
∫

RN

kt(x, y) f (y) dy

a.e. for all f ∈ Lp(RN), t > 0.

Keeping the general assumptions of the Introduction we consider the fol-
lowing additional hypotheses on the potential V and the drift b. We assume that
V > 0 and

(H1) |b| 6 γV1/2

for some γ > 0 and

(H2) div b 6 βV

for some constant 0 < β < 1. Note that the apparently more general assumptions
|b| 6 γV1/2 + C and div b 6 βV + C easily reduce to (H1), (H2) considering
V + λ for a suitable λ > 0.

Condition (H2) implies in particular that condition (3.1) is satisfied for all
1 6 p < ∞. Thus, by the results of Section 3, we obtain consistent C0-semigroups
Tp on Lp(RN), 1 6 p < ∞ whose generators we denote by Ap.

THEOREM 5.2. Under assumptions (H1), (H2) the semigroup Tp admits a Gauss-
ian estimate.

We note some consequences. Assume (H1), (H2). Then the spectrum of the
generators Ap is independent of p,

σ(Ap) = σ(A1) (1 6 p < ∞) .

The semigroups Tp are all holomorphic (1 6 p < ∞). For 1 < p < ∞ each
operator−Ap admits a bounded H∞-calculus; in particular (−Ap)is is a bounded
operator on Lp(RN) for all s ∈ R, 1 < p < ∞. Moreover the operator Ap has the
maximal regularity property for 1 < p < ∞. We refer to Chapter 7 of [4] for this and
other consequences of Gaussian estimates.

REMARK 5.3. In the preceeding sections as well as in Theorem 5.2 we con-
sidered the semigroup Tp and its generator Ap on the real space Lp(RN). But
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of course, saying that Tp is holomorphic means that Tp is a holomorphic semi-
group on the complex space Lp. Also the resolvent set $(Ap) and the notion of
functional calculus are defined with respect to the complex space.

For the proof of Theorem 5.2 we use a strategy introduced in [6], based on
the Beurling-Deny criterion. At first we show that A2 is associated with a closed
form. Let us set D(V) = {u ∈ L2(RN) : Vu ∈ L2(RN)} and consider the Hilbert
space

W := W1,2(RN) ∩ D(V)

endowed with the inner product

(u | v)W = (u | v)W1,2(RN) +
∫

RN

Vuv.

Using mollifiers in a standard way one sees that C∞
c (RN) is dense in W. More-

over, W is continuously embedded into L2(RN) and dense in L2(RN). For the
proof of Theorem 5.2 more general operators will be needed. Let cj : RN → R be
differentiable, satisfying

(H1)′ |c| 6 γV1/2

where c = (c1, . . . , cN) and γ > 0 is the same constant as in (H1), as well as

(H2)′ div c 6 βV

where 0 < β < 1 is the same constant as in (H2). Then

(5.1) a(u, v) :=
∫

RN

N

∑
i,j=1

aijDiuDjv +
∫

RN

(v b · ∇u + u c · ∇v) +
∫

RN

Vuv

defines a continuous bilinear form on W. This follows from the Cauchy-Schwarz
inequality∣∣∣ ∫
RN

v b · ∇u
∣∣∣ 6 γ

∫
RN

V1/2|v||∇u|6 γ
( ∫

RN

|v|2V
)1/2( ∫

RN

|∇u|2
)1/2

6 γ‖u‖W‖v‖W

and similarly for the other terms. Moreover, in virtue of (H2), (H2’) we have for
u ∈ C∞

c (RN)∫
RN

(u b · ∇u + u c · ∇u) =
∫

RN

N

∑
j=1

1
2
(bj + cj)Dju2 = −1

2

∫
RN

(div b + div c)u2

> −
∫

RN

βVu2.

Thus
a(u, u) > α

∫
RN

|∇u|2 + (1− β)
∫

RN

Vu2
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for all u ∈ C∞
c (RN) and hence for all u ∈ W by density. This implies that the form

a with domain W is closed (see [15]). Denote by −A the operator associated with
a, i.e., for u, f ∈ L2(RN) one has u ∈ D(A),−Au = f if and only if u ∈ W and

a(u, v) =
∫

RN

f v for all v ∈ W.

If c = 0, then A = A2. To see this we note that, because of (H1) we may take
z(x) =

√
1 + |x|2, α = 1/2 in Theorem 4.1 to obtain that C∞

c (RN) is core of A2.
But A is closed and coincides with A2 on C∞

c (RN) so that both operators coincide.
The introduction of the auxiliary term containing c allows to deal with A

and A∗ simultaneously. In fact, if u ∈ C∞
c (RN), then

Au =
N

∑
i,j=1

Di(aijDju) + (−b · ∇u +∇(cu))−Vu

and

A∗u =
N

∑
i,j=1

Di(aijDju) + (∇(bu)− c · ∇u)−Vu

so that the role of b and c interchanges, passing from A to its adjoint.
In order to prove Gaussian estimates, we consider the set

G := {ψ ∈ C∞(RN) ∩ L∞(RN) : ‖Diψ‖∞ 6 1, ‖DiDjψ‖∞ 6 1, i, j = 1, . . . , N} .

Denote by T the semigroup generated by A. For ψ ∈ G, $ ∈ R we consider the
C0-semigroup T$ given by

T$(t) f = e−$ψT(t)(e$ψ f ) .

By Davies’ trick (see Proposition 3.3 of [6]) we have to show that there exist c >
0, ω ∈ R such that

(5.2) ‖T$(t)‖L(L1,L∞) 6 ceω(1+$2)tt−N/2 (t > 0)

for all $ ∈ R, ψ ∈ G. Since the generator of T$ is e−$ψ Ae$ψ, it follows that T$ is
associated with the bilinear form a$ : W ×W → R defined by

a$(u, v) =
∫

RN

N

∑
i,j=1

aijDiuDjv +
∫

RN

N

∑
i=1

(b$
i vDiu + c$

i uDiv) +
∫

RN

V$uv
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where

b$
i = bi − $

N

∑
j=1

aijψj

c$
i = ci + $

N

∑
k=1

akiψk, i = 1, . . . , N

V$ = V − $2
N

∑
i,j=1

aijψiψj + $
N

∑
i=1

biψi − $
N

∑
i=1

ciψi

and ψj = Djψ, see e.g. Lemma 3.6 of [6]. Note that the form a$ is closed by the
arguments given above.

Let b : W ×W → R be a closed bilinear form on L2(RN) and denote by S
the associated semigroup on L2(RN). In order to show (5.2) we use two criteria.
The first is due to Beurling and Deny and is stated below.

PROPOSITION 5.4. The semigroup S is submarkovian if and only if for any u ∈ W

(a) b(u+, u−) 6 0,
(b) b(u ∧ 1, (u− 1)+) > 0.

Here we call S submarkovian if 0 6 f 6 1 ⇒ 0 6 S(t) f 6 1 for all f ∈
L2(RN), t > 0. This is equivalent to saying that S is positive and L∞-contractive.
Note that u ∈ W implies u+, u−, u ∧ 1, (u − 1)+ ∈ W. We refer to [27] for the
proof of the proposition.

The next criterion allows to deduce ultracontractivity, that is the bounded-
ness of S(t), t > 0, from L1(RN) to L∞(RN), from Nash’s inequality

‖u‖2+4/N
2 6 cN‖u‖2

1,2‖u‖4/N
1 ,

u ∈ W1,2(RN) ∩ L1(RN), see p. 78–79 in [9]. Since the form domain W is continu-
ously injected into W1,2(RN), there is a constant c such that

‖u‖2+4/N
2 6 c‖u‖2

W‖u‖4/N
1 ,

for every u ∈ W ∩ L1(RN).

PROPOSITION 5.5. Consider a continuous bilinear form b : W ×W → R which
is coercive, i.e.,

b(u, u) > α‖u‖2
W

for every u ∈ W and some α > 0. Assume that b and b∗ (defined by b∗(u, v) = b(v, u))
satisfy the Beurling-Deny criterion of Proposition 5.4. Then the associated semigroup S
on L2(RN) satisfies

(5.3) ‖S(t)‖L(L1,L∞) 6 cNα−N/2t−N/2 (t > 0)

where the constant cN does not depend on b.
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This follows from Proposition 3.8 in [6] where a proof and further references
are given.

Now observe that the semigroup (e−ω(1+$2)tT(t))t>0 is associated with the
bilinear form b$ on W given by

b$(u, v) = a$(u, v) + ω(1 + $2)(u | v)L2(RN) .

Thus, the following lemma together with Proposition 5.5 shows that (5.2) holds,
which proves Theorem 5.2 to hold.

LEMMA 5.6. There exist µ > 0, ω ∈ R such that for every u ∈ W

a$(u, u) + ω(1 + $2)‖u‖2
2 > µ‖u‖2

W ,(5.4)

a$(u+, u−) + ω(1 + $2)(u+ | u−)L2 = 0,(5.5)

a$(u ∧ 1, (u− 1)+) + ω(1 + $2)(u ∧ 1 | (u− 1)+)L2 > 0,(5.6)

and

(5.7) a$((u− 1)+, u ∧ 1) + ω(1 + $2)((u− 1)+ | u ∧ 1)L2 > 0

for all 0 6 u ∈ W.

Proof. Let ψ ∈ G, $ ∈ R. Let u ∈ W. Then

∫
RN

N

∑
i,j=1

aijDiuDju > ν
∫
Rn

|∇u|2

and ∫
RN

N

∑
i=1

(b$
i uDiu + c$

i uDiu)

= −1
2

∫
RN

N

∑
i=1

Di(b$
i + c$

i )u2

= −1
2

∫
RN

N

∑
i=1

Di(bi + ci)u2 +
$

2

∫
RN

N

∑
i=1

Di

( N

∑
j=1

aijψj −
N

∑
k=1

akiψk

)
u2

> −β
∫

RN

Vu2 − w1(1 + $2)‖u‖2
2 ,

where w1 is independent of u, $ and ψ, by (H2) and ‖Diψk‖∞ 6 1. Moreover,

∫
RN

V$|u|2 =
∫

RN

V|u|2 − $2
∫

RN

( N

∑
i,j=1

aijψiψj

)
|u|2 +

∫
RN

N

∑
i=1

$ψi(bi − ci)|u|2.
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Using (H1), (H1)’ as well as Young’s inequality 2ab 6 εa2 + b2

ε we estimate the
last term as follows

∫
RN

N

∑
i=1

$ψi(bi − ci)|u|2 > −
∫

RN

$N1/22γV1/2|u|2 > −ε
∫

RN

V|u|2 − 1
ε

$2Nγ2
∫

RN

|u|2.

We choose ε = 1−β
2 . Then

a$(u, u) > ν
∫

RN

|∇u|2 − β
∫

RN

V|u|2 − w1(1 + $2)‖u‖2
2

+
∫

RN

V|u|2 − $2
∫

RN

( N

∑
i,j=1

aijψiψj

)
|u|2

− ε
∫

RN

V|u|2 − 1
ε

$2Nγ2
∫
|u|2

> ν
∫

RN

|∇u|2 +
1− β

2

∫
RN

V|u|2 −ω2(1 + $2)‖u‖2
2

> µ‖u‖2
W −ω2(1 + $2)‖u‖2

2

for all u ∈ W, $ ∈ R, ψ ∈ G, where µ = min{ν, 1−β
2 } > 0 and ω2 ∈ R suitable

(recall that ‖ψi‖∞ 6 1 for all ψ ∈ G). Thus (5.4) is satisfied for ω = ω2. (5.5) holds
for all ω, $ ∈ R since

Dj(u+) = χ{u>0}Dju, Dju− = −χ{u>0}Dju .

Next we show (5.6) replacing ω2 by a larger constant ω. Let 0 6 u ∈ W. Observe
that Dj(u ∧ 1) = χ{u>1}Dju, Dj(u − 1)+ = χ{u>1}Dju. Thus Di(u ∧ 1)Dj(u −
1)+ = 0 and Di(u ∧ 1)(u− 1)+ = 0 a.e. Hence

a$(u ∧ 1, (u− 1)+) =
∫

RN

N

∑
i=1

c$
i (u ∧ 1)Di(u− 1)+ +

∫
RN

V$(u ∧ 1)(u− 1)+

= −
∫

RN

N

∑
i=1

(Dic
$
i )(u ∧ 1)(u− 1)+ +

∫
RN

V$(u ∧ 1)(u− 1)+ .

Thus we have to show that there exists ω ∈ R such that

−
N

∑
i=1

Dic
$
i + V$ > −(1 + $2)ω
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for all ψ ∈ G, $ ∈ R. By (H2)’ we have

V$ −
N

∑
i=1

Dic
$
i = V − $2

N

∑
i,j=1

aijψiψj + $
N

∑
i=1

(bi − ci)ψi − div c− $
N

∑
i=1

Di

( N

∑
k=1

akiψk

)
> V − $2ω3 + $

N

∑
i=1

(bi − ci)ψi − βV − (1 + $2)ω4

> (1− β)V − (1 + $2)(ω3 + ω4)− $2γV1/2N1/2

> (1− β)V − (1 + $2)(ω3 + ω4)− εV − 1
ε

$2γ2N

> εV − (1 + $2)ω5

for all $ ∈ R, ψ ∈ R, where ω5 is a suitable constant. This proves (5.6). Inequality
(5.7) is proved as (5.6) since the conditions on b and on c are the same. This
finishes the proof.

REMARK 5.7. We observe that our proof shows that the semigroup T asso-
ciated with the closed form a given (5.1) on L2(RN) admits a Gaussian bound
whenever 0 6 V ∈ L∞

loc(R
N) and c, b ∈ W1,∞

loc (RN , RN) satisfy (H1), (H2), (H1)’,
(H2)’.

REMARK 5.8. (Arbitrary domains). In some applications the operator A is
defined on exterior domains. The results we obtained in Sections 3 and 5 remain
valid if RN is replaced by an arbitrary open set Ω and the generated semigroup
satisfies homogenuous Dirichlet boundary conditions on ∂Ω. However, in the
proofs the balls B$ should be replaced by a sequence of bounded open sets Ωn
with C∞ boundary such that

⋃
n∈N

Ωn = Ω. The maximal operator Ap,max may be

defined as in (1.4) for 1 < p < ∞ and as in (1.5) for p = 1, with Ω in place of RN .
Notice also that in this more general situation we have to use an approximation
argument for forms to show that the operator A2 and the one defined by the form
a coincide, since the uniqueness results of Section 4 clearly hold only in RN . For
this approximation argument we refer to [3], [8].

6. AN EXAMPLE

In order to test our results in a concrete situation, we discuss in detail the
one-dimensional operator A = D2 − x3D− c|x|γ, with c > 0, γ > 0. The general-
ization to exponents different from 3 (but bigger than 1) in the power appearing in
the drift term is straightforward. Moreover, some of the negative results proved
below can be generalized to the higher dimensional case.

We start by showing that a condition like (3.1) is needed, in general, to gen-
erate a semigroup in Lp.
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PROPOSITION 6.1. A restriction of the operator Ap,max generates a semigroup in
Lp(R), 1 6 p < ∞, if γ > 2 or γ = 2 and cp > 3. On the other hand, if γ < 2 or
γ = 2 and cp 6 1, then no restriction of Ap,max is a generator in Lp(R).

Proof. If γ > 2 or γ = 2 and cp > 3, then Theorem 3.3 applies and yields a
restriction Ap of Ap,max which generates a semigroup in Lp(R).

Fix now 1 6 p < ∞ and assume that Ap,max has a restriction generating
a semigroup in Lp(R). In particular, λ − Ap,max is surjective for large λ. Given
φ ∈ C∞

c (R), φ > 0, φ 6= 0, let u ∈ D(Ap,max) be such that λu − Au = φ. In
particular, λu − Au = 0 for |x| > b, where [−b, b] contains the support of φ.
However, if γ < 2 or γ = 2 and cp 6 1, no non-zero solution of the equation
λu− Au = 0 belongs to Lp([b, +∞[) for every λ sufficiently large (see Lemma 6.2
below) and hence u = 0 in [b, +∞[ and, by the same argument, in ] − ∞,−b].
Therefore u has compact support and, since it belongs to C2(R), the maximum
principle yields u > 0 everywhere. Finally note that u attains its minimum and
therefore, by the strong minimum principle, u = 0 everywhere, in contrast with
φ 6= 0. This shows that λ− Ap,max is not surjective and concludes the proof.

Let us prove the lemma used above.

LEMMA 6.2. Assume that γ < 2 or γ = 2 and cp 6 1. If λ > 0 is sufficiently
large, no solution of the differential equation λu − Au = 0 belongs to Lp([b, +∞[) for
every b ∈ R.

Proof. We give all the details for γ = 2 and cp 6 1, the other case being
similar. With the substitution u(x) = v(x) exp{x4/8} the equation λu− Au = 0
becomes

(6.1) v′′ =
(

λ +
1
4

x6 +
(

c− 3
2

)
x2

)
v = f v.

Fix now any λ > 0 such that f > 0 and observe that the function f−1/4D2( f−1/4)
belongs to L1(R). Using Theorem 2.1 in [26] we see that (6.1) has two linearly
independent solutions v1, v2 in [b, +∞[ such that

v1(x) ≈ xc−3ex4/8, v2(x) ≈ x−ce−x4/8

as x → +∞. This yields

u1(x) ≈ xc−3ex4/4, u2(x) ≈ x−c

as x → +∞ and the statement follows.

Next we show that our uniqueness results are quite precise for p = 1.

PROPOSITION 6.3. If γ > 2 or γ = 2 and cp > 3, then C∞
c (R) is a core for Ap.

However, if p = 1 and γ = 2, c = 3, then C∞
c (R) is not a core for A1.

Proof. The first statement follows immediately from Remark 4.4. Assume
now that p = 1 and consider A = D2 − x3D − 3x2 so that A∗ = D2 + x3D. For
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every λ > 0 there exists a bounded function 0 6= u ∈ C2(R) such that λu− A∗u =
0. This follows from Feller’s theory on one dimensional diffusions, since ±∞ are
exit boundaries for the operator A∗, see Chapter VI.4.c of [13] for an introduction
to Feller’s theory and a proof of the above result. Integrating by parts we get for
every φ ∈ C∞

c (R) ∫
R

(λφ− A1φ)u =
∫
R

φ(λu− A∗u) = 0

and therefore C∞
c (R) is not a core for A1.

Finally we show that, in general, Gaussian estimates fail when condition
(H1) is violated.

PROPOSITION 6.4. If γ > 6 the generated semigroup Tp admits a Gaussian esti-
mate. On the other hand, if γ < 6, then Tp is not analytic in Lp(R).

Proof. If γ > 6 the first statement is a immediate consequence of Theo-
rem 5.2. To prove the second one we proceed as in [23] and fix 1 6 p < ∞. Given
β such that max{3, γ} < β < 6, let In : Lp(R) → Lp(R) be defined by (Inu)(x) =
u ((x− n)/λn) where λn = n3−β. Clearly,

(
(In)−1v

)
(x) = v(n + λnx) and

‖Inu‖p = (λn)1/p‖u‖p. We consider the differential operators An = rn(In)−1 AIn,
with rn = n−β and observe that for every u ∈ C∞

c (R)

Anu(x) =
1

n6−β
u′′(x)− 1

n3 (n + n3−βx)3u′(x)− c
nβ
|n + n3−βx|γu(x)

hence Anu → −u′ in Lp(R) for every u ∈ C∞
c (R). Next observe that the op-

erator An with domain I−1
n D(Ap) is the generator of the semigroup Tn(t) =

I−1
n Tp(rnt)In and that, since rn → 0, we have ‖Tn(t)‖ 6 Meωt for suitable M, ω

independent of t. Moreover, C∞
c (R) is a core for the operator Bu = −u′ and

hence from the Trotter-Kato theorem, see Theorem 4.8, Chapter II of [13], we de-
duce that R(λ, An) f → R(λ, B) f for every f ∈ Lp(R) and Re λ > ω. Assume
now, by contradiction, that Tp is analytic. Then ‖R(λ, Ap)‖ 6 C|λ|−1 if Re λ is
sufficiently large. Since

R(λ, An) = I−1
n (λ− rn Ap)−1 In =

1
rn

I−1
n R

( λ

rn
, Ap

)
In

it follows that ‖R(λ, An)‖ 6 C|λ|−1 and hence

‖R(λ, B) f ‖p 6 lim inf
n→∞

‖R(λ, An) f ‖p 6 C|λ|−1‖ f ‖p

for large Re λ. Since the semigroup generated by B is not analytic, this is a con-
tradiction and the proof is complete.
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