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ABSTRACT. We develop, in this paper the Mourre theory for an abstract class
of self-adjoint operators of the form H1 ⊗ I + I⊗H2, where H1 and H2 are two
self-adjoint operators acting on the Hilbert spaces H1 and H2 respectively. H1
and H2 do not need to be lower semi-bounded. As an example, we consider
the time periodic Hamiltonians for which we construct a conjugate operator,
prove a Mourre estimate and, finally, study some of its perturbations.
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1. INTRODUCTION

This paper is devoted to the Mourre theory for an abstract class of self-
adjoint operators of the form H1 ⊗ I + I ⊗ H2, where H1 and H2 are two self-
adjoint operators acting on the Hilbert spaces H1 and H2 respectively. This class
will be called the class of tensor product Hamiltonians.

The Mourre theory for a self-adjoint operator H0 acting on some Hilbert
space H is based on the construction of another self-adjoint operator A, called a
conjugate operator so that the following estimate holds:

(1.1) EJ(H0)[H0, iA]EJ(H0) > c0 EJ(H0) + K,

where EJ(H0) denotes the spectral projection on the interval J ⊂ R for the opera-
tor H0, c0 is a positive constant and K is a compact operator. The estimate (1.1) is
called a Mourre estimate. If K = 0 in (1.1), then it is called a strict Mourre estimate.

The Mourre estimate has several important consequences for the spectral
and scattering theory of H0. The first one is the discreteness of the point spectrum
σp(H0) in J, and under some additional assumptions, the existence of the limiting
absorption principle, i.e, the existence of the limits lim

ε→0
(H0 − λ± iε)−1, for λ ∈ J \

σp(H0), as a bounded operator between suitable weighted spaces. The estimates
leading to the limiting absorption principle are called resolvent estimates. In turn
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the limiting absorption principle implies that the singular continuous spectrum of
H0, σsc(H0), is empty in J. Moreover, there exists a natural class of perturbations
V for which one can deduce from (1.1) a Mourre estimate for H = H0 + V with
the same conjugate operator A.

However, the most intuitive consequences of the Mourre estimate (1.1) are
probably the propagation estimates. They are based on the fact that [H0, iA] is the
time derivative of t 7→ eitH0 Ae−itH0 at t = 0. An example of such a propagation
estimate is

‖F(A/t < c0) e−itH0 Ec
J(H0)‖ → 0 when t → ±∞,

where Ec
J(H0) is the spectral projection on the continuous spectral subspace of

H0 in J. Such propagation estimates allow to develop in a very natural way the
scattering theory for perturbations H = H0 + V of H0. For example, there exists
a natural class of perturbations V (the short-range perturbations) for which the
local wave operators

s− lim
t→±∞

eitH e−itH0 Ec
J(H0) =: W±

can be shown to exist and to be asymptotically complete.
Let us end this very brief overview of the Mourre method by some histor-

ical comments and some bibliographical references, which do not intend to be
complete. The Mourre method was invented by E. Mourre [12] and subsequently
developed and applied in [4], [6], [7], [8], [10], [11], [13], [14], [16]. An essentially
optimal version of the Mourre method was developed in [1] and [5]. Recently,
in [9], an extension of the Mourre method especially adapted for the study of
quantum field Hamiltonians, was proposed. This extension can be used when
the commutator [H0, iA] is not comparable with H0 when A is not a self-adjoint
operator.

The first purpose of this paper is to prove a strict Mourre estimate for an
abstract class of self-adjoint operators. We shall explicitly calculate the function ρ
(see Subsection 2.1 for the definition of ρ) of an operator of the form H0 = H1 ⊗
I + I ⊗ H2 in terms of those of Hj assuming that A is similarly decomposable.
We obtain the same conclusion as in Theorem 3.4 in [2] without assuming that
H1 and H2 are bounded from below. As an application we explicitly calculate the
function ρ of time periodic relativistic Hamiltonians. In this case H1 = −i d

dt in
L2(T) (T = R/2πZ is the torus) and H2 =

√
1 + P2 (P = −i∇) in L2(Rn). In this

case, we shall prove that H0 satisfy a strict Mourre estimate on R \Z.
The second aim of this work is to extend to a large class of operators (which

we will call the class of dispersive time periodic Hamiltonians) the spectral analysis
initiated in [18]. H0 will be called dispersive time-periodic if it is a self-adjoint
operator in H = L2(T× Rn) associated to the sum −i d

dt ⊗ 1 + 1⊗ h(P), where
h : X → R be a real function of class C2 such that | h′′(k) | 6 c(1 + | h′(k) |2).
We shall prove that H0 satisfies a strict Mourre estimate on R \ (Z + κ(h)), where
κ(h) denotes the set of critical values of h (see (4.1)). In particular H0 will not
have eigenvalues in R \ (Z + κ(h)). As a consequence of the Mourre estimate
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we prove a strong form of the limiting absorption principle which implies the
absence of singular continuous spectrum of H0 outside Z + κ(h). Finally, we
study the spectral structure of the self-adjoint operators of the form H = H0 + V,
where V belongs to some perturbation class which is described in our statements.

2. PRELIMINARIES

2.1. In this subsection we recall some facts about the abstract commutator
method.

Let H, A be self-adjoint operators in a Hilbert space H. Denote Wt = eiAt

the unitary group in H generated by A. We say that H is of class C1(A), and
we write H ∈ C1(A), if its domain D(H) is invariant under the group W and
if for all u ∈ D(H) the function t 7→ 〈Wtu, HWtu〉 is of class C1. In this case
we denote by [H, iA] the sesquilinear form on D(H) given by 〈u, [H, iA]u〉 =
d
dt 〈Wtu, HWtu〉/t=0. We equip D(H) with the graph-norm. Then [H, iA] is a con-
tinuous sesquilinear form on D(H) and it is often useful to think of it as a con-
tinuous linear operator from D(H) to its adjoint space D(H)∗. Analogously, one
defines the classes Ck(A), k ∈ N.

One says that an operator H of class C1(A) satisfies a Mourre estimate at
some point λ ∈ R if there are an open interval J containing λ, a strictly positive
real number c0, and a compact operator K such that the estimate (1.1) holds. The
closed real set

τA(H) = R \ µ̃A(H) = {λ ∈ R : H does not satisfy a Mourre estimate at λ}

will be called the set of A-thresholds of H. If (1.1) holds with K = 0 we define the
(closed) set of A-critical points of H by

κA(H) = R \ µA(H)

= {λ ∈ R : H does not satisfy a strict Mourre estimate at λ}.

For the computation of the sets τA(H) and κA(H) it is convenient to in-
troduce the lower semicontinuous functions ρ̃H : R → (−∞, +∞] and ρH :
R → (−∞, +∞] defined by the following rule. For λ ∈ R and ε > 0, let
E(λ; ε) = E((λ− ε, λ + ε)) be the spectral projection on the interval (λ− ε, λ + ε).
Then

ρH(λ) = sup{a ∈ R : ∃ε > 0 such that E(λ; ε)[H, iA]E(λ; ε) > aE(λ; ε)},

ρ̃H(λ) = sup{ a ∈ R : ∃ ε > 0 and a compact operator K such that

E(λ; ε)[H, iA]E(λ; ε) > aE(λ; ε) + K}.

Clearly τA(H) is just the set of λ ∈ R such that ρ̃H(λ) 6 0 and κA(H) is the set of
λ ∈ R such that ρH(λ) 6 0.

An important property of the functions ρ̃H and ρH is the following (see The-
orem 7.2.13 in [1]): ρH(λ) = ρ̃H (λ) with the exception of the points λ which are
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eigenvalues of H and where ρ̃H (λ) > 0; at these points one has ρH(λ) = 0. In
particular, ρH(λ) > 0 if and only if ρ̃H(λ) > 0 and λ /∈ σp(H). In other terms

κA(H) = τA(H) ∪ σp(H).

We give now an equivalent definition of ρH which shows that the supremum in
the definition of ρH is realized when ε → 0, (see Lemma 7.2.1 in [1]):

If λ /∈ σp(H), then ρH(λ) = +∞. If λ ∈ σp(H), then ρH(λ) is finite and given
by

ρH(λ) = lim
ε→0

(inf{〈u, [H, iA]u〉 : ‖u‖ = 1 and E(λ; ε)u = u}),

and there is a sequence {uk} of vectors such that ‖uk‖ = 1, E(λ; 1/k)uk = uk and
lim
k→∞

〈uk, [H, iA]uk〉 = ρH(λ).

For the development of the theory, for example in order to show that the
limiting absorption principle holds, one has to require more regularity than C1(A)
(see [1] and references there). Let S be a bounded operator on H. We say that S is

of class C1,1(A) if
1∫

0
‖(Wt − 1)2S‖dt

t2 < ∞; where Wt(S) = e−iAtSeiAt. Let H be a

self-adjoint operator in H. We shall say that H is of class C1,1(A) if (H − z)−1 is
of class C1,1(A) for some (then for all) z ∈ C \ σ(H).

2.2. Let H = L2(Rn). Let S = S(Rn) be the space of tempered test functions
and S∗ = S∗(Rn) the space of tempered distributions. The usual identifications
S ⊂ H ∼= H∗ ⊂ S∗ are made. We denote by F the Fourier transformation acting
in S∗ defined by:

(F f )(k) = f̂ (k) = (2π)−n/2
∫

e−ikx f (x)dx.

We denote by f (Q) the operator of multiplication by a function f in H and by
f (P) = F ∗ f (Q)F the associated convolution operator in H. We denote 〈x〉 =
(1 + | x |2)1/2. Then we define the Sobolev spaces

Hs(Rn) = { f ∈ S∗(Rn) : 〈P〉s f ∈ H(Rn)}.

We introduce now a class of weighted Sobolev spaces. Let θ ∈ C∞
0 (Rn) be a

real function such that θ(x) > 0 if 2−1 < | x | < 2 and θ(x) = 0 otherwise. Choose
one more real function η ∈ C∞

0 (Rn) such that η(x) > 0 if | x | < 1. Then for any
s, t ∈ R and 1 6 p 6 ∞ let Hs

t,p be the space of distributions u that belong locally
to Hs and such that

‖η(Q)u‖Hs +
[ ∞∫

1

‖rtθ(r−1Q)u‖p
Hs

dr
r

]1/p
< ∞.

If p = ∞ the second term is interpreted as sup
r>1

‖rtθ(r−1Q)u‖Hs . The left hand side

above is a norm on Hs
t,p which provides this space with a Banach space structure.

The spaces Hs
t := Hs

t,2 are the usual weighted Sobolev spaces defined by the
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norms ‖〈P〉s〈Q〉tu‖. If t1 < t < t2, t = (1− λ)t1 + λt2 and p, p1, p2 ∈ [1, ∞], s ∈
R, then

Hs
t,p = (Hs

t1,p1
,Hs

t2,p2
)λ,p.

Moreover, if 1 6 p < ∞ and 1/p + 1/p′ = 1, then (Hs
t,p)

∗ = H−s
−t,p′ .

3. MOURRE ESTIMATE FOR OPERATORS OF THE FORM H1 ⊗ I + I ⊗ H2

In this section we shall explicitly calculate the function ρ of an operator of
the form H = H1 ⊗ I + I⊗H2 in terms of those of Hj assuming that A is similarly
decomposable.

We begin by recalling some results on tensor products of operators. We de-
note by H1 ⊗H2 the Hilbert tensor product of the two Hilbert space H1 and H2.
If S1 and S2 are densely defined closed linear operators in H1 and H2 respec-
tively, we denote by S1 ⊗ S2 the closure of their algebraic tensor product (we use
the conventions of [15], pp. 298–299). We write S1 ⊗ I + I ⊗ S2 for the closure of
the sum of S1 ⊗ I and I ⊗ S2

Assume that two self-adjoint operators H1 and H2 are given in the Hilbert
spaces H1 and H2 respectively. We write D(Hj) for the domain of Hj provided
with the graph-norm. Let Mj (j = 1, 2) be a core for Hj in Hj and let M the set of
all finite linear combinations of H = H1 ⊗H2 of the form f1 ⊗ f2 with f j ∈ Mj.
Let H = H1 ⊗ I + I⊗H2 (defined as indicated above). Let us make some remarks
concerning the spectral properties of H in H:

(i) H is self-adjoint and M is a core for it;
(ii) the spectrum of H is the closure of the sum of those of H1 and H2:

σ(H) = σ(H1) + σ(H2);

(iii) one has for each t ∈ R:

eiHt = eiH1t ⊗ eiH2t;

(iv) if one of the operators H1 or H2 has a purely absolutely continuous spec-
trum, then H has a purely absolutely continuous spectrum too;

(v) a real number λ is an eigenvalue of H if and only if it is of the form λ =
λ1 + λ2, where λj is an eigenvalue of Hj (j = 1, 2).

These assertions are well known from Theorem VIII.33 in [15], Theorem 8.33
and Theorem 8.35 in [17].

DEFINITION 3.1. Let X be a metric space. We say that a function g : X → R
is uniformly lower semi-continuous (u.l.s.c.) if:

∀ ε > 0 ∃ δ > 0 such that | λ− µ | < δ ⇒ g(µ) > g(λ)− ε.

The next proposition contains a technical result that will be useful for the
proof of the main theorem of this section.
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PROPOSITION 3.2. Let θ1, θ2 : R → R be two bounded from below u.l.s.c. func-
tions. Let θ : R → R be the function defined by:

θ(λ) = inf
λ=λ1+λ2

(θ1(λ1) + θ2(λ2)).

Then θ is bounded from below u.l.s.c. function.

Proof. We only have to show that θ is uniformly lower semi-continuous. Let
ε > 0. Then θ(λ) − ε 6

(
θ1(λ1) − ε

2
)

+
(
θ2(λ2) − ε

2
)

if λ = λ1 + λ2. Since θ1
and θ2 are uniformly lower semi-continuous, there is δ > 0 such that | λi − µi | <
δ ⇒ θi(λi)− ε

2 6 θi(µi) for i = 1, 2. Hence, if sup
i=1,2

| λi − µi | < δ for some (λ1, λ2)

with λ = λ1 + λ2 then θ(λ)− ε 6 θ1(µ1) + θ2(µ2). In other terms, if 4λ is the
straight line {(λ1, λ2) ∈ R2 : λ = λ1 + λ2} and dist((µ1, µ2),4λ) < δ, then the
last inequality holds. Now, if | λ− µ | < δ√

2
then µ = µ1 + µ2 with | λi − µi | < δ.

Hence θ(λ)− ε 6 θ(µ). This proves the proposition.

We pass now to the main result of this section, namely the calculation of the
function ρ for an operator of the form H1 ⊗ I + I ⊗ H2 when A admits a similar
decomposition.

THEOREM 3.3. Let H1, H2 be two self-adjoint operators in the Hilbert spaces
H1,H2. Let Aj be self-adjoint operators in Hj such that eitAj D(Hj) ⊂ D(Hj) and
[Hj, iAj] ∈ B(Hj). Assume that for each η > 0 there are functions θ1, θ2 : R → R
bounded from below and u.l.s.c. and ε > 0 such that:

(H1) Ej(µ; ε) [Hj, iAj] Ej(µ; ε) > θj(µ) Ej(µ; ε) for each µ ∈ R,

(H2)

{
θj(µ) > ρ

Aj
Hj

(µ)− η if µ ∈ σ(Hj),
θj(µ) > N (N < ∞) if µ /∈ σ(Hj).

Let H = H1 ⊗ I + I ⊗ H2 and A = A1 ⊗ I + I ⊗ A2 be the self-adjoint operators
in H = H1 ⊗H2 defined as indicated above. Finally, assume that σ(H1) + σ(H2) is
closed. Then H is of class C1(A) and for all λ ∈ R

(3.1) ρA
H(λ) = inf

λ=λ1+λ2
[ρA1

H1
(λ1) + ρA2

H2
(λ2)].

Proof. Step 1. Let us prove first that H is of class C1(A). It is clear that the
coreM of H is invariant under the action of the unitary group Wα inH generated
by A. Then we get easily that

〈v, W−αHWαu〉 = 〈v, Hu〉+
α∫

0

〈v, W−τ{[H1, iA1]⊗ I + I ⊗ [H2, iA2]}Wτu〉dτ

for all α ∈ R and u, v ∈ M. Replacing v by W−αv we get

〈v, HWαu〉 = 〈v, WαHu〉+
α∫

0

〈v, Wα−τ{[H1, iA1]⊗ I + I ⊗ [H2, iA2]}Wτu〉dτ.
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SinceM is dense inH, we deduce from the last equality that ‖HWαu‖ 6 ‖Hu‖+
cα‖u‖. Then D(H) is invariant under W. By using the fact that W−α HWα =
e−iαA1 H1eiαA1 ⊗ I + I ⊗ e−iαA2 H2eiαA2 we deduce that for each u ∈ D(H) the
function α 7→ 〈Wαu, HWαu〉 is of class C1.

Step 2. Let us prove now formula (3.1). Set ρj = ρ
Aj
Hj

. Since σ(H1) + σ(H2) is

closed, then σ(H) = σ(H1) + σ(H2) and therefore (3.1) is obvious if λ /∈ σ(H) as
both members are equal to +∞.

Step 3. Let us fix some arbitrary λ ∈ σ(H) and some numbers η > 0. Then
by hypothesis there exists ε > 0 such that the hypothesis (H1) holds for all µ ∈ R.
Set T1 = H1 ⊗ I and T2 = I ⊗ H2. By working in a spectral representation of the
operator Hj, we easily deduce from (H1) that

E(λ; ε)[T1, iA]E(λ; ε) > θ1(λ− T2)E(λ; ε),

E(λ; ε)[T2, iA]E(λ; ε) > θ2(λ− T1)E(λ; ε),

and therefore

(3.2) E(λ; ε)[H, iA]E(λ; ε) > [θ1(λ− T2) + θ2(λ− T1)]E(λ; ε).

By remarking that we can write λ− T2 = λ− H + T1 and λ− T1 = λ− H + T2
and by using the fact that |H − λ | < ε, we obtain

(3.3) E(λ; ε)[H, iA]E(λ; ε) > inf
| τ |<ε

{θ1(τ + T1) + θ2(τ + T2)}E(λ; ε).

Here T1 + T2 = H; then | T1 + T2 − λ | < ε. Now, by working in a spectral repre-
sentation for both H1 and H2, we deduce from (3.3):

E(λ; ε)[H, iA]E(λ; ε) > inf
| τ |<ε,| µ1+µ2−λ |<ε

{θ1(τ + µ1) + θ2(τ + µ2)}E(λ; ε)

> inf
| λ1+λ2−λ |<3ε

{θ1(λ1) + θ2(λ2)}E(λ; ε)

= inf
| ν−λ |<3ε

inf
ν=λ1+λ2

{θ1(λ1) + θ2(λ2)}E(λ; ε)

= inf
| ν−λ |<3ε

θ(ν)E(λ; ε),

where θ is the function defined in Proposition 3.2. By the same proposition we get
that ρ(λ) > θ(λ). By using the hypothesis (H2) we obtain ρ(λ) > inf

λ=λ1+λ2
(ρ1(λ1)

+ρ2(λ2)) − 2η for all η > 0. So, we can conclude that: ρ(λ) > inf
λ=λ1+λ2

(ρ1(λ1)

+ρ2(λ2)).
Step 4. To show the opposite inequality it is enough to prove that ρ(λ) 6

ρ1(λ1) + ρ2(λ2) if λ ∈ σ(H), λj ∈ σ(Hj) (j = 1, 2) and λ = λ1 + λ2. Let a < ρ(λ).
Then there is ε > 0 such that aE(λ; ε) 6 E(λ; ε)[H, iA]E(λ; ε). We can show that

aE1(λ1; ε/2)⊗ E2(λ2; ε/2) 6

{E1(λ1; ε/2)[H1, iA1]E1(λ1; ε/2)} ⊗ E2(λ2; ε/2)
+E1(λ1; ε/2)⊗ {E2(λ2; ε/2)[H2, iA2]E2(λ2; ε/2)}.
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By the definition of ρj(λj) there is a sequence of vectors { f j
n}n∈N in Hj (j = 1, 2)

such that ‖ f j
n‖ = 1, f j

n = Ej(λj; ε/2) f j
n and 〈 f j

n, [Hj, iAj] f j
n〉 → ρj(λj) as n → ∞. If

fn = f 1
n ⊗ f 2

n , the last inequality implies:

a = 〈 fn, aE1(λ1; ε/2)⊗ E2(λ2; ε/2) fn〉 6 〈 f 1
n , [H1, iA1] f 1

n〉+ 〈 f 2
n , [H2, iA2] f 2

n〉

for any n ∈ N. Hence a 6 ρ1(λ1) + ρ2(λ2), which completes the proof of the
theorem.

REMARK 3.4. (i) Our hypothesis on the regularity of Hj with respect to
Aj is stronger than in the case where Hj are bounded from below (see Theo-
rem 3.4 in [2]). Indeed, our conditions imply that Hj ∈ C1(Aj) because B(Hj) ⊂
B(D(Hj), D(Hj)∗). However, the following example shows that in the case where
Hj is not bounded from below the hypothesis Hj ∈ C1(Aj) is not sufficient to ob-
tain H ∈ C1(A).

Let H1 = L2(R). We consider in H1 the free Stark Hamiltonian H1 = P2 +
Q. Let A1 = −P. It follows that [H1, iA1] = 1, which is obviously a bounded
operator in H1. In particular H1 ∈ C1(A1). Let H2 = L2(Rn), in which we
consider the Laplacian H2 = ∆. Let A2 = D = 1

4 (PQ + QP) the generator of
dilatations in H2. Since [∆, iD] = ∆, the operator H2 is of class C1(A2). Now
we consider in H = H1 ⊗ H2 the self-adjoint operators H = H1 ⊗ 1 + 1 ⊗ H2
and A = A1 ⊗ 1 + 1⊗ A2. We denote by D(H) the domain of H provided with
the graph topology. We then have [H, iA] = 1 + 1 ⊗ H2. We shall show that
[H, iA] /∈ B(D(H), D(H)∗). Suppose that [H, iA] ∈ B(D(H), D(H)∗), then there
exists a constant c < ∞ such that 1⊗H2 6 c(1 + H2). Define the unitary operator
U = e−iP3/3 in H1. We can show that H1 = U−1QU. Thus H1 is equivalent to the
operator of multiplication by the function g : R → R defined by g(x) = x. So we
have σ(H1) = R and H1 is not bounded from below. In its spectral representation
H2 becomes the operator of multiplication by the function h : Rn → R defined by
h(y) = | y |2. In the spectral representation of H1 and H2 the inequality 1⊗ H2 6
c(1 + H2) is equivalent to the statement: for each x ∈ R and each y ∈ Rn we have
h(y) 6 c(1 + (g(x) + h(y))2). Thus h(y) 6 c for each y ∈ Rn, which is obviously
absurd. So [H, iA] /∈ B(D(H), D(H)∗), which implies that H /∈ C1(A).

(ii) The condition σ(H1) + σ(H2) is closed, which is automaticaly verified in
the case where Hj are bounded from below, is simply technical and is not very
restrictive in the applications.

APPLICATION 3.5. As an example, let us show how the theorem should be
used for the case of time periodic relativistic Hamiltonians.

Let H1 = −i d
dt in H1 = L2(T) where T is the torus R/2πZ. Let H2 =

h(P) =
√

1 + P2 in H2 = L2(Rn). Let H = −i d
dt ⊗ 1 + 1⊗

√
P2 + 1 be the self-

adjoint operator defined as above.
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Since H1 is an operator with purely discrete spectrum by simple arguments
then the operator A1 = 0 is conjugate to it and one has

ρ1(λ) = 0 if λ ∈ Z and ρ1(λ) = +∞ if λ /∈ Z.

Let F : Rn → Rn be a vector field defined by F(ξ) = h′(ξ)
1+| h′(ξ) |2 . Then F ∈ BC1(Rn)

and the operator A2 = 1
2 [F(P)Q + QF(P)] is essentially self-adjoint on H2. The

group {eiA2t} generated by A2 leaves invariant the domain of H2 and we have

[H2, iA2] = | h′(P) |2
1+| h′(P) |2 = | P |2

1+| P |2 . Therefore [H2, iA2] ∈ B(H2). Furthermore one
has

ρ2(λ) = inf
h(x)=λ

x2

1 + x2 =
λ2 − 1

2λ2 − 1
if λ > 1 and ρ2(λ) = +∞ if λ < 1.

Now we construct the functions θ1, θ2 of the Theorem 3.3. Let us fix some arbi-
trary η > 0 as well as numbers ε, α, β, δ > 0 such that η > β, η > δ. Let us also
choose a number N < ∞ large enough. Then we define θ1 and θ2 as follows:

θ1(µ) =
{

N if µ /∈ ]k− ε, k + ε[ ∀ k ∈ Z,
−β if µ ∈ ]k− ε, k + ε[ ∀ k ∈ Z,

and

θ2(µ) =

 N if µ < 1− α,
−δ if 1− α 6 µ 6 1 + α,
ρ2(µ)− η if µ > 1 + α.

We verify easily that all the hypotheses of the Theorem 3.3 are satisfied. There-
fore, H ∈ C1(A) and

ρA
H(λ) = inf

λ=λ1+λ2
[ρ1(λ1) + ρ2(λ2)] = inf

λ=k+λ2, k∈Z
ρ2(λ2)

= inf
λ−k>1, k∈Z

ρ2(λ− k) = inf
λ−k>1, k∈Z

(λ− k)2 − 1
2(λ− k)2 − 1

.

The result is that the time periodic relativistic Hamiltonians satisfy a strict Mourre
estimate on µA(H) = R \Z.

4. SPECTRAL THEORY OF DISPERSIVE TIME-PERIODIC SYSTEMS

In this section we study spectral properties of operators of the form H =
H0 + V, where H0 = H1 ⊗ 1 + 1⊗ H2 is a self-adjoint operator and V is, in some
sense, a small symmetric perturbation of H0. The perturbation theory we use is
described in [1].
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4.1. Let T = R/2πZ and H1 = −i d
dτ the momentum operator in the Hilbert

space H1 = L2(T). Let X = Rn, n > 2 and h : X → R be a real function of class
C2. We denote by H2 the self-adjoint operator h(P) = F ∗h(Q)F in the Hilbert
space H2 = L2(X) with domain D(H2) = {u ∈ H2 : h(P)u ∈ H2}.

We denote by H0 = H1 ⊗ 1 + 1⊗ H2 the self-adjoint operator in H = H1 ⊗
H2 = L2(T× X) defined as indicated in Section 3. The operator H0 will be called
dispersive time periodic Hamiltonian.

We denote by κ(h) the set of critical values of h:

(4.1) κ(h) = {λ ∈ R : ∃k ∈ X such that h(k) = λ and h′(k) = 0}.

Note that κ(h) is a closed subset of R. The set κ(h) plays an important role in
spectral theory. One may give the following physical interpretation of κ(h): if the
particle has kinetic energy λ = h(k) ∈ κ(h), then its corresponding velocity h′(k)
is equal to zero. At these energies the particle has bad propagation properties.

We assume that the critical set κ(h) is compact and we denote by τ(h) the
closed set τ(h) = κ(h) + Z.

Since the conjugate operator plays an important role in the Mourre theory,
we shall begin by constructing a suitable conjugate operator for the free Hamil-
tonian H0.

Since the operator H1 has a purely discrete spectrum, it is conjugate to the
operator A1 = 0 (see Application 3.5). In order to find a conjugate operator A2
for H2 we shall follow the construction made in [1], which is motivated by the
following argument.

Let F : X → X be a vector field and set

A2 =
1
2
[F(P) ·Q + Q · F(P)] = QF(P)− i

2
f (P),(4.2)

where f = divF =
n
∑

j=1
∂jFj. Since [ h(P), i Qj] = (∂j h)(P), then [h(P), iA2] =

(Fh′)(P), where h′ = ∇h and Fh′ =
n
∑

j=1
Fj∂jh. As we shall see in the proof of the

Proposition 4.1, in order to get local positivity of the first order commutator, it is
appropriate to use the vector field F defined by:

(4.3) F(k) =
h′(k)

1 + | h′(k) |2 .

Since F belongs to BC1(X) if | h′′(k) | 6 c(1 + | h′(k) |2), it follows that the op-
erator A2 defined in (4.2) is essentially self-adjoint in H2. Finally, for the free
hamiltonian H0 we adopt the following conjugate operator:

(4.4) A = 1⊗ A2.

Suitable conditions on V will make this operator conjugate to H too.
We now state the main result of this section.
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PROPOSITION 4.1. Let h : X → R be a real function of class C2 such that
| h′′(k) | 6 c(1 + | h′(k) |2). We suppose also that the function h satisfies the follow-
ing strict positivity global condition:

(4.5) ∀ δ > 0 ∃ a > 0 such that if dist(h(k), κ(h)) > δ then | h′(k) | > a.

Let A and H0 be defined as above. Then
(i) A is strictly conjugate to H0 on R \ τ(h), i.e.

µA(H0) = R \ τ(h).

In particular, H0 has no eigenvalues in R \ τ(h).
(ii) The limits lim

µ→±0
(H − λ − iµ)−1 ≡ (H − λ ∓ i0)−1 exist locally uniformly on

each compact subset of λ ∈ R \ τ(h) in the weak∗-topology of B(H1/2,1,H−1/2,∞).
In particular, H0 has no singular continuous spectrum outside τ(h).

Proof. Step 1. It is clear that the domain D(H2) of H2 is invariant under the
group e−itA2 . Furthermore, we have:

[H2, iA2] = (Fh′)(P) =
| h′(P) |2

1 + | h′(P) |2

which is a bounded operator in H2. It follows from Theorem 3.3 that H is of class
C1(A).

Let λ ∈ R \ τ(h). Denote d(λ, τ(h)) the distance from λ to τ(h). Let 0 <
η < d(λ, τ(h)) and ϕ ∈ C∞

0 ([λ− η/3, λ + η/3]). We remark that the spectrum of
H1 is discrete and constituted by eigenvalues k ∈ Z. Let Pk be the eigenprojection
associated to the eigenvalue k. Then H0 can be decomposed as

H0 = ∑
k∈Z

(k + H2)⊗ Pk.

Consequently, we have

ϕ(H0)[H0, iA]ϕ(H0) = ∑
k∈Z

| h′(P) |2
1 + | h′(P) |2 ϕ(k + H2)2 ⊗ Pk.

Since supp ϕ(k + ·) ⊂ [λ − η/3− k, λ + η/3− k] we have that if there is k ∈ Z
such that h′(p) ∈ [λ − η/3− k, λ + η/3− k] then d(h(p), κ(h)) > η

3 . From the
assumption (see (4.5)) there is a > 0 such that | h′(p) | > a and therefore there
exists a constant c > 0 such that:

ϕ(H0)[H0, iA]ϕ(H0) > cϕ(H0)2

which proves that A is strictly conjugate to H0 in λ.
Step 2. It is easy to see that [[H2, iA2], iA2] = ((F∇)2h)(P) ∈ B(H2) and

consequently, H0 is of class C2(A). Now, (ii) follows from (i) by the well-known
arguments.

REMARK 4.2. The condition (4.5) which we impose in order to make a sim-
ple spectral analysis of H0 can be stated in physical terms as follows: If the kinetic
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energy belongs to a set located at a positive distance from the critical set κ(h), then
the velocity is bounded from below by a strictly positive constant.

4.2. We shall describe now a class of potentials V for which we can extend the
results of the preceding proposition to the perturbed operators of the form H =
H0 + V.

We first introduce some notation. For each multi-index α = (α1, . . . , αn) we
set ∂α = ∂α1

x1 · · · ∂αn
xn and | α | = α1 + · · ·+ αn. Let G = D(|H0 |1/2) be the form

domain of H0 and G1 = H1 ⊗ G. Let G∗ = D(|H0 |−1/2) and G∗1 = H1 ⊗ G∗ be
the corresponding adjoint spaces.

We say that h is an elliptic symbol of degree 2r > 0 if h ∈ C∞(X), | h(α)(x) | 6
cα 〈x〉2r−| α | for each multi-index α and | h(x) | > c 〈x〉2r, for some c > 0, outside
a compact set. In this case G = (H2)r the usual Sobolev space associated to the
momentum operator P in the Hilbert space H2, and G∗ = (H2)−r its adjoint.

If V is a symmetric operator in H then to each t ∈ T we associate a sym-
metric operator V(t) in H2. Therefore, if V can be decomposed into a sum V =
VS + VL where VS and VL are symmetric operators inH, then to each t ∈ T we can
associate two symmetric operators VS(t) and VL(t) in H2. The component VS(t)
is called the short range part of the interaction which can be very singular but it
must decay quickly at infinity. The component VL(t), called the long range part
of the interaction, may be a non local operator, quite strong locally singular and
decays very slowly at infinity but it must be regular.

THEOREM 4.3. Let A and H0 be as above. Suppose that h is an elliptic symbol and
let V : G1 → G∗1 be a symmetric operator such that V is relatively bounded with respect
to H0 with relative bound strictly less than 1. Denote by H the self-adjoint operator in H
induced by H0 + V and assume that (H + i)−1 − (H0 + i)−1 is compact in H. Assume
that V = VS + VL, where VS(t) : G → G∗ and VL(t) : G → G∗ are symmetric operators
satisfying:

(S) There is θ ∈ C∞
0 (X) with θ(x) > 0 in an annulus 0 < a < | x | < b < ∞ and

θ(x) = 0 otherwise, such that:

∞∫
1

sup
t∈T

‖θ(r−1Q)VS(t)‖B(G,G∗)dr < ∞.

(L) There is ζ ∈ C∞(X) with ζ(x) = 0 near zero and ζ(x) = 1 near infinity such
that:

n

∑
j=1

∞∫
1

sup
t∈T

{‖ζ(r−1Q)[Qj, VL(t)]‖B(G,G∗) + ‖ζ(r−1Q)|Q |[Pj, VL(t)]‖B(G,G∗)}
dr
r

< ∞.

Then the operator H has the following properties:
(i) A is locally conjuguate to H on R \ τ(h), i.e.

µ̃A(H) = R \ τ(h).
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(ii) The eigenvalues of H which do not belong to τ (h) are of finite multiplicity and do
not have accumulation points outside τ(h).

(iii) For each λ ∈ R \ [τ(h) ∪ σp(H)], the limits lim
µ→+0

(H − λ ∓ iµ)−1 exist in the

weak∗-topology of B(H1/2,1,H−1/2,∞), and this holds uniformly in λ in each compact
set of R \ [τ(h) ∪ σp(H)].

(iv) The singular continuous spectrum of H is included in τ(h). In particular, if τ(h)
is countable, then H has no singular continuous spectrum.

Proof. (i) As h is an elliptic symbol and [[h(P), iA2], iA2] = ((F∇)2h)(P) is
a bounded operator in H2, then it is easy to see that H0 is of class C2(A). Since
(H + i)−1 − (H0 + i)−1 is a compact operator in H, it follows from Theorem 7.2.9
in [1] that if H is of class C1,1(A) (in fact we need only H ∈ C1

u(A)), then ρ̃H = ρ̃H0 .
In particular,

µ̃A(H) = µ̃A(H0) = µA(H0) = R \ τ(h).
Clearly the conditions (i), (ii) and (iii) of Proposition 7.5.6 in [1] are satisfied.
Therefore, all assertions follow immediately as soon as we show that V is of class
C1,1(A;G1,G∗1 ).

(ii) Now we show that VS, VL ∈ C1,1(A;G1,G∗1 ). For this we shall use Propo-
sition 7.5.7 and Theorem 7.5.8 in [1], with Λ = 1⊗ 〈Q〉 where Q is the position
operator on H2. By using Lemma 7.6.7 in [1] we have that the group {ei〈Q〉τ}
leaves invariant G and induces a C0-group of polynomial growth in G and G∗.
Besides, we have D(〈Q〉,G∗) ⊂ D(A2,G∗) and 〈Q〉−2 A2

2 ∈ B(G), so the proper-
ties eiΛτG1 ⊂ G1 for each τ ∈ R, ‖eiΛτ‖B(G1) 6 c〈τ〉N and D(Λ,G∗1 ) ⊂ D(Λ,G∗1 )
and Λ−2 A2 ∈ B(G1) required are easy to verify. Also, we have

∞∫
1

‖θ(r−1Λ)VS‖B(G1,G∗1 )dr =
∞∫

1

sup
t∈T

‖θ(r−1Q)VS(t)‖B(G,G∗)dr < ∞,

so (7.5.29) in [1] is true and VS is of class C1,1(A;G1,G∗1 ). Finally, we consider the
operator VL and we propose to verify the relation (7.5.26) in [1]. From the proof
of Theorem 7.6.8 in [1] we deduce:

‖ζ(r−1Q)[A2, iVL(t)]‖B(G,G∗) 6 ϕ(r, t)

where ϕ is an integrable function on (1, ∞) with respect to the measure dr
r . Then

∞∫
1

‖ζ(r−1Λ)[A, iVL]‖B(G1,G∗1 ) =
∞∫

1

sup
t∈T

‖ζ(r−1Q)[A2, iVL(t)]‖B(G,G∗)
dr
r

< ∞,

and therefore VL ∈ C1,1(A;G1,G∗1 ).

EXAMPLES 4.4. We consider two physically important situations, namely
the non-relativistic and relativistic Schrödinger operator periodic in time.

(i) Non-relativistic Schrödinger operator periodic in time: A trivial example of el-
liptic symbol is the quadratic function h(k) = | k |2, which is of degree 2 (i.e.
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r = 1). In this case G = (H2)1 and G∗ = (H2)−1 and the hamiltonian is the
non-relativistic Schrödinger operator periodic in time H0 = −i d

dt ⊗ 1 + 1⊗∆. In
this case, we have κ(h) = {0} and τ(h) = Z. We can compare our result with
those of Yokoyama (see [18]). However, the class of interactions that we consider
is sensibly more general.

(ii) Relativistic Schrödinger operator periodic in time: Another physically impor-
tant situation is obtained when h(k) = (| k |2 + 1)1/2, which is an elliptic sym-
bol of degree 1 (i.e. r = 1

2 ). In this case G = (H2)1/2 and G∗ = (H2)−1/2 and
the hamiltonian is the relativistic Schrödinger operator periodic in time H =
−i d

dt ⊗ 1 + 1⊗ 〈∆〉. In this case, we have κ(h) = {1} and τ(h) = Z.
In the particular case where V = VS + VL is the operator of multiplication

in H by a function V(t, Q) = VS(t, Q) + VL(t, Q) our hypotheses are simple and
natural: we only require that V(t, Q) = VS(t, Q) + VL(t, Q) with

|VS(t)(x) | 6 c〈x〉−1−ε

| ∂α
xVL(t)(x) | 6 C〈x〉−| α |−ε

for some ε > 0 and some constant C independent of t.

Now, we shall describe another class of potentials V for which all conclu-
sions of the preceding theorem are true. We are interested in the case V = VS + VL
where VS is a bounded operator having a decay of short range type at infinity and
VL = a(Q, P) is a bounded pseudo-differential operator of long range type. In or-
der to state the long range assumptions we introduce the following definition:

A function b : R2n → C is called an admissible symbol if b is the inverse
Fourier transform of a measure b̂ having the following property:∫ ∫

R2n

[
| b̂(x, y) | ln(2 + | y |) +

∫
| z |<1

| b̂(x + z, y)− b̂(x, y) || z |−ndz
]
dxdy < ∞.

THEOREM 4.5. Let A and H0 be defined as in Proposition 4.1. Let VS and VL be
bounded symmetric operators on H. Let H be a self-adjoint operator in H associated to
the sum H0 + VS + VL. We assume that (H + i)−1 − (H0 + i)−1 is a compact operator,
and that VS, VL satisfy the following conditions:

(S) There is θ ∈ C∞
0 (X) with θ(x) > 0 if 0 < a < | x | < b < ∞ and θ(x) = 0

otherwise, such that:

∞∫
1

sup
t∈T

‖θ(r−1Q)VS(t)‖B(H2)dr < ∞.

(L) VL(t) is a pseudodifferential operator having as Weyl symbol a distribution a :
R2n → R such that aj(x, y) ≡ ∂xj a(x, y) and aj,k(x, y) ≡ (∂yk − ixk)aj(x, y) are
admissible symbols for all j, k = 1, . . . , n. Furthermore, assume that the operators
VL(t) ≡ a(Q, P) and [VL(t), iQj] decay at infinity in the following sense: if ζ ∈ C∞(X)
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with ζ(x) = 0 near 0 and ζ(x) = 1 near infinity, then
∞∫

1

sup
t∈T

{‖ζ(r−1Q)VL(t)‖B(H2) + ‖ζ(r−1Q)[VL(t), iQj]‖B(H2)}
dr
r

< ∞.

Then all conclusions of the preceding theorem are true.

Proof. As in the proof of the previous theorem and by the same arguments,
it suffices to show that VS, VL ∈ C1,1(A). This assertion follows by mimicking the
proof of [4]. For the short range part,

∞∫
1

‖θ(r−1Λ)VS‖B(H)dr =
∞∫

1

sup
t∈T

‖θ(r−1Q)VS(t)‖B(H2)dr < ∞.

For the long range part, from the proof of Theorem 2.5 in [3] it is easy to see that:
∞∫

1

‖ζ(r−1Λ)[A, iVL]‖B(H) =
∞∫

1

sup
t∈T

‖ζ(r−1Q)[A2, iVL]‖B(H2)
dr
r

< ∞,

and therefore VL ∈ C1,1(A).

EXAMPLE 4.6. In the particular case where V = VS + VL is the operator of
multiplication in H by a function V(t, Q) = VS(t, Q) + VL(t, Q) our hypotheses
are simple: VS(t), VL(t) are two bounded real functions such that

∞∫
1

sup
t∈T

sup
τ6| x |62τ

|VS(t)(x) |dτ < ∞,

VL(t) is of class Cm+1 (with m = [n/2] + 1) and

| ∂α
xVL(t)(x) | 6 C〈x〉−| α |−ε

for some ε > 0, C some constant independent of t and | α | 6 m + 1.
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