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ABSTRACT. Given an operator A on a Hilbert space H and c ∈ H, we con-
sider operators ΛA, c defined on analytic functions f by ΛA, c f = f (A)c. Spe-
cial cases of ΛA, c include vectorial Hankel operators, Carleson embeddings
and weighted composition operators. For certain A, we determine conditions
under which ΛA, c extends to an operator of Schatten von-Neumann class on
the Hardy or Bergman space of the disc. These conditions involve only the
action of ΛA, c on reproducing kernels and their derivatives. We also give cor-
responding results for operators on the Hardy space of the half-plane.
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1. INTRODUCTION AND NOTATION

Establishing whether a given operator on a function space is bounded, com-
pact or belongs to a Schatten–von Neumann class is an important problem in
functional analysis. A fruitful approach to this problem has been to employ a
“small” set of test functions such that properties of the operator are determined
solely by its action on these functions. When the space is a reproducing kernel
Hilbert space, it is natural to use the kernels themselves as test functions.

The “Reproducing Kernel Thesis” asserts that for many classes of operators
on reproducing kernel Hilbert spaces, boundedness of a particular operator is
equivalent to boundedness on the kernels, see [11]. Two important examples of
this phenomenon are Hankel operators and Carleson embeddings on the Hardy
space; for these two classes of operators the Reproducing Kernel Thesis is equiv-
alent to fundamental results from harmonic analysis — namely C. Fefferman’s
duality theorem (H1)∗ = BMOA and the Carleson measure theorem, respec-
tively.
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In [7], a general class of operators was considered in a Hardy space and
Bergman space setting. This class was motivated by linear systems theory and
included Hankel operators, Carleson embeddings and weighted composition op-
erators as special cases. Boundedness and compactness criteria for this class of
operators were obtained in terms of reproducing kernels.

In [8], the problem of determining whether a Hankel operator on the Hardy
space belonged to a particular Schatten–von Neumann class in terms of the oper-
ator’s behaviour on the kernels was first considered and some partial results were
obtained. A complete characterisation, both for Hankel operators and Carleson
embeddings, was achieved in [16].

The aim of this paper is to classify Schatten–von Neumann class member-
ship for the general operators considered in [7] in terms of their action on kernels.

1.1. REPRODUCING KERNEL HILBERT SPACES. A Hilbert spaceH of functions on
a set Ω is a reproducing kernel Hilbert space if for any point z ∈ Ω, there exists
a function kz ∈ H (the associated reproducing kernel) such that for all f ∈ H,
f (z) = 〈 f , kz〉, i.e. point evaluations are bounded linear functionals.

The Hardy space H2 consists of those functions f which are analytic on the
open unit disc D and such that

‖ f ‖2
H2 = sup

06r<1

1
2π

2π∫
0

| f (reiθ)|2dθ < ∞.

The Bergman space L2
a consists of those functions f which are analytic on D

and such that

‖ f ‖2
L2

a
=

1
π

∫
D

| f (z)|2dA(z) < ∞,

where dA denotes Lebesgue area measure on D. Both H2 and L2
a are reproducing

kernel Hilbert spaces over D. The reproducing kernels for H2 are given by

kz(w) =
1

1− zw
; thus k̃z(w) =

(1− |z|2)1/2

1− zw
,

where f̃ denotes f /‖ f ‖. The reproducing kernels for L2
a are given by

hz(w) =
1

(1− zw)2 , so that h̃z(w) =
1− |z|2

(1− zw)2 .

We shall also require the derivatives of the kernels. Let

k̇z(w) =
∂

∂z
kz(w) =

w
(1− zw)2 , ḣz(w) =

∂

∂z
hz(w) =

2w
(1− zw)3 .

For f ∈ H2, we have f ′(z) = 〈 f , k̇z〉H2 , with a corresponding result for L2
a. Note

that

(1.1) ‖k̇z‖2
H2 = k̇′z(z) =

1 + |z|2
(1− |z|2)3 ≈ (1− |z|2)−3,
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where ≈ denotes equivalence up to constants. Similarly,

(1.2) ‖ḣz‖2
L2

a
= ḣ′z(z) =

2 + 4|z|2
(1− |z|2)4 ≈ (1− |z|2)−4.

We will need to use the vectors ˜̇kz = k̇z/‖k̇z‖ and ˜̇hz = ḣz/‖ḣz‖ later.

1.2. OPERATORS ARISING FROM LINEAR SYSTEMS THEORY. Let H be a Hilbert
space (always assumed separable). Suppose that A ∈ B(H) (the collection of
bounded linear operators on H) with spectral radius r(A) 6 1. This means that
A has spectrum Sp(A) ⊆ D. In particular, this will hold if A is a contraction, so
that ‖A‖ 6 1.

Let O( D ) denote the collection of all functions which are holomorphic in
some neighbourhood of D, the closed unit disc. Note that O( D ) contains all of
the reproducing kernels of both H2 and L2

a and their derivatives, so thatO( D ) is a
dense subspace of both H2 and L2

a. Then f (A) ∈ B(H) is well-defined whenever
f ∈ O( D ) (because the associated power series in A converges absolutely).

DEFINITION 1.1. For H and A as above with r(A) 6 1, we define for each
c ∈ H the operator ΛA, c with symbols A and c as follows:

ΛA, c : O( D ) → H; ΛA, c f = f (A)c.

We will be interested in criteria which characterise when such operators ex-
tend to bounded, compact or Schatten class operators on H2 or L2

a. Such operators
occur in linear systems theory; indeed the boundedness of such an operator on
H2 is equivalent to the infinite-time admissibility of the observation operator for
a discrete-time linear system (see [7] for details). However certain special cases
of these operators have been studied before without reference to linear systems.
In addition to Carleson embeddings and Hankel operators which are related to
C. Fefferman’s important duality theorem (H1)∗ = BMOA, we mention also the
following example:

EXAMPLE 1.2. Weighted composition operators may be considered as par-
ticular examples of the ΛA, c operators introduced above. If µ is a positive, fi-
nite Borel measure on D and φ : supp(µ) → D is a measurable function then if
H = L2(µ) and we let A = Mφ be the operator of pointwise multiplication by φ
on H we obtain

ΛA, c( f ) = f (Mφ)c = M f ◦φ(c) = c · ( f ◦ φ)

for each c ∈ H.

In [7], necessary and sufficient conditions for ΛA, c to extend to a bounded
or compact operator on H2 or L2

a are derived, in terms of the action of ΛA, c on the
reproducing kernels of those spaces. We have the following results:
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THEOREM 1.3. Suppose that H is a (separable) Hilbert space and that A ∈ B(H)
is a subnormal operator with r(A) 6 1. Let c ∈ H. Then ΛA, c extends to a bounded
operator from L2

a to H if and only if

sup
z∈D

‖ΛA, c(h̃z)‖ < ∞.

Moreover, the above supremum is equivalent to ‖ΛA, c‖ (with constants of equivalence
independent of H, A and c). ΛA, c extends to a compact operator from L2

a to H if and
only if

lim
r→1−

sup
|z|=r

‖ΛA, c(h̃z)‖ = 0.

The proof of this result relies upon the spectral theorem for normal oper-
ators and corresponding results for Carleson embedding operators on L2

a; see
Theorem 2.5 later (which is quoted from [7]). If ΛA, c is considered to be acting on
H2, we can obtain corresponding results for A in a larger class of operators.

THEOREM 1.4. Suppose thatH is a Hilbert space and A ∈ B(H) is a contraction,
so that ‖A‖ 6 1. Let c ∈ H. Then ΛA, c extends to a bounded operator from H2 to H if
and only if

sup
z∈D

‖ΛA, c(k̃z)‖ < ∞.

Moreover, the above supremum is equivalent to ‖ΛA, c‖ (with constants of equivalence
independent of H, A and c). ΛA, c extends to a compact operator from H2 to H if and
only if

lim
r→1−

sup
|z|=r

‖ΛA, c(k̃z)‖ = 0.

The proof of this result relies upon the Sz.-Nagy–Foias functional model for
contraction operators and corresponding results for Hankel operators on H2 —
see Theorem 3.6 later (which is quoted from [7]).

The aim of this paper is to classify Schatten–von Neumann class member-
ship for certain ΛA, c operators in terms of their action on reproducing kernels.

1.3. SCHATTEN–VON NEUMANN CLASSES. Suppose that T is a compact opera-
tor between Hilbert spaces H1 and H2. Then T has a Schmidt decomposition, so
that there are orthonormal bases {en} and {σn} of H1 and H2 respectively and a
sequence {λn} with λn > 0 and λn → 0 such that for all f ∈ H1,

T f =
∞

∑
n=0

λn〈 f , en〉σn.

For 1 6 p < ∞, such a compact operator T belongs to the Schatten–von
Neumann p-class Sp = Sp(H1,H2) if and only if

‖T‖p
Sp

=
∞

∑
n=0

λ
p
n < ∞.
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For T ∈ S1(H1,H1), we may also define the trace of T as follows:

Tr(T) =
∞

∑
n=0

〈Ten, en〉,

where {en} is an arbitrary orthonormal basis. For more details on the Schatten
classes, we refer to the books [15] and [18].

Throughout this paper, C and Cp stand for various absolute constants which
may vary from line to line, with Cp dependent only upon p.

2. OPERATORS ON THE BERGMAN SPACE

2.1. CRITERIA FOR GENERAL OPERATORS. If one is trying to use reproducing ker-
nels to classify the boundedness or compactness of operators on the Bergman
space then there are obvious necessary conditions: if T is a bounded operator on
L2

a then
sup
z∈D

‖Th̃z‖ < ∞,

and if T is a compact operator on L2
a then

lim
r→1−

sup
|z|=r

‖Th̃z‖ = 0,

because h̃z → 0 weakly as |z| → 1. We have seen that the converses to these
statements hold for those ΛA, c operators from L2

a to H with A ∈ B(H) a subnor-
mal contraction operator. The aim here is to find corresponding conditions which
classify Schatten class membership for operators on L2

a in terms of their action on
the reproducing kernels. Recall that dλ is the measure on D given by

dλ(z) =
dA(z)

(1− |z|2)2 .

PROPOSITION 2.1. Let T ∈ B(L2
a,H) for a Hilbert space H. Then:

(i) ‖T‖2
S2

= 1
π

∫
D
‖Thz‖2dA(z) = 1

π

∫
D
‖Th̃z‖2dλ(z).

(ii) If p > 2 and T ∈ Sp(L2
a,H) then∫

D

‖Th̃z‖pdλ(z) 6 π‖T‖p
Sp

.

(iii) If 1 6 p < 2 and ∫
D

‖Th̃z‖pdλ(z) < ∞,

then T ∈ Sp(L2
a,H). Moreover,

‖T‖p
Sp

6
1
π

∫
D

‖Th̃z‖pdλ(z).
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Proof. We recall the following from pages 115 and 117 in [18]: if A is a
positive operator on L2

a then

Tr(A) =
1
π

∫
D

〈Ah̃z, h̃z〉dλ(z);

if f ∈ L2
a has unit norm then

〈Aq f , f 〉 > 〈A f , f 〉q, for q > 1, 〈Aq f , f 〉 6 〈A f , f 〉q, for 0 < q 6 1.(2.1)

But

‖T‖p
Sp

= Tr((T∗T)p/2) =
1
π

∫
D

〈(T∗T)p/2h̃z, h̃z〉dλ(z).

Since by (2.1) 〈(T∗T)p/2h̃z, h̃z〉 > ‖Th̃z‖p for p > 2 and the reverse inequality
holds if p 6 2, the result follows.

We will show that the converses to the above statements hold for many

ΛA, c operators. We will need an extra condition in terms of ˜̇hz, the normalised
derivatives of the kernels, which characterises S1 operators.

PROPOSITION 2.2. Let T ∈ B(L2
a,H) for a Hilbert space H. If∫

D

‖T˜̇hz‖dλ(z) < ∞,

then T ∈ S1(L2
a,H). Moreover,

‖T‖S1 6 C
( ∫

D

‖T˜̇hz‖dλ(z) + ‖Th0‖
)

.

Proof. First note that, for f ∈ L2
a with power series f (z) =

∞
∑

n=0
anzn, elemen-

tary calculations show that

1
π

∫
D

| f ′(z)|2(1− |z|2)2dA(z) + | f (0)|2 = |a0|2 +
∞

∑
n=1

2n
(n + 1)(n + 2)

|an|2

≈
∞

∑
n=0

1
n + 1

|an|2 = ‖ f ‖2
L2

a
.(2.2)

Thus, if A ∈ S1(L2
a, L2

a) is positive and with Schmidt decomposition

A f =
∞

∑
n=0

λn〈 f , en〉en

then

〈Aḣz, ḣz〉 =
∞

∑
n=0

λn|e′n(z)|2 and 〈Ah0, h0〉 =
∞

∑
n=0

λn|en(0)|2.
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Therefore, using (2.2), we see that∫
D

〈Aḣz, ḣz〉(1− |z|2)2dA(z) + 〈Ah0, h0〉 ≈
∞

∑
n=0

λn‖en‖2 = Tr(A).

Thus if we set A = (T∗T)1/2 and substitute, we get

‖T‖S1 = Tr(A) ≈
∫
D

〈(T∗T)1/2˜̇hz, ˜̇hz〉dλ(z) + 〈(T∗T)1/2h0, h0〉

6
∫
D

‖T˜̇hz‖dλ(z) + ‖Th0‖

by using equation (1.2) and equation (2.1) in the proof of Proposition 2.1.

2.2. SCHATTEN CLASS CARLESON EMBEDDINGS ON THE BERGMAN SPACE. In [7],
it is shown that the operators ΛA, c, where A is a normal contraction operator, are
equivalent to Carleson embeddings. We shall therefore characterise precisely Sp

membership for Carleson embeddings on L2
a in terms of reproducing kernels.

For a finite, positive Borel measure µ on D, let Iµ : L2
a → L2(µ) denote

the embedding operator. In [10], Luecking classified Sp membership for such
operators in terms of a dyadic partition of the unit disc. For k = 0, 1, 2, . . . and
l = −2k + 1, . . . , 2k, let

Bk,l = {reiθ : 2−k(l − 1) 6 θ/π < 2−kl and 2−k−1 6 1− r < 2−k}.

THEOREM 2.3. For 1 6 p < ∞, Iµ ∈ Sp if and only if

∞

∑
k=0

2k

∑
l=−2k+1

(µ(Bk,l)22k)p/2 < ∞,

and ‖Iµ‖p
Sp

is equivalent to the above expression with constants of equivalence depending
only on p.

See Corollary 1 of [10]. We shall show that this condition may be interpreted
in terms of reproducing kernels. The analogous results for embedding operators
on H2 are included in Theorem 3.8 later as a special case and are also given in [16].
We will find it convenient later to consider measures supported on the whole
closed disc D instead; this is possible because functions in O( D ) are certainly
defined on D.

PROPOSITION 2.4. Let µ be supported now on D.
(i) For 1 < p < ∞, Iµ ∈ Sp(L2

a, L2(µ)) if and only if

(2.3)
∫
D

‖Iµ h̃z‖pdλ(z) < ∞

and moreover ‖Iµ‖p
Sp

is equivalent to the above expression.
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(ii) Iµ ∈ S1(L2
a, L2(µ)) if and only if

(2.4)
∫
D

‖Iµ
˜̇hz‖dλ(z) < ∞

and moreover ‖Iµ‖S1 is equivalent to

∫
D

‖Iµ
˜̇hz‖dλ(z) + ‖Iµh0‖.

Proof. By Propositions 2.1 and 2.2, we need only prove the sufficiency of
these conditions when 2 < p < ∞ and the necessity when 1 6 p < 2. Let us
suppose for the moment that µ is supported on D as in Theorem 2.3; we will deal
with the part supported on T, the unit circle, later.

First suppose that 2 < p < ∞ and that (2.3) holds. Then

∫
D

‖Iµ h̃z‖pdλ(z) =
∞

∑
k=0

2k

∑
l=−2k+1

∫
Bk,l

( ∫
D

(1− |z|2)2

|1− zw|4 dµ(w)
)p/2

dλ(z)

>
∞

∑
k=0

2k

∑
l=−2k+1

∫
Bk,l

( ∫
Bk,l

(1− |z|2)2

|1− zw|4 dµ(w)
)p/2

dλ(z)

> Cp

∞

∑
k=0

2k

∑
l=−2k+1

(
µ(Bk,l)22k

)p/2
λ(Bk,l),

since 1− |z|2 ≈ 2−k and |1− zw| ≈ 2−k for w, z ∈ Bk,l — see for instance p. 122 in
[1]. Since λ(Bk,l) ≈ 1, it follows by Theorem 2.3 that Iµ ∈ Sp(L2

a, L2(µ)).
Now let us show the necessity of (2.4); the proof of the necessity of (2.3)

when 1 < p < 2 is similar. So, suppose that Iµ ∈ S1(L2
a, L2(µ)) and that ck,l ∈ Bk,l .

Then we have

∫
D

‖Iµ
˜̇hz‖dλ(z) ≈

∫
D

( ∞

∑
k=0

2k

∑
l=−2k+1

∫
Bk,l

|w|2(1− |z|2)4

|1− zw|6 dµ(w)
)1/2

dλ(z)

6 C
∫
D

( ∞

∑
k=0

2k

∑
l=−2k+1

(1− |z|2)4

|1− zck,l |6
µ(Bk,l)

)1/2
dλ(z)

6 C
∞

∑
k=0

2k

∑
l=−2k+1

µ(Bk,l)1/2
∫
D

1
|1− zck,l |3

dA(z),
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using (∑ an)1/2 6 ∑ a1/2
n for an > 0 and changing the order of summation and

integration. The main inequality we used was the following:∫
Bk,l

dµ(w)
|1− zw|6 6 C

µ(Bk,l)
|1− zc|6 (z ∈ D, c ∈ Bk,l)

with C independent of z, k, l and the point c, which is true simply because for any
η ∈ D the function |1− ηw| as a function of w does not change much as w varies
over Bk,l . More precisely, there is a fixed δ > 0 independent of k, l such that

(2.5) δ · |1− ηc | 6 inf
w∈Bk,l

|1− ηw| 6 |1− ηc | for all η ∈ D.

We can see that this is true as follows: it is easy to see that the set Bk,l has diameter
about 2−k. Every point of Bk,l has modulus at most 1− 2−(k+1) and |η−1| > 1, so
that

dist(η−1, Bk,l) = inf
w∈Bk,l

|η−1 − w| > 2−(k+1) ≈ diam(Bk,l).

Thus we get

|η−1 − c| 6 dist(η−1, Bk,l) + diam(Bk,l) 6 C · dist(η−1, Bk,l)

so that multiplying throughout by |η| gives the inequality (2.5) needed.
Now we use the estimate:∫

D

1
|1− zck,l |3

dA(z) ≈ (1− |ck,l |2)−1 ≈ 2k

which can be found on p. 53 of [18] to obtain∫
D

‖Iµ
˜̇hz‖dλ(z) 6 C

∞

∑
k=0

2k

∑
l=−2k+1

( µ(Bk,l)22k)1/2 6 C‖Iµ‖S1 ,

by Theorem 2.3. Trivially, ‖Iµh0‖ 6 ‖Iµ‖ 6 ‖Iµ‖S1 , so we are finished in the case
of supp(µ) ⊆ D.

Now we deal with the general case. If µ is supported on D then we can
write µ = µ0 + ν where µ0 is supported on D and ν is supported on T. We have
‖Iµ f ‖2 = ‖Iµ0 f ‖2 + ‖Iν f ‖2 and the results are already proved for µ0, so we will
now consider ν; it turns out that ν has to be zero anyway.

Let J ⊂ T be a subarc (which we call a subinterval) of T given by

J = {eiθ : θ0 − ε < θ 6 θ0 + ε}
for some θ0 ∈ R, where |J| = 2ε is the length of J. Define the associated region
(which is similar to the Carleson square of J in the standard Carleson measure
theorem for H2)

B(J) = {reiθ : 1− 2ε < r < 1− ε, θ0 − ε < θ 6 θ0 + ε} ⊂ D
which is a nondyadic version of the regions Bj,k considered earlier (we could
prove our results by taking only dyadic partitions of T and using Bj,k). We recall
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the following familiar Hardy space estimates which can be proved in a similar
way to (2.5) above:

|k̃z(eiθ)|2 = Pz(eiθ) > δ ·
χJ(eiθ)
|J| for all z ∈ B(J) and eiθ ∈ T,

where Pz is the Poisson kernel for z. Here the functions are considered as func-
tions on T, χJ equals 1 on J and 0 otherwise and δ > 0 is independent of J.

But |h̃z| = |k̃z|2 so that |h̃z|2 > δ2 · χJ/|J|2; now let us partition T into n
subintervals Jj of length 2π/n and observe that

(2.6) ‖Iν h̃z‖2 =
∫
T

|h̃z|2 dν > δ2 ·
ν(Jj)
|Jj|2

for all z ∈ B(Jj).

Suppose first that Iν is merely bounded from L2
a to L2(T, ν), which certainly holds

if Iν lies in Sp. For each j pick z ∈ B(Jj). Then

ν(Jj)
|Jj|2

6 δ−2‖Iν h̃z‖2 6 M

for some M independent of j and n, so that

ν(T) =
n

∑
j=1

ν(Jj) 6 M
n

∑
j=1

|Jj|2 =
4Mπ2

n
.

Thus letting n → ∞ gives ν(T) = 0 so that ν = 0 as required.
Now suppose, conversely, that (2.3) above holds for p > 2 (which is the

only remaining case we need consider because of Propositions 2.1 and 2.2 as re-
marked before). It is clear that the regions B(Jj) ⊂ D are pairwise disjoint and
that λ(B(J)) ≈ 1. Hence by equation (2.6) above

n

∑
j=1

(ν(Jj)
|Jj|2

)p/2
6 M

n

∑
j=1

∫
B(Jj)

‖Iν h̃z‖p dλ(z) 6 M′

so that (using Hölder’s inequality with exponent p/2 > 1)

n2

4π2

n

∑
j=1

ν(Jj) =
n

∑
j=1

ν(Jj)
|Jj|2

6 (M′)2/p · n1−2/p

because |Jj| = 2π/n for each j, so that letting n → ∞ as before again gives ν = 0
as required.

2.3. SCHATTEN CLASS ΛA, c OPERATORS ON THE BERGMAN SPACE. The follow-
ing theorem may be found in [7]; it is the discrete version of an earlier result
for normal semigroups given in [17]. See Section 4 later for a discussion of the
continuous semigroup results.
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THEOREM 2.5. Let A be a subnormal operator on a Hilbert space H with r(A) 6
1. Let c ∈ H. Then there exists a finite, positive Borel measure µ on D such that

‖ΛA, c f ‖2
H =

∫
D

| f (z)|2 dµ(z) = ‖Iµ f ‖2,

for all f ∈ O( D ).

Here Iµ means the inclusion operator mapping O( D ) into L2(µ) as above.
We can apply this result to our ΛA, c operators with A subnormal.

THEOREM 2.6. Let A be a subnormal operator on a Hilbert space H with r(A) 6
1. Let c ∈ H.

(i) For 1 < p < ∞, ΛA, c ∈ Sp(L2
a,H) if and only if

(2.7)
∫
D

‖ΛA, c h̃z‖pdλ(z) < ∞,

and moreover ‖ΛA, c‖
p
Sp

is equivalent to the above expression.

(ii) ΛA, c ∈ S1(L2
a,H) if and only if

(2.8)
∫
D

‖ΛA, c
˜̇hz‖dλ(z) < ∞,

and moreover ‖ΛA, c‖S1 is equivalent to∫
D

‖ΛA, c
˜̇hz‖dλ(z) + ‖c‖.

Proof. By Theorem 2.5, there exists a positive, finite Borel measure µ sup-
ported on D such that ‖ΛA, c f ‖ = ‖Iµ f ‖ for all f ∈ O( D ). Because ΛA, c(h0) = c
we see that the results follow immediately from Proposition 2.4.

3. OPERATORS ON THE HARDY SPACE

3.1. CRITERIA FOR GENERAL OPERATORS. As in the case of the Bergman space,
we require criteria for operators on the Hardy space which characterise Schatten
class membership in terms of an operator’s action on the reproducing kernels.
The following was proved in [16]; see Lemmas 1 and 2 and Theorems 1 and 2
of [16].

THEOREM 3.1. Let T ∈ B(H2,H) for any Hilbert space H. Then:

(i) ‖T‖2
S2

= sup
06r<1

1
2π

2π∫
0
‖Tkreiθ‖2dθ ≈

∫
D
‖Tk̇z‖2(1− |z|2)dA(z) + ‖Tk0‖2.
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(ii) If p > 2 and T ∈ Sp(H2,H) then∫
D

‖Tk̃z‖pdλ(z) 6 Cp‖T‖p
Sp

.

(iii) If 1 6 p < 2 and ∫
D

‖T˜̇kz‖pdλ(z) < ∞,

then T ∈ Sp(H2,H). Moreover,

‖T‖p
Sp

6 Cp

( ∫
D

‖T˜̇kz‖pdλ(z) + ‖Tk0‖p
)

.

It is shown in [16] that the converses to the above statements hold for T a
scalar Hankel operator or T a Carleson embedding on H2.

3.2. SCHATTEN CLASS VECTORIAL HANKEL OPERATORS. In [7], it is shown that
operators ΛA, c, where A is a contraction operator, are isometrically equivalent to
a direct sum of a vectorial Hankel operator and a Carleson embedding operator
— see Theorem 3.6 later. We shall therefore characterise precisely Sp membership
for vectorial Hankel operators on H2 in terms of reproducing kernels.

For a separable Hilbert space F, let L2(T, F) denote the corresponding Hilbert
space of F-valued measurable functions on T and H2(F) the Hardy space of F-
valued holomorphic functions on D, which may be considered as a closed sub-
space of L2(T, F). Let P+ denote the orthogonal projection from L2(T, F) onto
H2(F).

Given h ∈ H2(F), we define the (anti-linear) vectorial Hankel operator

Γh : H2 → H2(F); Γh f = P+(h f ).

Here h f denotes the pointwise multiplication of the two functions h and f defined
almost everywhere on T. Note that Γh is certainly defined at least for f ∈ O( D )
and indeed for f ∈ H∞(D). There are obvious definitions for boundedness, com-
pactness and Schatten–von Neumann classes of anti-linear operators. It is well
known that the boundedness and compactness of such operators is determined
by their action on the reproducing kernels of H2 — see pp. 81–83 of [15]. The aim
here is to produce analogous conditions for Sp membership — we shall see that
the converses of the statements in Theorem 3.1 hold. Since this was done for the
special case F = C in [16], we shall just provide sketches of the proofs.

For g ∈ L2(T) and x ∈ F, let g⊗ x denote the member of L2(T, F) defined by

(g⊗ x)(z) = g(z)x for each z ∈ T.

Let S denote the shift on H2(F), so that S f (z) = z f (z), for f ∈ H2(F) and z ∈ D.
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PROPOSITION 3.2. Let 2 < p < ∞. Then Γh ∈ Sp(H2, H2(F)) if and only if

(3.1)
∫
D

‖Γh k̃z‖pdλ(z) < ∞,

with ‖Γh‖
p
Sp

equivalent to the above expression.

Proof. By Theorem 3.1, we need only show the sufficiency of (3.1). Peller [14]
characterised Sp vectorial Hankel operators in terms of Besov space properties of
their symbols, so we have Γh ∈ Sp(H2, H2(F)) if and only if

(3.2)
∫
D

‖(Sh)′(z)‖p(1− |z|2)pdλ(z) < ∞,

with ‖Γh‖
p
Sp

equivalent to the above expression; see p. 293 of [15] for details.
First note that, for any x ∈ F and z ∈ D,

(1− |z|2)〈(Sh)′(z), x〉F = 〈Γh k̃z, k̃z ⊗ x〉H2(F).

This is a simple vectorial analogue of Proposition 4 in [4]. Now we get

(1− |z|2) · |〈(Sh)′(z), x〉F| 6 ‖Γh k̃z‖H2(F) · ‖x‖F

for all x ∈ F because ‖k̃z ⊗ x‖H2(F) = ‖x‖F, so that

(1− |z|2) · ‖(Sh)′(z)‖F 6 ‖Γh k̃z‖H2(F).

Thus (3.1) implies that (3.2) holds, so that Γh ∈ Sp(H2, H2(F)) by Peller’s re-
sult.

To obtain a necessary condition for S1 membership of vectorial Hankel op-
erators, we shall require an atomic decomposition theorem for the corresponding
vectorial Besov space. This is well known in the scalar case, but does not seem
to appear in the literature in the vectorial case. We shall therefore state this as a
separate result, as it may be of independent interest.

For a separable Hilbert space F, let B1(F) denote the vectorial Besov space
of exponent 1, i.e. the space of all functions Φ which are F-valued and analytic on
D, vanish at 0 and satisfy

‖Φ‖B1(F) := ‖Φ′(0)‖F +
∫
D

‖Φ′′(z)‖F dA(z) < ∞.

Let B∞(F) denote the space of all functions Ψ which are F-valued and analytic on
D, vanish at 0 and satisfy

‖Ψ‖B∞(F) := sup
z∈D

(1− |z|2)‖Ψ(z)‖F < ∞.
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It is well known that the dual space of B1(F) is B∞(F) under the pairing

〈Φ, Ψ〉 =
∞

∑
j=1
〈Φ̂(j), Ψ̂(j)〉F,

where Φ̂(j) denotes the jth Fourier coefficient of Φ; see e.g. pp. 292–293 of [15].
Let

φw =
kw

‖kw‖2 , so that φw(z) =
1− |w|2
1− wz

,

and let ψw(z) = zφw(z).

THEOREM 3.3. Φ ∈ B1(F) if and only if there exist sequences (wn) ⊆ D and
(xn) ⊆ F such that

(3.3) Φ =
∞

∑
n=1

ψwn ⊗ xn and
∞

∑
n=1

‖xn‖F < ∞.

Moreover,

‖Φ‖B1(F) ≈ inf
{ ∞

∑
n=1

‖xn‖F : (3.3) holds
}

.

Proof. By Bonsall’s general atomic decomposition theorem in [5], it is suffi-
cient to show that there exist constants m, M > 0 such that for all Ψ ∈ B∞(F),

(3.4) m‖Ψ‖B∞(F) 6 sup
w∈D, ‖x‖F=1

|〈ψw ⊗ x, Ψ〉| 6 M‖Ψ‖B∞(F).

Fix x ∈ F and let Ψx ∈ B∞(C) denote the scalar function defined by Ψx(z) =
〈Ψ(z), x〉F. Then

〈ψw ⊗ x, Ψ〉 =
∞

∑
j=1

ψ̂w(j) Ψ̂x(j) = 〈ψw, Ψx〉.

It may be easily shown that

sup
‖x‖=1

‖Ψx‖B∞(C) = ‖Ψ‖B∞(F).

It is well known that there exists an atomic decomposition of the scalar Besov
space B1(C) in terms of the functions {ψw}; see e.g. p. 70 of [12] or p. 89 of [18].
Thus, by [5] again, there exist constants m, M > 0 such that for all ψ ∈ B∞(C),

m‖ψ‖B∞(C) 6 sup
w∈D

|〈ψw, ψ〉| 6 M‖ψ‖B∞(C).

In particular this holds for each ψ = Ψx. Taking the supremum over all x with
‖x‖ = 1 gives (3.4).

LEMMA 3.4. There is a constant C such that if Γh ∈ S1(H2, H2(F)) then∫
D

‖Γh
˜̇kz‖dλ(z) 6 C‖Γh‖S1 .
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Proof. Let us first suppose that h = φw ⊗ x for w ∈ D and x ∈ F. It is easy
to show that Γφw⊗x f = f (w)φw ⊗ x. Then

‖Γφw⊗x
˜̇kz‖ = |˜̇kz(w)| · ‖φw‖ · ‖x‖ ≈ (1− |z|2)3/2 |w|(1− |w|2)1/2

|1− zw|2 ‖x‖,

so we get∫
D

‖Γφw⊗x
˜̇kz‖dλ(z) 6 C0‖x‖(1− |w|2)1/2

∫
D

(1− |z|2)−1/2

|1− zw|2 dA(z)

6 C1‖x‖

by a result on p. 53 of [18], where C1 does not depend on the point w ∈ D.
For a general h, Peller’s results imply that Γh ∈ S1(H2, H2(F)) if and only if

Sh ∈ B1(F) and so, using Theorem 3.3,

(3.5) h =
∞

∑
n=0

φwn ⊗ xn,

for some {wn} ⊆ D and {xn} ⊆ F with ∑ ‖xn‖ < ∞. Moreover,

(3.6) ‖Γh‖S1 ≈ inf
{ ∞

∑
n=0

‖xn‖ : (3.5) holds
}

.

Therefore, ∫
D

‖Γh
˜̇kz‖dλ(z) 6 C1

∞

∑
n=0

‖xn‖ 6 C‖Γh‖S1

by using the estimate (3.6).

THEOREM 3.5. Let 1 6 p 6 2. Then Γh ∈ Sp(H2, H2(F)) if and only if

(3.7)
∫
D

‖Γh
˜̇kz‖pdλ(z) < ∞,

and moreover
‖Γh‖

p
Sp
≈

∫
D

‖Γh
˜̇kz‖pdλ(z) + ‖h‖p.

Proof. The sufficiency of (3.7) follows from Theorem 3.1, noting that Γhk0 =
h. We will use an interpolation argument to prove necessity; the book [3] dis-
cusses interpolation theory in detail.

Let ΓSp(F) denote the space of all Sp class vectorial Hankel operators from
H2 to H2(F) and let ΓS∞(F) denote the space of all compact vectorial Hankel
operators from H2 to H2(F). Let Lp(F, dλ) be the space of all strongly measurable
F-valued functions f on D such that∫

D

‖ f (z)‖p
F dλ(z) < ∞,
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with the usual modification for p = ∞. Consider

Φ : ΓS∞(F) → L∞(F, dλ); Φ(Γh)(z) = Γh
˜̇kz.

Φ is clearly a bounded map; we need to show that it is also bounded from ΓSp(F)
to Lp(F, dλ) for 1 6 p 6 2. We will show by interpolation that this actually holds
for all 1 6 p < ∞. By Lemma 3.4, Φ is bounded from ΓS1(F) to L1(F, dλ). Let
(X0, X1)θ,p denote the corresponding real interpolation space of X0 and X1. Then

(L1(F, dλ), L∞(F, dλ))θ,p = Lp(F, dλ)

if p = 1/(1− θ) — see p. 109 of [3]. Also,

(ΓS1(F), ΓS∞(F))θ,p = ΓSp(F)

if p = 1/(1− θ). The scalar valued version of this result using the AAK theorem
may be found on p. 254 of [15], and the vectorial version is proved in the same
manner. Thus, by interpolation, Φ is bounded from ΓSp(F) to Lp(F, dλ), which
gives the required result.

3.3. SCHATTEN CLASS ΛA, c OPERATORS ON THE HARDY SPACE. The following
may be found in [7], as a consequence of the Sz.-Nagy–Foias functional model for
contractions on a Hilbert space.

THEOREM 3.6. Let A be a contraction on a separable Hilbert space H and let
C ∈ H∗. Then there exists a finite, positive Borel measure µ on T, a separable Hilbert
space F and a vector h ∈ H2(F) such that

‖C f (A)‖2
H∗ =

∫
T

| f (z)|2dµ(z) + ‖Γh f ‖2

for all f ∈ O( D ).

In order to transform this result into one about ΛA, c operators we introduce
the involution

f 7→ f ∗ ∈ O( D ); f ∗(z) = f (z) =
∞

∑
n=0

an zn

for f with Taylor series f (z) = ∑ anzn. Since H∗ may be identified with H, let
c ∈ H be such that Cx = 〈x, c〉. Then we get

‖C f (A)‖H∗ = ‖ f ∗(A∗)c‖H
which gives the following immediate corollary by replacing A by A∗:

COROLLARY 3.7. Let A be a contraction on H and let c ∈ H. Then there exist µ,
F and h as in Theorem 3.6 such that

‖ΛA, c( f ∗)‖2 =
∫
T

| f (z)|2dµ(z) + ‖Γh f ‖2.
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Now we can give our main result for ΛA, c operators; recall that Theorem 1.4
earlier gives similar characterisations for boundedness and compactness of the
ΛA, c operators when A is a contraction.

THEOREM 3.8. Let A be a contraction on a separable Hilbert space H and let
c ∈ H.

(i) If p > 2 then ΛA, c ∈ Sp(H2,H) if and only if

(3.8)
∫
D

‖ΛA, c k̃z‖pdλ(z) < ∞.

Moreover, ‖ΛA, c‖
p
Sp

is equivalent to the above expression.

(ii) If 1 6 p < 2 then ΛA, c ∈ Sp(H2,H) if and only if

(3.9)
∫
D

‖ΛA, c
˜̇kz‖pdλ(z) < ∞.

Moreover,

‖ΛA, c‖
p
Sp
≈

∫
D

‖ΛA, c
˜̇kz‖pdλ(z) + ‖c‖p.

Proof. By Corollary 3.7, there exists h ∈ H2(F) and a finite, positive Borel
measure µ on T such that ‖ΛA, c( f ∗)‖2 = ‖Iµ f ‖2 + ‖Γh f ‖2. The involution ∗
applied to ˜̇kz or k̃z merely changes z into z and dλ(z) is invariant under this
reflection, so the results follow from Theorems 3.2 and 3.5 once we have shown
that µ = 0.

The proof that µ = 0 for supp(µ) ⊆ T is very similar to the Bergman space
version in the proof of Theorem 2.4 earlier and so is omitted. We remark that any
Borel measure µ on T for which Iµ is compact from H2(D) to L2(µ) must be zero
because ‖Iµ k̃z‖ → 0 as |z| → 1, although clearly there are many nonzero bounded
Iµ operators — for example, the inclusion operator into L2(T).

REMARK. Recalling Example 1.2 earlier, given any finite, positive Borel
measure µ on D we can take H = L2(µ), c = 1 and A = Mz. A is then a con-
traction and ‖ΛA, c f ‖ = ‖Iµ f ‖ so that Carleson embedding operators can be dealt
with as special cases of the theorem, thus giving alternative proofs of Theorem 5
in [16].

4. HARDY SPACE RESULTS FOR THE HALF PLANE

This section is essentially a sequel to Section 5 of [7]. There, boundedness
and compactness results for certain operators were given. Here, we obtain similar
results for Sp membership; our main result is Corollary 4.9 below.
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Our ΛA, c operators on H2(D) in fact were originally motivated by similar
operators on H2(C+), where C+ = {z ∈ C : Re(z) > 0} and H2(C+) is the space
of analytic functions on C+ such that

‖F‖2
H2(C+) = sup

x>0

∞∫
−∞

|F(x + iy)|2 dy
2π

< ∞.

The paper [7] gives a detailed discussion of a class of operators on H2(C+) arising
from linear systems theory and how they may be related to our ΛA, c operators.
The approach taken there uses semigroups and Laplace transform methods. We
shall adopt a functional calculus approach instead which is more direct but does
not make clear the connection with linear systems theory and differential equa-
tions.

Let us consider a separable Hilbert space H and a closed, possibly un-
bounded operator A with dense domain D(A) ⊂ H. Suppose that Sp(A) ⊆ {z :
Re(z) 6 0}, so that (λI − A)−1 ∈ B(H), for all λ ∈ C+. Then A(λI − A)−1 =
I + λ(λI − A)−1 is also a bounded operator on H.

PROPOSITION 4.1. Let RH2(C+) = Rat( C+ ) ∩ H2(C+) denote the set of ra-
tional functions F(z) which only have poles in {z : Re(z) < 0} and satisfy F(∞) = 0.
Then for each F ∈ RH2(C+) we can define F(−A) and A F(−A) in B(H).

Proof. It is clear that RH2(C+) contains precisely the H2(C+) rational func-
tions and is a dense subspace of H2(C+). Note that any F ∈ RH2(C+) always
has a finite factorisation of the form

(4.1) F(z) =
α

z + ν ∏
i

( 1
z + νi

)
∏

j

( z + αj

z + λj

)
where α, αj ∈ C, ν, νi, λj ∈ C+ and the products ∏

i
and ∏

j
may be empty. We can

thus define F(−A) and A F(−A) formally by substituting −A for z in (4.1).
The operators (λI−A)−1 and (αI−A)(λI−A)−1 for α ∈ C and λ ∈ C+ are

bounded operators on H. Thus it is clear that F(−A) will be bounded. Because
(4.1) always contains at least one unpaired (ν + z)−1 term and A(νI − A)−1 is
bounded, it follows that A F(−A) is bounded also.

DEFINITION 4.2. Let c1, c2 ∈ H and consider the operators

Λcon
A,C : RH2(C+) → H; Λcon

A,C(F) = F(−A)c1 + A F(−A)c2

where C = (c1, c2) stands for a pair of vectors.

Often in applications we can take c2 = 0, but notice that A F(−A)c2 makes
sense even when c2 /∈ D(A). Λcon

A,C is the H2(C+) analogue of the ΛA, c operators
considered before (with the “con” standing for continuous) — but note that Λcon

A,C
is not necessarily defined on O( C+ ).
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Previous papers considering these operators have taken a semigroup ap-
proach. That is, a bounded C0-semigroup (Tt)t>0 is considered for which A is the
infinitesimal generator of (Tt), i.e.

Ax =
d
dt

(Ttx)
∣∣∣
t=0

= lim
t→0+

(Tt − I)x
t

for all x for which the limit exists. There are many books dealing with semi-
groups; for example [6] gives a basic introduction to the theory.

In the semigroup case we can define the Λcon
A,C operators via F(−A) in an-

other way using the Laplace transform L. If g ∈ L1 ∩ L2(0, ∞) and

F = Lg, so that F(z) =
∞∫

0

exp(−zt) g(t) dt for z ∈ C+,

then we can define F(−A) by using the operator valued integral

F(−A) =
∞∫

0

Tt g(t) dt ∈ B(H).

For such g, A F(−A) will not be bounded in general.
Our operators Λcon

A,C make sense even when A does not generate a semi-
group; however in most cases of interest A is the infinitesimal generator of a
contraction semigroup (Tt), so that ‖Tt‖ 6 1 for all t > 0. This holds in each of the
following examples so that Corollary 4.9 below applies to all of them, character-
ising boundedness, compactness and Sp membership for each Λcon

A,C operator.

EXAMPLE 4.3. Let H = H2(C+) and let φ : C+ → C+ be a holomorphic
map. Let (Ttx)(z) = exp(−tφ(z))x(z), so that Ax(z) = −φ(z)x(z). Then for
c2 = 0 we have

Λcon
A,C(F) = F(−A)c1 = c1 · (F ◦ φ)

which is a weighted composition operator on H2(C+).

EXAMPLE 4.4. LetH = H2(C+) and Ttx = P+(e−ztx(z)), where P+ : L2(iR)
→ H2(C+) is the standard projection. Then if c2 = 0 we have

Λcon
A,C(F)(z) = P+(c1(z)F(z)) for z ∈ iR

which is a Hankel operator on H2(C+).

EXAMPLE 4.5. Let H = L2(C+, µ) for µ a positive Borel measure on C+ and
(Ttx)(z) = exp(−tz)x(z) for x ∈ H so that Ax(z) = −z x(z). Then

‖Λcon
A,C(F)‖2 =

∫
C+

|F(z)|2|c1(z)− z c2(z)|2 dµ(z) = ‖F‖2
L2(w dµ)

with w(z) = |c1 − zc2|2 > 0 so that Λcon
A,C is a Carleson embedding operator.



368 ZEN HARPER AND MARTIN P. SMITH

In this example, we see why the A F(−A) term should be included: de-
fine a new measure dν(z) = |c1 − zc2|2dµ(z). If c2 = 0 then ν has to satisfy
ν(C+) = ‖c1‖2 < ∞, which is an unnecessary restriction for the Carleson embed-
ding theorem on H2(C+) (because 1 /∈ H2(C+), unlike the case of the disc).

We are interested in determining whether Λcon
A,C initially defined on RH2(C+)

extends to a bounded, compact or Sp-class operator from H2(C+) to H. The pa-
per [7] considers operators constructed with semigroups using functionals C :
D(A) → C instead of vectors c1, c2 ∈ H, which is equivalent to our Λcon

A,C opera-
tors for the adjoint semigroup (T∗t ). The Λcon

A,C operators can be reduced to ΛA, c
operators using a conformal equivalence M between C+ and D which produces
a corresponding transformation between H2(C+) and H2(D).

DEFINITION 4.6. Define M : C+ → D and W : Hol(C+) → Hol(D) by

WF(z) =
F(Mz)
1 + z

(z ∈ D), M(z) = M−1(z) =
1− z
1 + z

.

The inverse W−1 : Hol(D) → Hol(C+) is given by

(W−1 f )(z) = (1 +Mz) f (Mz) =
2

1 + z
f (Mz) (z ∈ C+).

It is a standard fact that restricting
√

2W to H2(C+) gives a unitary operator
mapping H2(C+) onto H2(D) — see [13]. We note also that W maps RH2(C+)
into RH2(D) ⊂ O( D ) but W does not map O( C+ ) into O( D ).

PROPOSITION 4.7. Let B = (I + A)(I − A)−1 ∈ B(H). Then r(B) 6 1 and
there exists c ∈ H such that

(4.2) Λcon
A,C(F) = (WF)(B)c = ΛB, c(WF) for F ∈ RH2(C+).

If A is the infinitesimal generator of a contraction semigroup then B is a contraction
operator.

Proof. The bounded operator B = M(−A) satisfies r(B) 6 1 because for
each α /∈ D we can check that (αI − B)−1 exists and is bounded. The fact that for
A the infinitesimal generator of a contraction semigroup, B is (minus) the cogener-
ator operator of the semigroup and thus a contraction operator is standard — see
pp. 92–96 of [2].

For each F ∈ RH2(C+) we have F(z) = 2(WF ◦M)(z)/(1 + z) and so

Λcon
A,C(F) = F(−A)c1 + A F(−A)c2 = (WF)(B)c

where c = 2((I − A)−1c1 + A(I − A)−1c2). We have used the formula ( f ◦
M)(−A) = f (B) which is easy to prove directly from the factorisation (4.1) of
F.

The equation (4.2) shows that the operators Λcon
A,C densely defined on H2(C+)

and ΛB, c on H2(D) have the same boundedness, compactness or Sp membership
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properties. Thus we can apply our earlier Theorem 3.8 about ΛB, c operators for
B a contraction operator to get an H2(C+) version. First we must calculate:

PROPOSITION 4.8. If a ∈ C+, consider the following functions in RH2(C+)
defined for w ∈ C+ by:

Ka(w) = (w + a)−1, K̃a = Re(a)1/2Ka;

K̇a(w) = (1 + w)(w + a)−2, ˜̇Ka = Re(a)3/2|1 + a|−1K̇a.

Then Ka is the reproducing kernel for H2(C+) at the point a ∈ C+. Furthermore for
z = Ma ∈ D we have

(4.3) W−1( k̃z) = 2
1 + a
|1 + a| K̃a, W−1( ˜̇kz) = η(a) ˜̇Ka with |η(a)| ≈ 1,

so that ‖K̃a‖H2(C+) ≈ ‖ ˜̇Ka‖H2(C+) ≈ 1.

Proof. Equation (4.3) is a straightforward calculation if we use the formulae

1− |Mz|2 = 4 Re(z)|1 + z|−2 and ‖k̇z‖ ≈ (1− |z|2)−3/2.

Because k̃z and ˜̇kz have norm 1 in H2(D) and W is a multiple of a unitary oper-
ator, it follows that ‖K̃a‖ is constant and that ‖ ˜̇Ka‖ is bounded above and below
independently of a. The fact that Ka is the reproducing kernel for H2(C+) at the
point a is standard — see [13], for example.

Finally we can apply our results to get a version of Theorem 3.8 for the Λcon
A,C

operators:

COROLLARY 4.9. Let A be the infinitesimal generator of a C0-semigroup of con-
tractions on H. If dA is the standard Lebesgue area measure on C+ and K̃a, ˜̇Ka are as in
Proposition 4.8 above then we have the following conditions:

(i) Λcon
A,C extends to a bounded operator on H2(C+) if and only if sup

a∈C+

‖Λcon
A,C(K̃a)‖H

< ∞.
(ii) Λcon

A,C extends to a compact operator on H2(C+) if and only if ‖Λcon
A,C(K̃a)‖H → 0

whenever Re(a) → 0 and whenever |a| → ∞ in C+.
(iii) If p > 2 then Λcon

A,C ∈ Sp(H2(C+),H) if and only if

(4.4)
∫

C+

‖Λcon
A,C(K̃a)‖p

H
dA(a)
Re(a)2 < ∞

with ‖Λcon
A,C‖

p
Sp

being equivalent to the above expression.

(iv) If 1 6 p < 2 then Λcon
A,C ∈ Sp(H2(C+),H) if and only if

(4.5)
∫

C+

‖Λcon
A,C( ˜̇Ka)‖p

H
dA(a)
Re(a)2 < ∞.
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Moreover with c ∈ H as in Proposition 4.7, ‖Λcon
A,C‖

p
Sp
≈ ‖c‖p+

∫
C+

‖Λcon
A,C( ˜̇Ka)‖p

H
dA(a)
Re(a)2 .

Proof. We use Proposition 4.7 and Proposition 4.8 — letting a = Mz ∈ C+
gives

‖Λcon
A,C(K̃a)‖ ≈ ‖ΛB, c( k̃z)‖, ‖Λcon

A,C( ˜̇Ka)‖ ≈ ‖ΛB, c( ˜̇kz)‖.

The boundedness and compactness results easily follow from the corre-
sponding results given in Theorem 1.4 earlier for ΛB, c — details can be found
in [7]. The boundedness result was first proved in [9] directly by applying the
Sz.-Nagy–Foias functional model for contraction semigroups instead of opera-
tors. Noting that dλ(z) = dA(a)/4 Re(a)2 and changing variables in (3.8) and
(3.9) from Theorem 3.8 gives the required results for Sp membership.

5. REMARKS

It would be interesting to know whether it is possible to characterise bound-
edness, compactness or Schatten class membership for the ΛA, c operators on
the Bergman space L2

a with A any contraction, thus generalising Theorems 1.3
and 2.6. By Theorem 3.6, this would be possible if we knew that these classes
of vectorial Hankel operators from L2

a to H2(F) were characterised by the corre-
sponding expressions. However, we have not been able to do this thus far.
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