A FREE GIRSANOV PROPERTY FOR FREE BROWNIAN MOTIONS

JOCELYNE BION-NADAL

Communicated by Şerban Strătilă

Abstract

A "free Girsanov" property is proved for free Brownian motions. It is reminiscent of the classical Girsanov theorem in probability theory.

In the free probability context, we prove that if $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion in (M, τ), if x is a process free from the σ_{s}, if $\widetilde{\sigma}_{s}=\sigma_{s}+\int_{0}^{s} x(u) \mathrm{d} u$, then there is a trace $\widetilde{\tau}$ such that $\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion for $\widetilde{\tau}$ and the two traces are "asymptotically equivalent". This means that τ respectively $\tilde{\tau}$ are asymptotic limits of states Ψ_{n} respectively $\widetilde{\Psi}_{n}$ and that for each $n \widetilde{\Psi}_{n}$ is obtained from Ψ_{n} by a change of probability given by an exponential density.

Keywords: Free probability theory, free products of C* algebras, free Brownian motion, Girsanov theorem.

MSC (2000): 46L54, 46L09, 60J65.

1. INTRODUCTION

The context of the present work is that of free probability theory. D. Voiculescu has introduced and studied the theory of free probability, giving a meaning to free random variables, free product of states and free Brownian motions (see the book by Voiculescu, Dykema and Nica [8], for a survey).

In classical probability theory the Girsanov theorem is a very important theorem for stochastic calculus (see for exemple [3]).

In view of stochastic calculus for free Brownian motions, Biane and Speicher (see [1]) have proved an Ito formula for free stochastic integrals. The purpose of this paper is to obtain for free Brownian motions a property which is reminiscent of the classical Girsanov property.

The usual Girsanov theorem says that if one translates a Brownian motion by an adapted stochastic process $\left(\widetilde{W}_{s}=W_{s}+\int_{0}^{S} \theta(u) \mathrm{d} u\right)$ one can find a change
of probability given by an exponential density such that $\left(\widetilde{W}_{s}\right)_{s \in \mathbb{R}^{+}}$is a Brownian motion for this new probability.

In the context of free probability we want to prove a result which is in the same vein.

Let $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$be a free Brownian motion in (M, τ). Let x be a measurable process with values in N a commutative subalgebra of M free from the $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$. Assume that $x(u)=x(u)^{*}$ for all u. Let $\widetilde{\sigma}_{s}=\sigma_{s}+\int_{0}^{s} x(u) \mathrm{d} u$. We want to prove the existence of a new trace $\tilde{\tau}$ closely related to the trace τ such that $\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion for the new trace $\widetilde{\tau}$ and such that the joint distribution of $\left(\widetilde{\sigma}_{s}, x(u)\right)_{s, u \in \mathbb{R}^{+}}$for $\tilde{\tau}$ is the same as the joint distribution of $\left(\sigma_{s}, x(u)\right)_{s, u \in \mathbb{R}^{+}}$for τ.

Unfortunately as the von Neumann algebra generated by a free Brownian motion is a factor, there is only one normalized trace on it. Thus it is impossible to find a new trace on the von Neumann algebra generated by N and the σ_{s} satisfying the required properties.

Nevertheless notice that a free Brownian motion $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$in (M, τ) is just defined by the joint distribution of the σ_{s} for τ. And Voiculescu has proved that a free Brownian motion is an asymptotic limit of matrices of random processes. Using this point of view, we prove the following result:

There is a new trace $\widetilde{\tau}$ on $N * \mathbb{C}\left[\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}\right]$such that the joint distribution of $\left(\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}, x(u)_{u \in \mathbb{R}^{+}}\right)$for this new trace $\tilde{\tau}$ is the same as the joint distribution of $\left(\sigma_{s \in \mathbb{R}^{+}}, x(u)_{u \in \mathbb{R}^{+}}\right)$for the trace τ (in particular $\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion for the new trace) and the two traces are asymptotically equivalent.

This has the following meaning: There is a family $\left(\widetilde{Z}_{n}(s)\right)_{n \in \mathbb{N}^{*}}$ of matrices of random processes $\widetilde{Z}_{n}(s) \in \mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$ and a family $\left(D_{n}(u)\right)_{n \in \mathbb{N}^{*}}$ of diagonal matrices of real processes such that

$$
\left(\mathbb{C}\left[\sigma_{s}, x(u)\right]_{s, u \in \mathbb{R}^{+}}, \tilde{\tau}\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[\widetilde{Z}_{n}(s), D_{n}(u)\right]_{s, u \in \mathbb{R}^{+}}, \widetilde{\Psi}_{n}\right)
$$

and

$$
\left(\mathbb{C}\left[\sigma_{s}, x(u)\right]_{s, u \in \mathbb{R}^{+}}, \tau\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[\widetilde{Z}_{n}(s), D_{n}(u)\right]_{s, u \in \mathbb{R}^{+}}, \Psi_{n}\right)
$$

where $\widetilde{\Psi}_{n}$ and Ψ_{n} are two traces on $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right) . \widetilde{\Psi}_{n}$ is obtained from Ψ_{n} by a change of probability given by an exponential density h_{n}

$$
\Psi_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi * \phi_{0}\right) \quad \text { and } \quad \widetilde{\Psi}_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi * \phi_{0}\left(h_{n} .\right)\right)
$$

(and for all $\left.p \in \mathbb{N}, \sup _{n \in \mathbb{N}} \phi_{0}\left(h_{n}^{p}\right)<\infty\right)$ i.e. the limit joint distribution of $\left(\widetilde{Z}_{n}(s), D_{n}(u)\right)$ for $\widetilde{\Psi}_{n}$ is the joint distribution of $\left(\sigma_{s}, x(u)\right)$ for $\widetilde{\tau}$ and the limit joint distribution of $\left(\widetilde{Z}_{n}(s), D_{n}(u)\right)$ for Ψ_{n} is the joint distribution of $\left(\sigma_{s}, x(u)\right)$ for τ.

In order to prove this result we make use, as already mentioned, of the asymptotic model of matrices of random processes, and we modelize the process $(x(u))$ by diagonal matrices. For each $n \in \mathbb{N}$ we can apply the classical Girsanov
theorem and this gives rise to a change of probability given by an exponential density d_{n}. Unfortunately, these densities d_{n} explode as n tends to infinity and so we have to renormalize the asymptotic model of matrices of random processes in order to get densities h_{n} which do not explode.

The paper is organised as follows:
After a few recalls in Section 2, we construct in Section 3 a new asymptotic model of random matrices with values in a free product algebra, in order to make the renormalization. This is a technical part making use of computation of free cumulants and non crossing partitions introduced by Speicher [5].

In Section 4 making use of this new asymptotic model, we prove our main result: A free Girsanov property for free Brownian motions.

2. SOME RECALLS

FREE PROBABILITY THEORY. We recall some definitions and results in free probability theory which can be found in the references [6], [7], [8].

DEFINITION. A $*$-free probability space (A, ϕ) is an involutive unital algebra A over \mathbb{C} with a state $\phi: A \rightarrow \mathbb{C}$ i.e. a linear functional such that $\phi(1)=1$ and $\phi\left(x^{*}\right)=\overline{\phi(x)}$. Elements of A are called random variables.

DEfinition. A family $\left(f_{i}\right)_{i \in I}$ of random variables of A is free if the family $\left(A_{i}\right)_{i \in I}$ of $*$-algebras generated by 1 and f_{i} is free: i.e. if $\phi\left(a_{1} a_{2}, \ldots, a_{n}\right)=0$ whenever $a_{j} \in A_{i(j)}$ with $i(j) \neq i(j+1)(1 \leqslant j \leqslant n-1)$ and $\phi\left(a_{j}\right)=0(1 \leqslant j \leqslant n)$.

DEFINITION. A random variable σ in (A, ϕ) is semicircular centered of variance r^{2} if the distribution of σ is

$$
\phi\left(\sigma^{\alpha}\right)=\frac{2}{\pi r^{2}} \int_{-r}^{r} t^{\alpha} \sqrt{r^{2}-t^{2}} \mathrm{~d} t
$$

DEfinition. A free Brownian motion in (A, ϕ) is a family $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$of random variables such that:
(i) $\sigma_{0}=0$;
(ii) if $0 \leqslant s^{\prime} \leqslant s \leqslant t, \sigma_{t}-\sigma_{s}$ is semicircular centered of variance $t-s$ and is free from $\sigma_{s^{\prime}}$.

One has also the following very important connection between free semicircular random variables and Gaussian random matrices:

Consider a probability space $(\Sigma, \mathrm{d} \sigma) . L^{\infty}(\Sigma, \mathrm{d} \sigma)$ is a unital algebra with the state ϕ_{0} defined by $\phi_{0}(f)=E_{0}(f)=\int_{\Sigma} f \mathrm{~d} \sigma$. Let

$$
L=\bigcap_{p \geqslant 1} L^{p}(\Sigma) .
$$

We denote by ϕ_{n} the state defined on $\mathcal{M}_{n}(L)$ by

$$
\phi_{n}\left(\sum_{1 \leqslant i, j \leqslant n} b_{i j}(i, j, n)\right)=\frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(\phi_{0}\right)\left(b_{i i}\right)=\frac{1}{n} \operatorname{Tr}_{n}\left(\left(\phi_{0}\left(b_{i, j}\right)_{1 \leqslant i, j \leqslant n}\right)\right)
$$

(where $(e(i, j, n))_{1 \leqslant i, j \leqslant n}$ is the canonical basis and $b_{i, j} \in L$).
Voiculescu has then proved the following theorem ([7], Theorem 2.2): let $Y(s, n)=\sum_{1 \leqslant i, j \leqslant n} a(i, j, s, n) e(i, j, n)$ with $a(i, j, s, n) \in L$. Assume that

$$
a(i, j, s, n)=\overline{a(j, i, s, n)}
$$

and that $\operatorname{Re}(a(i, j, s, n)), 1 \leqslant i \leqslant j \leqslant n, s \in \mathbb{N}, \operatorname{Im}(a(i, j, s, n)), 1 \leqslant i<j \leqslant n, s \in \mathbb{N}$ are independent Gaussian random variables such that:

$$
\begin{aligned}
E_{0}(a(i, j, s, n)) & =0, \\
E_{0}\left(\operatorname{Re}(a(i, j, s, n))^{2}\right) & =\frac{1}{2 n} \quad \text { for } 1 \leqslant i<j \leqslant n \\
E_{0}\left(\operatorname{Im}(a(i, j, s, n))^{2}\right) & =\frac{1}{2 n} \quad \text { for } 1 \leqslant i<j \leqslant n \\
E_{0}\left((a(i, i, s, n))^{2}\right) & =\frac{1}{n} \quad \text { for } 1 \leqslant i \leqslant n .
\end{aligned}
$$

Consider the trace ϕ_{n} defined above. Let $D(j, n)$ be elements in Δ_{n}, the set of constant diagonal matrices, such that $\sup _{n \in \mathbb{N}}\|D(j, n)\|<\infty$, for each j; and such that for all $j,(D(j, n))$ has a limit distribution as $n \rightarrow \infty$. Then the family of subsets of random variables $\{Y(s, n): s \in \mathbb{N}\}$ and $\{D(j, n): j \in \mathbb{N}\}$ is asymptotically free, and the limit distributions of the $Y(s, n)$ are semicircle laws as $n \rightarrow \infty$.

It follows that a model for the free Brownian motion is the following one:

$$
\left.\left(\mathbb{C}\left[\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}\right], \tau\right)=\lim _{n \rightarrow \infty} \mathbb{C}\left[\left(B_{n, s}\right)_{s \in \mathbb{R}^{+}}\right], \frac{1}{n} \operatorname{Tr}_{n}\left(\phi_{0}\right)\right]
$$

where $B_{n, s}=\left(\frac{1}{\sqrt{n}} W_{n, i, j, s}\right)_{1 \leqslant i, j \leqslant n}$; the $\left(W_{n, i, j, s}\right)_{1 \leqslant i \leqslant j \leqslant n}$ being independent Brownian motions.

Classical Girsanov theorem. For this we refer to Karatzas and Shreve [3].
Let $\left(\Omega,\left(\mathcal{F}_{s}\right)_{0 \leqslant s} P\right)$ be a filtered probability space. Let $\left(W_{s}\right)_{0 \leqslant s}$ be a Brownian motion adapted to $\left(\mathcal{F}_{s}\right)$. Let $\left(\theta_{u}\right)_{0 \leqslant u}$ be an adapted process such that

$$
E\left(\exp \int_{0}^{\infty} \theta_{u}^{2} \mathrm{~d} u\right)<\infty
$$

Then $\widetilde{W}_{s}=W_{s}-\int_{0}^{s} \theta_{u} \mathrm{~d} u$ is a Brownian motion for the probability Q equivalent to the probability P defined by $Q(A)=\int_{A} Z(s) \mathrm{d} P$ for all A in \mathcal{F}_{s}, where $Z(s)=\exp \left(\int_{0}^{s} \theta_{u} \mathrm{~d} W_{u}-\frac{1}{2} \int_{0}^{s}\left(\theta_{u}\right)^{2} \mathrm{~d} u\right)$.

3. A NEW ASYMPTOTIC MODEL FOR FREE BROWNIAN MOTION

In this section we construct for the free Brownian motion an asymptotic model of random matrices with coefficients in a free product algebra. The motivation for the construction of this new model is to use a free product algebra in order to make a renormalization.

Consider a probability space $(\Sigma, \mathrm{d} \sigma) . L^{\infty}(\Sigma, \mathrm{d} \sigma)$ is a unital algebra with the state ϕ_{0} defined by $\phi_{0}(f)=E_{0}(f)=\int f \mathrm{~d} \sigma$. Let

$$
L=\bigcap_{1 \leqslant p<\infty} L^{p}(\Sigma)
$$

Let μ be the Lebesgue measure on $[0,1]$, and the state ϕ defined on $L^{\infty}([0,1], \mu)$ by

$$
\phi(f)=\int f \mathrm{~d} \mu
$$

Now we consider the free product state $\phi * \phi_{0}$ on $L^{\infty}([0,1], \mu) * L^{\infty}(\Sigma, \mathrm{d} \sigma)$. We can extend $\phi * \phi_{0}$ to $L^{\infty}([0,1]) * L$. We then get a state still noted $\phi * \phi_{0}$ such that $L^{\infty}([0,1])$ is free from L for this state. We denote Ψ_{n} the state defined on $\mathcal{M}_{n}\left(L^{\infty}([0,1]) * L\right)$ by

$$
\Psi_{n}\left(\sum_{1 \leqslant i, j \leqslant n} b_{i j} e(i, j, n)\right)=\frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(\phi * \phi_{0}\right)\left(b_{i i}\right)=\frac{1}{n} \operatorname{Tr}_{n}\left(\left(\phi * \phi_{0}\right)\left(b_{i, j}\right)_{1 \leqslant i, j \leqslant n}\right) .
$$

We keep the same notations as in Section 2.
We now prove the existence of a new family of matrices of random processes with coefficients in $L^{\infty}([0,1]) * L$ which are asymptotically free and whose limit distributions are semi-circular laws. More precisely:

Proposition 3.1. For all $s \in \mathbb{N}$, and $n \in \mathbb{N}$, let

$$
\widetilde{Y}(s, n)=\sum_{1 \leqslant i, j \leqslant n} \widetilde{a}(i, j, s, n) e(i, j, n)
$$

with $\widetilde{a}(i, j, s, n) \in L^{\infty}([0,1]) * L$. Assume that

$$
\widetilde{a}(i, j, s, n)=\sum_{k=1}^{n^{2}} q_{k, n} \sqrt{n} a(i, j, s, n) q_{k, n}
$$

where the $q_{k, n}$ are orthogonal projectors in $L^{\infty}[0,1], \sum_{k=1}^{n^{2}} q_{k, n}=1$ such that

$$
\phi\left(q_{k, n}\right)=\frac{1}{n^{2}}
$$

and the $(a(i, j, s, n))_{s \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant n, n \in \mathbb{N}}$ are independent real normal Gaussian variables, i.e., in particular

$$
\begin{aligned}
E_{0}(a(i, j, s, n)) & =0 \\
E_{0}\left(\left(a(i, j, s, n)^{2}\right)\right. & =1 \\
a(i, j, s, n) & =a(j, i, s, n)
\end{aligned}
$$

Consider the trace Ψ_{n} defined above. Let $D_{n}(j)$ be elements in Δ_{n}, the set of diagonal matrices, such that $\sup _{n \in \mathbb{N}}\left\|D_{n}(j)\right\|<\infty$, for each j; and such that for all $j,\left(D_{n}(j)\right)$ has a limit distribution as $n \rightarrow \infty$.

Then the family of subsets $\{\widetilde{Y}(s, n): s \in \mathbb{N}\}$ and $\left\{D_{n}(j): j \in \mathbb{N}\right\}$ are asymptotically free, and the limit distribution of the $\widetilde{Y}(s, n)$ are semicircular laws.

This proposition is comparable with the Theorem 2.2 of [7] recalled in Section 2. The important property of this new asymptotic model is that it is renormalized: we have replaced the Gaussian random variables of variance $\frac{1}{n}$ of the theorem of Voiculescu by Gaussian random variables $(\sqrt{n} a(i, j, s, n))$ of variance n.

Although the proof follows the same lines of reasonning, the proof of Voiculescu must be significantly amended because the entries of these new matrices are in a free product algebra. We have to use the free calculus developped by Speicher [5].

We start with the following results.
Lemma 3.2. Let $i \in\{1, \ldots, j\}$; let $\left(y_{1}, y_{2}, \ldots, y_{j}\right)$ be random variables in L. Assume there is one $i \in\{1, \ldots, j\}$ such that $y_{i}=a z_{i}$, where a is independent of all others y_{k} for $k \neq i$ and of z_{i}, and such that $E_{0}(a)=0$.

Then $\left(\phi * \phi_{0}\right)\left(q y_{1} q \cdots q y_{j} q\right)=0$ for each q projector in $L^{\infty}([0,1])$.
Proof. The proof is done by recursion on j using the freeness.
For $j=1:\left(\phi * \phi_{0}\right)\left(q y_{1}\right)=\phi(q) E_{0}\left(y_{1}\right)=\phi(q) E_{0}(a) E_{0}\left(z_{1}\right)=0$.
Assume now that the result is true for j and prove it for $j+1$. From the freeness of $L^{\infty}([0,1])$ and L for $\phi * \phi_{0}$, we get that

$$
\begin{aligned}
\left(\phi * \phi_{0}\right)\left((q-\phi(q))\left(y_{1}-E_{0}\left(y_{1}\right)\right)\right. & (q-\phi(q))\left(y_{2}-E_{0}\left(y_{2}\right)\right) \cdots \\
& \left.(q-\phi(q))\left(y_{j+1}-E_{0}\left(y_{j+1}\right)\right)\right)=0
\end{aligned}
$$

If we develop the preceeding expression there is the term $\left(\phi * \phi_{0}\right)\left(q y_{1} q y_{2} \cdots q y_{j+1}\right)$, and in all the other terms there is at least one $\phi(q)$ or one $E_{0}\left(y_{k}\right)$. So that all these terms can be written either $\alpha\left(\phi * \phi_{0}\right)\left(q t_{1} q t_{2} \cdots q t_{k}\right)$ with $k \leqslant j$ and $\alpha \in \mathbb{C}$; and
the $\left(t_{l}\right)_{l \leqslant k}$ satisfy the same hypothesis as the y_{l} or $E_{0}\left(y_{i}\right) \alpha$ with $\alpha \in \mathbb{C}$. By recursion each of these terms is equal to 0 . So $\left(\phi * \phi_{0}\right)\left(q y_{1} q y_{2} \cdots q y_{j+1}\right)=0$, i.e. $\left(\phi * \phi_{0}\right)\left(q y_{1} q y_{2} \cdots q y_{j+1} q\right)=0$ as $\phi * \phi_{0}$ is a trace and $q^{2}=q$.

Corollary 3.3. If $s_{i} \neq s_{1}$ for any $i \neq 1$, then we have $\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D_{n}\left(t_{1}\right) \cdots\right.$ $\left.\widetilde{Y}\left(s_{m}, n\right) D_{n}\left(t_{m}\right)\right)=0$.

Proof. $\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D_{n}\left(t_{1}\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D_{n}\left(t_{m}\right)\right)$ is a sum of terms $\left(\phi * \phi_{0}\right)\left(q \sqrt{n} a\left(i_{1}, j_{1}, s_{1}, n\right) d_{1} q \sqrt{n} a\left(i_{2}, j_{2}, s_{2}, n\right) d_{2} q \cdots\left(q \sqrt{n} a\left(i_{m}, j_{m}, s_{m}, n\right) d_{m}\right)\right.$. $a\left(i_{1}, j_{1}, s_{1}, n\right)$ is independent of all other $a\left(i_{k}, j_{k}, s_{k}, n\right)$ for $k \neq 1$. It follows that $E_{0}\left(a\left(i_{1}, j_{1}, s_{1}, n\right)=0\right.$. So the result follows immediately from Lemma 3.2.

We prove now the following technical lemma making use of the computation of free cumulants introduced by Speicher [5].

Lemma 3.4. Let $y_{1}, \ldots, y_{j} \in L$. Let $a \in L$, with $E_{0}(a)=0$. Assume that a is independent of y_{1}, \ldots, y_{j}. Let q be a projector in $L^{\infty}[0,1]$. Denote $Y=y_{1} q y_{2} q \cdots q y_{j}$.
(i) $k_{\phi}(q, q)=\phi(q)-\phi(q)^{2}$;
(ii) $k_{\left(\phi * \phi_{0}\right)}(q, Y)=\left(\phi * \phi_{0}\right)(q Y)-\phi(q)\left(\phi * \phi_{0}\right)(Y)$;
(iii) $k_{\left(\phi * \phi_{0}\right)}(q, q, Y)=(1-2 \phi(q))\left[\left(\phi * \phi_{0}\right)(q Y)-\phi(q)\left(\phi * \phi_{0}\right)(Y)\right]$;
(iv) $\left(\phi * \phi_{0}\right)\left(a^{2} Y\right)=E_{0}\left(a^{2}\right)\left(\phi * \phi_{0}\right)(Y)$;
(v) $k_{\left(\phi * \phi_{0}\right)}(a, a, Y)=0$.

Proof. (i) $\phi(q)=\phi\left(q^{2}\right)=\phi(q)^{2}+k_{\phi}(q, q)$.
(ii) $\left(\phi * \phi_{0}\right)(q Y)=k_{\left(\phi * \phi_{0}\right)}(q, Y)+\phi(q)\left(\phi * \phi_{0}\right)(Y)$.
(iii) $\left(\phi * \phi_{0}\right)(q Y)=\left(\phi * \phi_{0}\right)\left(q^{2} Y\right)=k_{\phi}(q, q)\left(\phi * \phi_{0}\right)(Y)+2 \phi(q) k_{\phi * \phi_{0}}(q, Y)+$ $k_{\phi * \phi_{0}}(q, q, Y)+\phi(q)^{2}\left(\phi * \phi_{0}\right)(Y)$. Using (i) and (ii) we get (iii).
(iv) From [5] as $L^{\infty}[0,1]$ and L are free for $\Phi * \phi_{0}$, we know that the cumulants mixing elements of $L^{\infty}[0,1]$ and L are 0 ; and furthermore, as $E_{0}(a)=0$, for a non crossing partition giving a non zero contribution, a cannot be alone. So

$$
\begin{aligned}
\left(\phi * \phi_{0}\right)\left(a^{2} Y\right) & =\left(\phi * \phi_{0}\right)\left(a^{2} y_{j} y_{1} q y_{2} q \cdots y_{j-1} q\right) \\
& =\sum_{\pi} k_{\pi}(q, q, \ldots, q) k_{\pi}(q, \ldots, q) k_{\pi}\left(a^{2} y_{j} y_{1}, y_{i_{1}}, \ldots\right) k_{\pi}\left(y_{i_{l}}, \ldots\right) \cdots
\end{aligned}
$$

But a is independent of all the y_{i} so

$$
k_{\pi}\left(a^{2} y_{j} y_{1}, y_{i_{1}}, \ldots\right)=E_{0}\left(a^{2}\right) k_{\pi}\left(y_{j} y_{1}, y_{i_{1}}, \ldots\right)
$$

(v) $\left(\phi * \phi_{0}\right)\left(a^{2} Y\right)=k_{\left(\phi * \phi_{0}\right)}(a, a)\left(\phi * \phi_{0}\right)(Y)+k_{\left(\phi * \phi_{0}\right)}(a, a, Y)$ and $E_{0}\left(a^{2}\right)=(\phi *$ $\left.\phi_{0}\right)\left(a^{2}\right)=k_{\left(\phi * \phi_{0}\right)}(a, a)$ as $E_{0}(a)=0$.

It follows then from (iv) that $k_{\left(\phi * \phi_{0}\right)}(a, a, Y)=0$.
Lemma 3.5. Let a, q and $Y \in L^{\infty}[0,1] * L$ as in Lemma 3.4. Then

$$
\left(\phi * \phi_{0}\right)(q a q a q Y)=\phi(q) E_{0}\left(a^{2}\right)\left(\phi * \phi_{0}\right)(q Y)
$$

Proof. We have:

$$
\begin{aligned}
Y & =y_{1} q y_{2} q \cdots q y_{j} \\
\left(\phi * \phi_{0}\right)(q a q a q Y) & =\sum_{\pi \in N C(6)} k_{\pi}(q, a, q, a, q, Y)
\end{aligned}
$$

Using the same arguments as in the proof of Lemma 3.4 and also the equality $k_{\phi * \phi_{0}}(a, a, Y)=0$, we get

$$
\begin{aligned}
\left(\phi * \phi_{0}\right)(q a q a q Y) & =k_{\phi_{0}}(a, a) \phi(q)^{3}\left(\phi * \phi_{0}\right)(Y)+k_{\phi_{0}}(a, a) \phi(q) k_{\phi}(q, q)\left(\phi * \phi_{0}\right)(Y) \\
& +k_{\phi_{0}}(a, a) \phi(q) k_{\left(\phi * \phi_{0}\right)}(q, q, Y)+2 k_{\phi_{0}}(a, a) \phi(q)^{2} k_{\left(\phi * \phi_{0}\right)}(q, Y)
\end{aligned}
$$

And now the result follows easily from the Lemma 3.4, and the equality $k_{\phi_{0}}(a, a)$ $=E_{0}\left(a^{2}\right)$.

Lemma 3.6. Let $a(i, j, s, n)_{(1 \leqslant i \leqslant j \leqslant n)}$ be independent normal Gaussian variables in $\left(L, \phi_{0}\right)$. Let $(B, \phi) a *$-free probability space.

Let $q \in B$ be a projector such that $\phi(q)=1 / n^{2}$. Let $d(t, j, n)$ be elements in B commuting with q and uniformly bounded. Then

$$
\begin{aligned}
& \phi * \phi_{0}(q a\left(i_{1}, i_{2}, s_{1}, n\right) d\left(t_{1}, i_{2}, n\right) q a\left(i_{2}, i_{3}, s_{2}, n\right) d\left(t_{2}, i_{3}, n\right) \cdots \\
&\left.q a\left(i_{m}, i_{1}, s_{m}, n\right) d\left(t_{m}, i_{1}, n\right)\right)= \\
& \quad \sum_{\pi} k_{\pi}\left[a\left(i_{1}, i_{2}, s_{1}, n\right), a\left(i_{2}, i_{3}, s_{2}, n\right), \ldots, a\left(i_{m}, i_{1}, s_{m}, n\right)\right] O\left(\left(\frac{1}{n^{2}}\right)^{\left|\pi_{B}\right|}\right)
\end{aligned}
$$

where $\left|\pi_{B}\right|$ denotes the number of blocks of the restriction π_{B} of π to B.
If we denote by E_{n} the set of $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in\{1, \ldots, n\}^{m}$ such that

$$
\begin{gathered}
\left(\phi * \phi_{0}\right)\left(q a\left(i_{1}, i_{2}, s_{1}, n\right) d\left(t_{1}, i_{2}, n\right) q a\left(i_{2}, i_{3}, s_{2}, n\right) d\left(t_{2}, i_{3}, n\right) q \cdots\right. \\
\left.q a\left(i_{m}, i_{1}, s_{m}, n\right) d\left(t_{m}, i_{1}, n\right)\right) \neq 0
\end{gathered}
$$

then $\operatorname{Card}\left(E_{n}\right)=O\left(n^{(m / 2)+1}\right)$.
Proof. We use another time the free cumulants to compute

$$
\begin{gathered}
\left(\phi * \phi_{0}\right)\left(q a\left(i_{1}, i_{2}, s_{1}, n\right) d\left(t_{1}, i_{2}, n\right) q a\left(i_{2}, i_{3}, s_{2}, n\right) d\left(t_{2}, i_{3}, n\right) \cdots\right. \\
\left.q a\left(i_{m}, i_{1}, s_{1}, n\right) d\left(t_{m}, i_{1}, n\right)\right) .
\end{gathered}
$$

Using the hypothesis on the independence of the $a(i, j, s, n)$ and the Lemma 3.2, it follows exactly as in the proof of Theorem 2.2 of [7] that $\operatorname{Card}\left(E_{n}\right)=O\left(n^{(m / 2)+1}\right)$.

Now, from the Theorem 8.2 of [5] as the $a(i, j, s, n)$ are free from B for $\phi * \phi_{0}$, and $d(t, j, n)$ and q are in B, we can write:

$$
\begin{aligned}
&\left(\phi * \phi_{0}\right)\left(q a\left(i_{1}, i_{2}, s_{1}, n\right) d\left(t_{1}, i_{2}, n\right) q a\left(i_{2}, i_{3}, s_{2}, n\right) d\left(t_{2}, i_{3}, n\right) \ldots\right. \\
&\left.q a\left(i_{m}, i_{1}, s_{m}, n\right) d\left(t_{m}, i_{1}, n\right)\right)= \\
& \quad \sum_{\pi} k_{\pi}\left[a\left(i_{1}, i_{2}, s_{1}, n\right), \ldots, a\left(i_{m}, i_{1}, s_{m}, n\right)\right] \phi_{\pi_{B}}\left[d\left(t_{m}, i_{1}, n\right) q, \ldots, d\left(t_{m-1}, i_{m}, n\right) q\right] .
\end{aligned}
$$

But $\phi_{\pi_{B}}\left[d\left(t_{m}, i_{1}, n\right) q, \ldots, d\left(t_{m-1}, i_{m}, n\right) q\right]=O\left(\left(\frac{1}{n^{2}}\right)^{\left|\pi_{B}\right|}\right)$ where $\left|\pi_{B}\right|$ is the number of blocks of π_{B} (as the $d(t, j, n)$ are uniformly bounded).

LEMMA 3.7. Let k fixed. If π is a non crossing partition giving a non zero contribution in Lemma 3.6, the number of different blocks of π_{B} (i.e. $\left.\left|\pi_{B}\right|\right)$ is greater or equal to $\left[\frac{m}{2}\right]+1$.

Proof. We do it by recursion on m.
Step 1. If $m=1$, we always obtain 0 .
Step 2. If $m=2$, if the term associated to the partition π is non zero, the number of components containing the q is 2 (because $E_{0}(a(i, j, s, n))=0$).

Step 3. Let $m \geqslant 2$. Assume that the result is true for m and prove it for $m+1$. Let r be the minimal distance between two q which are in a same block of π. Two successive q can never be in the same component of π, (because $E_{0}(a(i, j, s, n))=$ 0). So $2 \leqslant r$. So there is l such that the $l^{\text {th }} q$ and the $(l+r)^{\text {th }} q$ are in the same block and all the q between are alone in one block of π. As the cumulants must be non crossing, π can be decomposed in a partition π^{\prime} on

$$
\left(a\left(i_{l}, i_{l+1}, s_{l}, n\right), a\left(i_{l+1}, i_{l+2}, s_{l+1}, n\right), \ldots, a\left(i_{l+r-1}, i_{l+r}, s_{l+r-1}, n\right)\right)
$$

and a non crossing partition $\pi^{\prime \prime}$ on

$$
\begin{aligned}
& \left(d\left(t_{m}, i_{1}, n\right) q, a\left(i_{1}, i_{2}, s_{1}, n\right), d\left(t_{1}, i_{2}, n\right) q, \ldots,\right. \\
& a\left(i_{l-1}, i_{l}, s_{l-1}, n\right),\left(a\left(i_{l+r}, i_{l+r+1}, s_{l+r}, n\right), d\left(t_{l+r}, i_{l+r+1}, n\right) q, \ldots, a\left(i_{m}, i_{1}, s_{m}, n\right)\right)
\end{aligned}
$$

and blocks reduced to q.
It follows that the blocks of π_{B} are either reduced to one element q or are blocks of the restriction of the partition $\pi^{\prime \prime}$ to B. By recursion, we know that the number of components of $\pi^{\prime \prime}$ containing the q is greater or equal to $\left[\frac{m-r}{2}\right]+1$. So the number of components of π_{B} is greater or equal to $\left[\frac{m-r}{2}\right]+1+r-1$; and as $2 \leqslant r,\left[\frac{m}{2}\right]+1 \leqslant\left[\frac{m-r}{2}\right]+1+r-1$.

Before proving the Proposition 3.1, we give two other lemmas.
LEMMA 3.8. There is a constant C_{m} (independent of n) such that for all π, for all $\left(i_{k}, j_{k}, s_{k}\right)$,

$$
\left|k_{\pi}\left[a\left(i_{1}, j_{1}, s_{1}, n\right), \ldots, a\left(i_{m}, j_{m}, s_{m}, n\right)\right]\right| \leqslant C_{m}
$$

Proof. Since two of $a(i, j, s, n)_{i \leqslant j \leqslant n}$ are either equal or independent and taking into account that $E_{0}(a(i, j, s, n))=0$, and $E_{0}\left(\left(a(i, j, s, n)^{2}\right)=1\right.$, it follows that

$$
\left|\phi_{0}\left(a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right) \cdots a\left(i_{l}^{\prime}, j_{l}^{\prime}, s_{l}^{\prime}, n\right)\right)\right| \leqslant 1 .
$$

We now prove by recursion on l that there is a constant C_{l} such that for each block of length l,

$$
\left|k_{l}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), \ldots, a\left(i_{l}^{\prime}, j_{l}^{\prime}, s_{l}^{\prime}, n\right)\right]\right| \leqslant C_{l} .
$$

Step 1. $l=1$:

$$
k_{1}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right)\right]=\phi_{0}\left(n a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right)\right)=0 .
$$

Step 2. $l=2$:

$$
\begin{aligned}
& k_{2}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), a\left(i_{2}^{\prime}, j_{2}^{\prime}, s_{2}^{\prime}, n\right)\right] \\
& \quad=\phi_{0}\left(a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right) a\left(i_{2}^{\prime}, j_{2}^{\prime}, s_{2}^{\prime}, n\right)\right)-\phi_{0}\left(a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right)\right) \phi_{0}\left(a\left(i_{2}^{\prime}, j_{2}^{\prime}, s_{2}^{\prime}, n\right)\right) .
\end{aligned}
$$

So $\left|k_{2}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), n a\left(i_{2}^{\prime}, j_{2}^{\prime}, s_{2}^{\prime}, n\right)\right]\right| \leqslant 1$.
Step 3. Assume that the result is true for l and prove it for $l+1$:

$$
\begin{aligned}
& k_{l+1}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), \ldots, a\left(i_{l+1}^{\prime}, j_{l+1}^{\prime}, s_{l+1}^{\prime}, n\right)\right] \\
& \quad=\phi_{0}\left(a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right) \cdots a\left(i_{l+1}^{\prime}, j_{l+1}^{\prime}, s_{l+1}^{\prime}, n\right)\right) \\
& \quad-\sum_{\pi \in N C(l+1), \pi \neq 1_{l+1}} k_{\pi}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), \ldots, a\left(i_{l+1}^{\prime}, j_{l+1}^{\prime}, s_{l+1}^{\prime}, n\right)\right]
\end{aligned}
$$

For each π in $N C(l+1)$ such that $\pi \neq 1_{l+1}$,

$$
\begin{aligned}
& k_{\pi}\left[a\left(i_{1}^{\prime}, j_{1}^{\prime}, s_{1}^{\prime}, n\right), \ldots, a\left(i_{l+1}^{\prime}, j_{l+1}^{\prime}, s_{l+1}^{\prime}, n\right)\right] \\
& \quad=\prod_{i=1}^{r} k_{\left|v_{i}\right|}\left[a\left(i_{\alpha(1)}, j_{\alpha(1)}, s_{\alpha(1)}, n\right) \cdots a\left(i_{\alpha(1)}, j_{\alpha(1)}, s_{\alpha(1)}, n\right)\right] .
\end{aligned}
$$

By recursion $\left|k_{\left|v_{i}\right|}[\cdots]\right| \leqslant C_{\left|v_{i}\right|}$ as $\left|v_{i}\right| \leqslant l$. And this proves the existence of the constant C_{l+1}.

Lemma 3.9. Let $s_{1}, s_{2}, \ldots, s_{m} \in N$. Let $t_{1}, t_{2}, \ldots, t_{m} \in N$. Then

$$
\sup _{n \in N}\left|\Psi_{n}\left(\tilde{Y}\left(s_{1}, n\right) D_{n}\left(t_{1}\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D_{n}\left(t_{m}\right)\right)\right|=K(m)<\infty .
$$

Proof. We know that the $\left(q_{k, n}\right)_{k \leqslant n^{2}}$ are orthogonal projectors in $\left(L^{\infty}[0,1], \phi\right)$ such that $\phi\left(q_{k, n}\right)=\frac{1}{n^{2}}$. We apply Lemma 3.6:

$$
\begin{aligned}
& \left|\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)\right| \leqslant \\
& \left.\left.\left.\quad \frac{1}{n} n^{2} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in E_{n}} \sum_{\pi} \right\rvert\, k_{\pi}\left[\sqrt{n} a\left(i_{1}, i_{2}, s_{1}, n\right), \ldots, \sqrt{n} a\left(i_{m}, i_{1}, s_{m}, n\right)\right)\right] \left\lvert\, K\left(\frac{1}{n^{2}}\right)^{\left|\pi_{B}\right|}\right.\right) .
\end{aligned}
$$

From Lemma 3.7, $\left|\pi_{B}\right|$ is greater or equal to $\left[\frac{m}{2}\right]+1$.

Now from Lemma 3.8, we get
$\left|\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D_{n}\left(t_{1}\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D_{n}\left(t_{m}\right)\right)\right| \leqslant n \operatorname{Card}\left(E_{n}\right) \operatorname{Card}(\{\pi\}) C_{m} n^{\frac{m}{2}}\left(\frac{1}{n^{2}}\right)^{\left[\frac{m}{2}\right]+1}$.
But from Lemma 3.6, $\operatorname{Card}\left(E_{n}\right)=O\left(n^{\frac{m}{2}+1}\right)$. So

$$
\left|\Psi_{n}\left(\widetilde{Y}_{n}\left(s_{1}\right) D_{n}\left(t_{1}\right) \cdots \widetilde{Y}_{n}\left(s_{m}\right) D_{n}\left(t_{m}\right)\right)\right|=O\left(n^{m-2\left[\frac{m}{2}\right]}\right)
$$

Case 1. If m is odd, for each π, at least one block v of π_{L} is of length $|v|$ odd. It follows then from an obvious recursion on $|v|$ odd, using the fact that the $a(i, j, s, n)$ are either independent or equal, that

$$
k_{|v|}\left[\left(\sqrt{n} a\left(i_{1}, j_{1}, s_{1}, n\right), \ldots, \sqrt{n} a\left(i_{|v|}, j_{|v|}, s_{|v|}, n\right)\right]=0\right.
$$

so

$$
k_{\pi}\left[\sqrt{n} a\left(i_{1}, i_{2}, s_{1}, n\right), \sqrt{n} a\left(i_{2}, i_{3}, s_{2}, n\right), \ldots, \sqrt{n} a\left(i_{m}, i_{1}, s_{m}, n\right)\right]=0
$$

Hence

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D_{n}\left(t_{1}\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D_{n}\left(t_{m}\right)\right)=0
$$

Case 2. If m is even, $m-2\left[\frac{m}{2}\right]=0$. So

$$
\sup _{n \in \mathbb{N}}\left|\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)\right|=K(m)<\infty
$$

Now we are able to prove the Proposition 3.1. We follow the proof of Theorem 2.2 of [7].

Proof of Proposition 3.1. Step 1. It is to prove that

$$
\sup _{n \in \mathbb{N}}\left|\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)\right|<\infty
$$

This is exactly Lemma 3.9.
Step 2. (i) First we prove that

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{\alpha(1)}, n\right) D\left(t_{1}, n\right) \widetilde{Y}\left(s_{\alpha(2)}, n\right) D\left(t_{2}, n\right) \cdots \widetilde{Y}\left(s_{\alpha(m)}, n\right) D\left(t_{m}, n\right)\right)=0
$$

if $\alpha(1) \neq \alpha(j)$ for all $j \neq 1$.
This is Corollary 3.3.
(ii) Let $\alpha(1)=\alpha(2)$ and $\operatorname{Card}\left(\alpha^{-1}(p)\right) \leqslant 2$ for all p in \mathbb{N}. We want to prove that

$$
\begin{aligned}
& \Psi_{n}\left(\widetilde{Y}\left(s_{\alpha(1)}, n\right) D\left(t_{1}, n\right) \widetilde{Y}\left(s_{\alpha(2)}, n\right) D\left(t_{2}, n\right) \cdots \widetilde{Y}\left(s_{\alpha(m)}, n\right) D\left(t_{m}, n\right)\right)= \\
& \quad \Psi_{n}\left(D\left(t_{1}, n\right) \Psi_{n}\left(D\left(t_{2}, n\right) \widetilde{Y}\left(s_{\alpha(3)}, n\right) D\left(t_{3}, n\right) \cdots \widetilde{Y}\left(s_{\alpha(m)}, n\right) D\left(t_{m}, n\right)\right)\right.
\end{aligned}
$$

Indeed

$$
\begin{aligned}
& \Psi_{n}\left(\tilde{Y}\left(s_{\alpha(1)}, n\right) D\left(t_{1}, n\right) \tilde{Y}\left(s_{\alpha(2)}, n\right) D\left(t_{2}, n\right) \cdots \tilde{Y}\left(s_{\alpha(m)}, n\right) D\left(t_{m}, n\right)\right)= \\
& \frac{1}{n} \sum_{k=1}^{n^{2}} \sum_{i_{1}, i_{2}, \ldots, i_{m}}\left(\phi * \phi_{0}\right)\left(q_{k, n} a\left(i_{1}, i_{2}, s_{\alpha(1)}, n\right) d\left(t_{1}, i_{2}\right) q_{k, n} a\left(i_{2}, i_{3}, s_{\alpha(1)}, n\right) d\left(t_{2}, i_{3}\right) \cdots\right. \\
& \left.\quad q_{k, n} a\left(i_{m}, i_{1}, s_{\alpha(m)}, n\right) d\left(t_{m}, i_{1}\right)\right) n^{\frac{m}{2}}
\end{aligned}
$$

From Lemma 3.2 and Lemma 3.5, this is equal to

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n^{2}} \phi\left(q_{k, n}\right) \sum_{i_{1}, i_{2}, i_{4}, \ldots, i_{m}} d\left(t_{1}, i_{2}\right)\left(E _ { 0 } (a (i _ { 1 } , i _ { 2 } , s _ { \alpha (1) } , n) ^ { 2 }) (\phi * \phi _ { 0 }) \left(d\left(t_{2}, i_{1}\right) q_{k, n} a\left(i_{1}, i_{4}, s_{\alpha(3)}, n\right)\right.\right. \\
& \left.\left.\quad d\left(t_{3}, i_{4}\right)\right) \cdots q_{k, n} a\left(i_{m}, i_{1}, s_{\alpha(m)}, n\right) d\left(t_{m}, i_{1}\right)\right) n^{\frac{m}{2}}= \\
& \frac{1}{n^{3}} \sum_{k=1}^{n^{2}} \sum_{i_{2}} d\left(t_{1}, i_{2}\right) \sum_{i_{1}, i_{4}, \ldots, i_{m}}\left(\phi * \phi_{0}\right)\left(d\left(t_{2}, i_{1}\right) q_{k, n} a\left(i_{1}, i_{4}, s_{\alpha(3), n} d\left(t_{3}, i_{4}\right)\right)\right. \\
& \left.\quad \cdots q_{k, n} a\left(i_{m}, i_{1}, s_{\alpha(m)}, n\right) d\left(t_{m}, i_{1}\right)\right) n^{\frac{m}{2}}= \\
& \frac{1}{n} \sum_{i_{2}} d\left(t_{1}, i_{2}\right) \frac{1}{n} \sum_{k=1}^{n^{2}} \sum_{i_{1}, i_{4}, \ldots, i_{m}}\left(\phi * \phi_{0}\right)\left(d\left(t_{2}, i_{1}\right) q_{k, n} a\left(i_{1}, i_{4}, s_{\alpha(3)}, n\right) d\left(t_{3}, i_{4}\right)\right) \\
& \left.\quad \cdots q_{k, n} a\left(i_{m}, i_{1}, s_{\alpha(m)}, n\right) d\left(t_{m}, i_{1}\right)\right) n^{\frac{m}{2}-1}= \\
& \Psi_{n}\left(D\left(t_{1}, n\right)\right) \Psi_{n}\left(D\left(t_{2}, n\right) \widetilde{Y}\left(s_{\alpha(3)}, n\right) D\left(t_{3}, n\right) \cdots \widetilde{Y}\left(s_{\alpha(m)}, n\right) D\left(t_{m}, n\right)\right) .
\end{aligned}
$$

(iii) One proves then that

$$
\lim _{n \rightarrow \infty} \Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)=0
$$

if $s_{k} \neq s_{k+1}(1 \leqslant k \leqslant m-1)$ and $s_{m} \neq s_{1}$.
As in the proof of Theorem 2.2 of [7] if

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right) \neq 0
$$

there is an automorphism γ of order 2 of $1, \ldots, m$ without fixed point such that for $p \neq q, s_{p}=s_{q}$ if and only if $p=\gamma(q)$. And then as in Lemma 3.6

$$
\begin{aligned}
& \Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)= \\
& \frac{1}{n} \sum_{k=1}^{n^{2}} \sum_{\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in E_{n}(\gamma)} \sum_{\pi} k_{\pi}\left[a\left(i_{1}, i_{2}, s_{1}, n\right), a\left(i_{2}, i_{3}, s_{2}, n\right)\right. \\
& \left.\cdots a\left(i_{m}, i_{1}, s_{m}, n\right)\right] O\left(\left(\frac{1}{n^{2}}\right)^{\left|\pi_{B}\right|}\right) n^{\frac{m}{2}}
\end{aligned}
$$

As in [7] $E_{n}(\gamma)$ denotes the set of $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in(1,2, \ldots, n)^{m}$ such that $i_{k}=$ $i_{\gamma(k)+1}, i_{k+1}=i_{\gamma(k)}$ where $\gamma(k)$ and $\gamma(k)+1$ are considered modulo m. From [7] $\operatorname{Card}\left(E_{n}(\gamma)\right) \leqslant n^{\frac{m}{2}}$. So from Lemma 3.6, Lemma 3.7 and Lemma 3.8, we get

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)=O\left(n^{\left(m-2\left[\frac{m}{2}\right]-1\right)}\right)
$$

Case 1. So if m is even,

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)=O\left(\frac{1}{n}\right)
$$

and we get the result.

Case 2. On the other hand, if m is odd, as in the proof of Lemma 3.9,

$$
\Psi_{n}\left(\widetilde{Y}\left(s_{1}, n\right) D\left(t_{1}, n\right) \cdots \widetilde{Y}\left(s_{m}, n\right) D\left(t_{m}, n\right)\right)=0
$$

This ends Step 2.
Step 3. Exactly as in Step 3 of the proof of Theorem 2.2 of [7], we apply the Theorem 2.1 of [7], to prove that the family of random variables $\widetilde{Y}(s, n)$ and $D(j, n)$ are asymptotically free, with the $\widetilde{Y}(s, n)$ having limit distributions given by semicircular laws of variance 1 .

This ends the proof of Proposition 3.1.
This gives now the following renormalized model for the free Brownian motion:

THEOREM 3.10. For all $s \in \mathbb{R}^{+}$, and $n \in \mathbb{N}^{*}$, let

$$
\widetilde{Z}_{n}(s)=\sum_{1 \leqslant i, j \leqslant n} \widetilde{W}_{(i, j, n)}(s) e(i, j, n)
$$

with $\widetilde{W}_{(i, j, n)}(s) \in L^{\infty}([0,1]) * L$. Assume that

$$
\widetilde{W}_{(i, j, n)}(s)=\sum_{k=1}^{n^{2}} q_{k, n} \sqrt{n} W_{(i, j, n)}(s) q_{k, n}
$$

where the $q_{k, n}$ are orthogonal projectors in $L^{\infty}[0,1], \sum_{k=1}^{n^{2}} q_{k, n}=1$ such that

$$
\phi\left(q_{k, n}\right)=\frac{1}{n^{2}}
$$

and the $\left(W_{(i, j, n)}(s)_{s \in R^{+}}\right)_{1 \leqslant i \leqslant j \leqslant n, n \in \mathbb{N}^{*}}$ are independent Brownian motions, in particular

$$
\text { if } s_{0}=0<s_{1}<s_{2} \cdots<s_{k} \quad\left(W_{(i, j, n)}\left(s_{l+1}\right)-W_{(i, j, n)}\left(s_{l}\right)\right)_{0 \leqslant l \leqslant k-1}
$$

are independent Gaussian random variables centered of variance $s_{l+1}-s_{l}$ and

$$
W(i, j, n)(s)=W(j, i, n)(s)
$$

Consider the trace Ψ_{n} defined at the begining of the section. Let $D_{n}(j)$ be elements in Δ_{n}, the set of diagonal matrices, such that $\sup _{n \in N}\left\|D_{n}(j)\right\|<\infty$, for each j; and such that for all $j,\left(D_{n}(j)\right)$ has a limit distribution as $n \rightarrow \infty$.

Then the family of subsets $\left\{\widetilde{Z}_{n}(s)\right\}$ and $\left\{D_{n}(j): j \in N\right\}$ are asymptotically free, and the limit distribution of the $\widetilde{Z}_{n}(s)$ is the distribution of the free Brownian motion.

Proof. For $i \in\{0, \ldots, k-1\}$ and $n \in \mathbb{N}$, let $0=s_{0}<s_{1}<s_{2}<\cdots<s_{k}$. Let $\widetilde{Y}(i, n)=\frac{1}{\sqrt{s_{i+1}-s_{i}}}\left(\widetilde{Z}_{n}\left(s_{i+1}\right)-\widetilde{Z}_{n}\left(s_{i}\right)\right)$.

We apply the Proposition 3.1 to $\widetilde{Y}(i, n)$ and we get the result.

4. A FREE GIRSANOV PROPERTY

Hypothesis: Let $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$be a free Brownian motion in (M, τ). Let N be a commutative C^{*}-subalgebra of M free from the $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$. Let x be a measurable process with values in N. Assume that $x(u)=x(u)^{*}$ for all u and that $\int_{0}^{\infty}\|x(u)\|^{2} \mathrm{~d} u<\infty$. Let $\widetilde{\sigma}_{s}=\sigma_{s}+\int_{0}^{s} x(u) \mathrm{d} u$.

We want first to associate to the system $\left(\sigma_{s}, x(u)\right)_{s, u \in R^{+}}$an asymptotic system $\left(\widetilde{Z}_{n}(s), D_{n}(u)\right)$ in the set of random matrices with coefficients in a free product algebra $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$, and then to define on $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$ two traces Ψ_{n} and $\widetilde{\Psi}_{n}$ such that their asymptotic limits are respectively the traces τ and $\widetilde{\tau}$, where τ is the given trace and $\widetilde{\tau}$ is a new trace such that $\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion for $\tilde{\tau}$.

AN ASYMPTOTIC SYSTEM IN $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right) .\left(\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}\right)$is a free Brownian motion and the $x(u)=x(u)^{*}$ belong to a commutative subalgebra of M free from the σ_{s}. In view of Theorem 3.10, we will associate to the process σ_{s} the process of random matrices $\left(\widetilde{Z}_{n}(s)_{s \in \mathbb{R}^{+}}\right)$and we want to associate to the process $x(u)_{u \in \mathbb{R}^{+}} \mathrm{a}$ process of diagonal matrices with real coefficients. We construct now this process.

LEMMA 4.1. Let N be a commutative C^{*}-algebra with a finite trace τ. There is a family of homomorphisms H_{n} from N to Δ_{n} (the set of diagonal matrices with complex coefficients) such that for all $x \in N$,

$$
\tau(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}_{n}\left(H_{n}(x)\right)
$$

Proof. From the Chapter 2 of [2] the set of states on N is the weak* closed convex hull of the set of pure states on N. Furthermore as N is commutative, the pure states are the characters. Denote \mathcal{X} the set of the characters of N. Denote \bar{S} the weak* closure of

$$
S=\left\{\frac{1}{n} \sum_{1 \leqslant i \leqslant n} \chi_{i}: n \in \mathbb{N}^{*}, \chi_{i} \in \mathcal{X}\right\}
$$

Using the density of $\left\{\frac{k}{n}: n \in \mathbb{N}^{*}, 1 \leqslant k \leqslant n\right\}$ in $[0,1]$, it is easy to verify that \bar{S} is a convex set; so \bar{S} is equal to the set of all the states on N. It follows that there is a sequence S_{n} of elements of S such that the limit of S_{n} for the weak* topology of N is equal to the trace τ, i.e. for all x in $N, S_{n}(x) \rightarrow \tau(x)$ as $n \rightarrow \infty$, with

$$
S_{n}=\frac{1}{n} \sum_{1 \leqslant i \leqslant n} \chi_{i, n}
$$

Define now the homomorphism H_{n} from N to Δ_{n} by:

$$
H_{n}(x)=\left(\begin{array}{cccc}
\chi_{1, n}(x) & 0 & \cdots & 0 \\
0 & \chi_{2, n}(x) & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \chi_{n, n}(x)
\end{array}\right)
$$

Then

$$
\left\|H_{n}(x)\right\| \leqslant \sup \left(\left|\chi_{i, n}(x)\right|\right) \leqslant\|x\|
$$

and for every $x \in N$,

$$
\frac{1}{n} \operatorname{Tr}_{n}\left(H_{n}(x)\right)=\frac{1}{n} \sum_{1 \leqslant i \leqslant n} \chi_{i, n}(x)=S_{n}(x)
$$

So

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}_{n}\left(H_{n}(x)\right)=\tau(x)
$$

For all $u \in \mathbb{R}^{+}$denote $D_{n}(u)$ the diagonal matrix $D_{n}(u)=H_{n}(x(u))$. It is a real matrix because $x(u)$ is selfadjoint.

DEFINITION 4.2. The asymptotic system associated to $\left(\sigma_{s}, x(u)\right)_{s, u \in \mathbb{R}^{+}}$is the system of random matrices $\left(\widetilde{Z}_{n}(s), D_{n}(u)\right)_{s, u \in \mathbb{R}^{+}}$in $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$ where $\left(\widetilde{Z}_{n}(s)\right)_{s \in \mathbb{R}^{+}}$is the process of random matrices defined in Theorem 3.10 and $\left(D_{n}(u)\right)_{u \in \mathbb{R}^{+}}$is the process of diagonal matrices defined above.

TWO TRACES ON $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$. In the preceding section we have associated to $\left(\sigma_{s}, x(u)\right)_{s, u \in \mathbb{R}^{+}}$an asymptotic system in $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$. Define now two traces Ψ_{n} and $\widetilde{\Psi}_{n}$ on $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$ such that their asymptotic limits will give the two traces τ and $\widetilde{\tau}$.

Denote

$$
h_{n}=\exp -\left[\int_{0}^{\infty} \sum_{1 \leqslant i \leqslant n} \frac{1}{\sqrt{n}} D_{n}(u)_{i, i} \mathrm{~d} W_{i, i, n}(u)+\int_{0}^{\infty} \sum_{1 \leqslant i \leqslant n} \frac{D_{n}(u)_{i, i}^{2}}{2 n} \mathrm{~d} u\right]
$$

Lemma 4.3. For all $n \in \mathbb{N}^{*} \quad \phi_{0}\left(h_{n}\right)=1$. For all $p \geqslant 2 \sup _{n \in \mathbb{N}^{*}} \phi_{0}\left(h_{n}^{p}\right)<\infty$, $\lim _{n \rightarrow \infty} \phi_{0}\left(h_{n}^{p}\right)=\exp \left[\frac{p^{2}-p}{2} \int_{0}^{\infty} \tau\left(x(u)^{2}\right) \mathrm{d} u\right]$ and the family

$$
\left(\left[W_{(i, j, n)}(s)+\int_{0}^{s} \frac{1}{\sqrt{n}}\left(D_{n}(u)\right)_{i, i} \delta_{i, j} \mathrm{~d} u\right]_{s \in \mathbb{R}^{+}}\right)_{1 \leqslant i \leqslant j \leqslant n}
$$

is a family of independent Brownian motions for $\phi_{0}\left(h_{n}\right.$. $)$

Proof. We have:

$$
\begin{aligned}
& \phi_{0}\left(h_{n}^{p}\right) \\
& \quad=E\left(\exp -p\left[\int_{0}^{\infty} \frac{1}{\sqrt{n}} \sum_{1 \leqslant i \leqslant n}\left(D_{n}(u)\right)_{i, i} \mathrm{~d} W_{i, i, n}(u)+\frac{1}{2 n} \int_{0}^{\infty} \sum_{1 \leqslant i \leqslant n}\left(D_{n}(u)\right)_{i, i}^{2}\right] \mathrm{d} u\right) \\
& \quad=\exp \left[\frac{1}{2} \int_{0}^{\infty} \sum_{1 \leqslant i \leqslant n} \frac{\left(D_{n}(u)\right)_{i, i}^{2} p^{2}}{n} \mathrm{~d} u-\frac{p}{2 n} \int_{0}^{\infty} \sum_{1 \leqslant i \leqslant n}\left(D_{n}(u)\right)_{i, i}^{2} \mathrm{~d} u\right] \\
& \quad=\exp \left[\frac{p^{2}-p}{2} \int_{0}^{\infty} \frac{1}{n} \operatorname{Tr}_{n}\left(D_{n}(u)^{2}\right) \mathrm{d} u\right] .
\end{aligned}
$$

Since $D_{n}(u)=H_{n}(x(u))$, we have, for all $n, \frac{1}{n} \operatorname{Tr}_{n}\left(D_{n}(u)^{2}\right) \leqslant\|x(u)\|^{2}$. From Lemma 4.1, $\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}_{n}\left(D_{n}(u)^{2}\right)=\tau\left(x(u)^{2}\right)$, so we get the result for $\phi_{0}\left(h_{n}^{p}\right)$ applying the dominated convergence theorem of Lebesgue.

As the Brownian motions $\left(W_{i, j, n}(s)\right)_{1 \leqslant i \leqslant j \leqslant n}$ are independent and as for all $i \leqslant n, \int_{0}^{\infty} H_{n}(x(u))_{i, i}^{2} \mathrm{~d} u<\infty$, it results from the usual Girsanov theorem that

$$
\left(\left[W_{(i, j, n)}(s)+\int_{0}^{s} \frac{1}{\sqrt{n}}\left(D_{n}(u)\right)_{i, i} \delta_{i, j} \mathrm{~d} u\right]_{s \in \mathbb{R}^{+}}\right)_{1 \leqslant i \leqslant j \leqslant n}
$$

are independent Brownian motions for $\phi_{0}\left(h_{n}.\right)$.
DEFINITION 4.4. Define now the traces Ψ_{n} and $\widetilde{\Psi}_{n}$ on $\mathcal{M}_{n}\left(L^{\infty}([0,1]) * L\right)$ by

$$
\Psi_{n}\left(\sum_{1 \leqslant i, j \leqslant n} x_{i j} e(i, j, n)\right)=\frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(\phi * \phi_{0}\right)\left(x_{i i}\right)
$$

and

$$
\widetilde{\Psi}_{n}\left(\sum_{1 \leqslant i, j \leqslant n} x_{i j} e(i, j, n)\right)=\frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(\phi * \phi_{0}\left(h_{n} \cdot\right)\right)\left(x_{i i}\right) .
$$

For simplicity we will denote

$$
\Psi_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi * \phi_{0}\right) \quad \text { and } \quad \widetilde{\Psi}_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi * \phi_{0}\left(h_{n} \cdot\right)\right) .
$$

Ψ_{n} is the same state as in Section 3.
Proposition 4.5. The joint distribution of $\left(\left(\widetilde{Z}_{n}(s)_{s \in \mathbb{R}^{+}}, H_{n}(x)_{x \in N}\right)\right.$ for Ψ_{n} is the same as the joint distribution of $\left(\left(\widetilde{Z}_{n}(s)+\int_{0}^{s} D_{n}(u) \mathrm{d} u\right)_{s \in \mathbb{R}^{+}}, H_{n}(x)_{x \in N}\right)$ for $\widetilde{\Psi}_{n}$.

Proof. We have:

$$
\begin{aligned}
\left(\widetilde{Z}_{n}(s)+\int_{0}^{s} D_{n}(u) \mathrm{d} u\right)_{i, j} & =\sum_{k=1}^{n^{2}} q_{k, n} \sqrt{n} W_{(i, j, n)}(s) q_{k, n}+\int_{0}^{s}\left(D_{n}(u)\right)_{i, i} \delta_{i, j} \mathrm{~d} u \\
& =\sum_{k=1}^{n^{2}} q_{k, n}\left[\sqrt{n} W_{(i, j, n)}(s)+\int_{0}^{s}\left(D_{n}(u)\right)_{i, i} \delta_{i, j} \mathrm{~d} u\right] q_{k, n}
\end{aligned}
$$

To compute the joint distribution of $\left(\left(\widetilde{Z}_{n}(s)+\int_{0}^{s} D_{n}(u) \mathrm{d} u\right)_{s \in \mathbb{R}^{+}}, H_{n}(x)_{x \in N}\right)$ for $\widetilde{\Psi}_{n}$, it is enough, as N is a unital C^{*}-algebra, to compute for all $p \in \mathbb{N}, s_{i} \geqslant 0$ and $x_{i} \in N$

$$
\begin{aligned}
& \widetilde{\Psi}_{n}\left(H_{n}\left(x_{1}\right)\left(\widetilde{Z}_{n}\left(s_{1}\right)+\int_{0}^{s_{1}} D_{n}(u) \mathrm{d} u\right) H_{n}\left(x_{2}\right) \cdots H_{n}\left(x_{p}\right)\left(\widetilde{Z}_{n}\left(s_{p}\right)+\int_{0}^{s_{p}} D_{n}(u) \mathrm{d} u\right)\right) \\
& =\frac{1}{n} \sum_{1 \leqslant k \leqslant n^{2}} \sum_{1 \leqslant i_{1} \leqslant n} \sum_{1 \leqslant j_{1} \leqslant n} \cdots \sum_{1 \leqslant j_{p-1} \leqslant n}\left(\phi * \phi_{0}\left(h_{n} \cdot\right)\right)\left[\left(H_{n}\left(x_{1}\right)\right)_{i_{1}, i_{1}} \cdot\right. \\
& \quad\left(q_{k, n}\left[\sqrt{n} W_{\left(i_{1}, j_{1}, n\right)}\left(s_{1}\right)+\int_{0}^{s_{1}}\left(D_{n}(u)\right)_{i_{1}, i_{1}} \delta_{i_{1}, j_{1}} \mathrm{~d} u\right] q_{k, n}\right) . \\
& \quad\left(H_{n}\left(x_{2}\right)\right)_{j_{1}, j_{1}}\left(q_{k, n}\left[\sqrt{n} W_{\left(j_{1}, j_{2}, n\right)}\left(s_{2}\right)+\int_{0}^{s_{2}}\left(D_{n}(u)\right)_{j_{1}, j_{1}} \delta_{j_{1}, j_{2}} \mathrm{~d} u\right] q_{k, n}\right) \cdots \\
& \left.\quad\left(H_{n}\left(x_{p}\right)\right)_{j_{p-1}, j_{p-1}}\left(q_{k, n}\left[\sqrt{n} W_{\left(j_{p-1}, i_{1}, n\right)}\left(s_{p}\right)+\int_{0}^{s_{p}}\left(D_{n}(u)\right)_{j_{p-1}, j_{p-1}} \delta_{j_{p-1}, i_{1}} \mathrm{~d} u\right] q_{k, n}\right)\right] .
\end{aligned}
$$

Remark now that the $q_{k, n}$ are free from L for $\phi * \phi_{0}\left(h_{n}.\right)$ and also for $\phi *$ ϕ_{0}. Furthermore, Lemma 4.3 implies that the joint distribution of $\left(\left[\sqrt{n} W_{(i, j, n)}(s)\right.\right.$ $\left.\left.+\int_{0}^{S}\left(D_{n}(u)\right)_{i, i} \delta_{i, j} \mathrm{~d} u\right]_{s \in \mathbb{R}^{+}}\right)_{1 \leqslant i \leqslant j \leqslant n}$ for $\phi_{0}\left(h_{n}\right.$.) is equal to the joint distribution of $\left(\left[\sqrt{n} W_{(i, j, n)}(s)\right]_{s \in \mathbb{R}^{+}}\right)_{1 \leqslant i \leqslant j \leqslant n}$ for ϕ_{0}. We then get that the preeceding sum is equal to

$$
\begin{aligned}
= & \frac{1}{n} \sum_{1 \leqslant k \leqslant n^{2}} \sum_{1 \leqslant i_{1} \leqslant n} \sum_{1 \leqslant j_{1} \leqslant n} \cdots \sum_{1 \leqslant j_{p-1} \leqslant n}\left(\phi * \phi_{0}\right)\left(\left(H_{n}\left(x_{1}\right)\right)_{i_{1}, i_{1}}\right. \\
& \quad\left(q_{k, n}\left[\sqrt{n} W_{\left(i_{1}, j_{1}, n\right)}\left(s_{1}\right)\right] q_{k, n}\right)\left(H_{n}\left(x_{2}\right)\right)_{j_{1}, j_{1}}\left(q_{k, n}\left[\sqrt{n} W_{\left(j_{1}, j_{2}, n\right)}\left(s_{2}\right)\right] q_{k, n}\right) \cdots \\
& \left.\quad\left(H_{n}\left(x_{p}\right)\right)_{j_{p-1}, j_{p-1}}\left(q_{k, n}\left[\sqrt{n} W_{\left(j_{p-1}, i_{1}, n\right)}\left(s_{p}\right)\right] q_{k, n}\right)\right) \\
= & \Psi_{n}\left(H_{n}\left(x_{1}\right) \widetilde{Z}_{n}\left(s_{1}\right) H_{n}\left(x_{2}\right) \widetilde{Z}_{n}\left(s_{2}\right) \cdots H_{n}\left(x_{p}\right) \widetilde{Z}_{n}\left(s_{p}\right)\right) .
\end{aligned}
$$

This ends the proof of the Proposition 4.5.

MAIN RESULT. We can now prove our main result: a free Girsanov property for the free Brownian motion.

THEOREM 4.6. Let $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$, be a free Brownian motion in (M, τ). Let N be a commutative C^{*}-subalgebra of M such that N is free from $\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}$. Let $x: \mathbb{R}^{+} \rightarrow N$ measurable such that $x(u)=x(u)^{*}$ for all u and $\int_{0}^{\infty} \|\left(x(u) \|^{2} \mathrm{~d} u<\infty\right.$. Let $\widetilde{\sigma_{s}}=$ $\sigma_{s}+\int_{0}^{s} x(u) \mathrm{d} u$.

Then there is a trace $\tilde{\tau}$ on the free product algebra $N * \mathbb{C}\left[\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}\right]$such that the joint distribution of $\left(\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}, x(u)_{u \in \mathbb{R}^{+}}\right)$for $\tilde{\tau}$ is the same as the joint distribution of $\left(\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}, x(u)_{u \in \mathbb{R}^{+}}\right)$for τ (in particular, $\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}$is a free Brownian motion for the new trace $\tilde{\tau})$. Furthermore the two traces are asymptotically equivalent in the following sense: There is a family $\widetilde{Z}_{n}(s)$ of random matrices in $\mathcal{M}_{n}\left(L^{\infty}[0,1] * L\right)$ and a family $D_{n}(u)$ in Δ_{n} such that:
(i) $\left(\mathbb{C}\left[\sigma_{s}, x(t)\right]_{s, t \in \mathbb{R}^{+}}, \tau\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[\widetilde{Z}_{n}(s), D_{n}(t)\right]_{s, t \in \mathbb{R}^{+}}, \Psi_{n}\right)$;
(ii) $\left(\mathbb{C}\left[\sigma_{s}, x(t)\right]_{s, t \in \mathbb{R}^{+}}, \widetilde{\tau}\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[\widetilde{Z}_{n}(s), D_{n}(t)\right]_{s, t \in \mathbb{R}^{+}}, \widetilde{\Psi}_{n}\right) ;$
where $\widetilde{\Psi}_{n}$ is obtained from Ψ_{n} by a change of probability with exponential density h_{n}

$$
\Psi_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi * \phi_{0}\right), \quad \widetilde{\Psi}_{n}=\frac{1}{n} \operatorname{Tr}_{n}\left(\phi_{*} \phi_{0}\left(h_{n} .\right)\right) .
$$

Furthermore for all $p, \sup _{n \in \mathbb{N}} \phi_{0}\left(h_{n}^{p}\right)<\infty$.
Proof. $\widetilde{\sigma}_{s}=\sigma_{s}+\int_{0}^{s} x(u) \mathrm{d} u$. Denote $y(s)=\int_{0}^{s} x(u) \mathrm{d} u$; then $y(s)$ is an element of the C^{*}-algebra N and $H_{n}(y(s))=\int_{0}^{s} D_{n}(u) \mathrm{d} u$.

From Proposition 4.5, the joint distribution of $\left(\left(\widetilde{Z}_{n}(s)+H_{n}(y(s))_{s \in \mathbb{R}^{+}}\right.\right.$, $\left.H_{n}(x)_{x \in N}\right)$ for $\widetilde{\Psi}_{n}$ is the same as the joint distribution of $\left(\widetilde{Z}_{n}(s)_{s \in \mathbb{R}^{+}}, H_{n}(x)_{x \in N}\right)$ for Ψ_{n}. Hence for every non commutative polynomial $P, \widetilde{\Psi}_{n}\left(P\left(\widetilde{Z}_{n}\left(s_{i}\right)+H_{n}\left(y\left(s_{i}\right)\right)\right.\right.$, $\left.H_{n}\left(x_{j}\right)\right)=\Psi_{n}\left(P\left(\widetilde{Z}_{n}\left(s_{i}\right), H_{n}\left(x_{j}\right)\right)\right.$. From Theorem 3.10, and Lemma 4.1 this last quantity has a limit as n tends to ∞ and this limit is equal to $\tau\left(P\left(\sigma_{s_{i}}, x_{j}\right)\right)$. So this gives (i).

It follows also that there is a trace $\tilde{\tau}$ well defined on $\mathbb{C}\left[\widetilde{\sigma}_{s}\right] * N$ by

$$
\widetilde{\tau}\left(P\left(\widetilde{\sigma}_{s_{i}}, x_{j}\right)\right)=\lim _{n \rightarrow \infty} \widetilde{\Psi}_{n}\left(P\left(\widetilde{Z}_{n}\left(s_{i}\right)+H_{n}\left(y\left(s_{i}\right)\right), H_{n}\left(x_{j}\right)\right)\right.
$$

and that the joint distribution of $\left(\left(\widetilde{\sigma}_{s}\right)_{s \in \mathbb{R}^{+}}, x_{x \in N}\right)$ for $\widetilde{\tau}$ is the same as the joint distribution $\left(\left(\sigma_{s}\right)_{s \in \mathbb{R}^{+}}, x_{x \in N}\right)$ for τ. This gives also the equality (ii).

Now we finish by the following remark: if we replace in the preceding theorem the random process $\widetilde{Z}_{n}(s)$ by the random process $B_{n, s}=\left(\frac{1}{\sqrt{n}} W_{n, i, j, s}\right)_{1 \leqslant i, j \leqslant n}$ considered by Voiculescu (cf. Section 2), the asymptotic limits for Ψ_{n} and $\widetilde{\Psi}_{n}$ give
both the trace τ. This is why we were obliged to construct a matrix random process with values in a free product algebra. More precisely we have the following result.

PROPOSITION 4.7. Let $B_{n, s}$ be the matrix random process $B_{n, s}=\left(\frac{1}{\sqrt{n}} W_{n, i, j, s}\right)_{1 \leqslant i, j \leqslant n}$ where $\left(W_{n, i, j, s}\right)_{1 \leqslant i \leqslant j \leqslant n}$ are independent Brownian motions. Let Ψ_{n} and $\widetilde{\Psi}_{n}$ be the traces of Theorem 4.6.Then:
(i') $\left(\mathbb{C}\left[\sigma_{s}, x(t)\right]_{s, t \in \mathbb{R}^{+}}, \tau\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[B_{n, s}, D_{n}(t)\right]_{s, t \in \mathbb{R}^{+}}, \Psi_{n}\right) ;$
(ii') $\left(\mathbb{C}\left[\sigma_{s}, x(t)\right]_{s, t \in \mathbb{R}^{+}}, \tau\right)=\lim _{n \rightarrow \infty}\left(\mathbb{C}\left[B_{n, s}, D_{n}(t)\right]_{s, t \in \mathbb{R}^{+}}, \widetilde{\Psi}_{n}\right)$.
Proof. Step 1. The equality (i') results from the Theorem 2.2 of [7] as it is recalled in Section 2 and from the Lemma 4.1.

Notice that $B_{n, s}$ and $D_{n}(t)=H_{n}(x(t))$ are matrices with coefficients in L so here Ψ_{n} respectively $\widetilde{\Psi}_{n}$ are simply equal to $\frac{1}{n} \operatorname{Tr}_{n}\left(\phi_{0}\right)$ respectively $\frac{1}{n} \operatorname{Tr}_{n}\left(\phi_{0}\left(h_{n}\right)\right)$; Ψ_{n} restricted to $\mathcal{M}_{n}(L)$ is equal to the trace ϕ_{n} of Section 2. As in the proof of Theorem 4.6 denote $y(s)=\int_{0}^{s} x(u) \mathrm{d} u$.

Step 2. From Lemma 4.3, the joint distribution of $\left(B_{n, s}+\frac{1}{n} H_{n}(y(s)), H_{n}(x(t))\right)$ for $\widetilde{\Psi}_{n}$ is the same as the joint distribution of $\left(B_{n, s}, H_{n}(x(t))\right)$ for Ψ_{n}.

Step 3. Let P be a non commutative polynomial. Compute now:

$$
\begin{aligned}
& \Psi_{n}\left(\left[B_{n, s_{1}}+\frac{1}{n} H_{n}\left(y\left(s_{1}\right)\right)\right]^{\alpha_{1}} H_{n}\left(x_{1}\right)\left[B_{n, s_{2}}+\frac{1}{n} H_{n}\left(y\left(s_{2}\right)\right)\right)\right]^{\alpha_{2}} H_{n}\left(x_{2}\right) \cdots \\
& \left.\quad\left[B_{n, s_{m}}+\frac{1}{n} H_{n}\left(y\left(s_{m}\right)\right)\right]^{\alpha_{m}} H_{n}\left(x_{m}\right)\right) \\
& \quad=\Psi_{n}\left(\left(B_{n, s_{1}}\right)^{\alpha_{1}} H_{n}\left(x_{1}\right)\left(B_{n, s_{2}}\right)^{\alpha_{2}} H_{n}\left(x_{2}\right) \cdots\left(B_{n, s_{m}}\right)^{\alpha_{1}} H_{n}\left(x_{m}\right)\right) \\
& \quad+\sum_{i=1}^{\alpha_{1}+\cdots+\alpha_{m}}\left(\frac{1}{n}\right)^{i}\left(\Psi _ { n } \left(Q_{i}\left(B_{n, s_{1}}, \ldots, B_{n, s_{m}}, H_{n}\left(x_{1}\right), \ldots, H_{n}\left(x_{m}\right)\right),\right.\right.
\end{aligned}
$$

where Q_{i} is a non commutative polynomial.
From the theorem of Voiculescu recalled in Section 2, $\lim _{n \rightarrow \infty} \Psi_{n}\left(Q_{i}\left(B_{n, s_{1}}, \ldots\right.\right.$, $\left.B_{n, s_{m}}, H_{n}\left(x_{1}\right), \ldots, H_{n}\left(x_{m}\right)\right)=\tau\left(Q_{i}\left(\sigma_{s_{1}}, \ldots, \sigma_{s_{m}}, x_{1}, \ldots, x_{m}\right)\right)$, for all i, and i.e. for every non commutative polynomial P we have $\Psi_{n}\left(P\left(B_{n, s_{i}}+\frac{1}{n} H_{n}\left(y\left(s_{i}\right)\right), H_{n}\left(x_{j}\right)\right)\right)$ $-\Psi_{n}\left(P\left(B_{n, s_{i}}, H_{n}\left(x_{j}\right)\right)\right)$ tends to zero as n tends to ∞, and

$$
\begin{aligned}
& \left\lvert\, \widetilde{\Psi}_{n}\left(\left.\left(P\left(B_{n, s_{i}}+\frac{1}{n} H_{n}\left(y\left(s_{i}\right)\right), H_{n}\left(x_{j}\right)\right)\right)-\widetilde{\Psi}_{n}\left(P\left(B_{n, s_{i}}, H_{n}\left(x_{j}\right)\right)\right) \right\rvert\, \leqslant\right.\right. \\
& \quad \phi_{0}\left(h_{n}^{2}\right)^{\frac{1}{2}} \Psi_{n}\left(\left[P\left(B_{n, s_{i}}+\frac{1}{n} H_{n}\left(y\left(s_{i}\right)\right), H_{n}\left(x_{j}\right)\right)-P\left(B_{n, s_{i}}, H_{n}\left(x_{j}\right)\right)\right]^{*}\right. \\
& \left.\quad\left[P\left(B_{n, s_{i}}+\frac{1}{n} H_{n}\left(y\left(s_{i}\right)\right), H_{n}\left(x_{j}\right)\right)-P\left(B_{n, s_{i}}, H_{n}\left(x_{j}\right)\right)\right]\right)^{1 / 2}
\end{aligned}
$$

and we know from Lemma 4.3 that $\lim _{n \rightarrow \infty} \phi_{0}\left(h_{n}^{2}\right)=\exp \left(\tau\left(a^{2}\right)\right)$.

It follows that the limit joint distribution of $\left(B_{n, s}, H_{n}(x(t))\right)$ for $\widetilde{\Psi}_{n}$ is the same as the limit joint distribution of $\left(B_{n, s}+\frac{1}{n} H_{n}(y(s)), H_{n}(x(t))\right)$ for $\widetilde{\Psi}_{n}$. Applying now Step 2 and 1 it follows that this limit is equal to the joint distribution of $\left(\sigma_{s}, x(t)\right)$ for τ. So we get (ii').

The generalization of this Girsanov property (Theorem 4.6) to the case where the process x is adapted to the free Brownian motion $\left(\sigma_{s}\right)$ is a work in progress.

REFERENCES

[1] P. Biane, R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112(1998), 378-410.
[2] J. Dixmier, C*-Algebras, North Holland Publ. Comp., Amsterdam 1977.
[3] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, NewYork 1988.
[4] F. RĂDULESCU, A one parameter group of automorphisms of $L\left(F_{\infty}\right) \otimes B(H)$ scaling the trace, C. R. Acad. Sci. Paris 314(1992), 1027-1032.
[5] R. Speicher, Lectures given during the session "Free Probability and Operator Spaces" at the Centre Emile Borel, Institut Henri Poincaré, Paris, (September 1999February 2000).
[6] D. Voiculescu, Circular and Semicircular Systems and Free Product Factors, Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progr. Math., vol. 92, Birkhauser, Boston 1990.
[7] D. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104(1991), 201-220.
[8] D. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, Amer. Math. Soc., Providence, RI 1992.

JOCELYNE BION-NADAL, Centre de Mathématiques Appliquées (CMAP), CNRS UMR 7641, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

E-mail address: bionnada@cmapx.polytechnique.fr

Received July 9, 2004.

